最值问题(费马点)精编版
- 格式:doc
- 大小:111.50 KB
- 文档页数:4
专题67 费马点中三线段模型与最值问题【专题说明】费马点”是指位于三角形内且到三角形三个顶点距高之和最短的点。
主要分为两种情况:(1)当三角形三个内角都小于120°的三角形,通常将某三角形绕点旋转60度,从而将“不等三爪图”中三条线段转化在同一条直线上,利用两点之间线段最短解决问题。
(2)当三角形有一个内角大于120°时,费马点就是此内角的顶点.费马点问题解题的核心技巧:旋转60° 构造等边三角形将“不等三爪图”中三条线段转化至同一直线上利用两点之间线段最短求解问题【模型展示】问题:在△ABC内找一点P,使得P A+PB+PC最小.APB C【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.(1)如图,分别以△ABC中的AB、AC为边,作等边△ABD、等边△ACE.(2)连接CD、BE,即有一组手拉手全等:△ADC≌△ABE.(3)记CD、BE交点为P,点P即为费马点.(到这一步其实就可以了)(4)以BC 为边作等边△BCF ,连接AF ,必过点P ,有∠P AB =∠BPC =∠CP A =120°.在图三的模型里有结论:(1)∠BPD =60°;(2)连接AP ,AP 平分∠DPE .有这两个结论便足以说明∠P AB =∠BPC =∠CP A =120°.原来在“手拉手全等”就已经见过了呀,只是相逢何必曾相识!【精典例题】1、如图,四边形ABCD 是菱形,AB=4,且∠ABC=∠ABE=60°,G 为对角线BD (不含B 点)上任意一点,将∠ABG 绕点B 逆时针旋转60°得到∠EBF ,当AG+BG+CG 取最小值时EF 的长( )A . 2B .C . 3D . 3【答案】D【详解】解:如图,∠将∠ABG绕点B逆时针旋转60°得到∠EBF,∠BE=AB=BC,BF=BG,EF=AG,∠∠BFG是等边三角形.∠BF=BG=FG,.∠AG+BG+CG=FE+GF+CG.根据“两点之间线段最短”,∠当G点位于BD与CE的交点处时,AG+BG+CG的值最小,即等于EC的长,过E点作EF∠BC交CB的延长线于F,∠∠EBF=180°-120°=60°,∠BC=4,∠BF=2,,在Rt∠EFC中,∠EF2+FC2=EC2,∠∠CBE=120°,∠∠BEF=30°,∠∠EBF=∠ABG=30°,∠EF=BF=FG,∠EF=13, 故选:D .2、如图,将ABC ∆绕点A 逆时针旋转60°得到ADE ∆,DE 与BC 交于点P ,可推出结论:PA PC PE +=问题解决:如图,在MNG ∆中,6MN =,75M ∠=︒,MG =O 是MNG ∆内一点,则点O 到MNG ∆三个顶点的距离和的最小值是___________【答案】【详解】如图,将∠MOG 绕点M 逆时针旋转60°,得到∠MPQ ,显然∠MOP 为等边三角形,∠,OM +OG =OP +PQ ,∠点O 到三顶点的距离为:ON +OM +OG =ON +OP +PQ ,∠当点N 、O 、P 、Q 在同一条直线上时,有ON +OM +OG 最小,此时,∠NMQ =75°+60°=135°,过Q 作QA∠NM 交NM 的延长线于A ,则∠MAQ=90°,∠∠AMQ =180°-∠NMQ=45°,∠MQ =MG =∠AQ =AM =MQ•cos45°=4,∠NQ ==故答案为:3、如图,四边形 ABCD 是菱形,A B =6,且∠ABC =60° ,M 是菱形内任一点,连接AM ,BM ,CM ,则AM +BM +CM 的最小值为________.【答案】【详解】将∠BMN 绕点B 顺时针旋转60度得到∠BNE ,∠BM =BN ,∠MBN =∠CBE =60°,∠MN=BM∠MC=NE∠AM +MB +CM =AM +MN +NE .当A 、M 、N 、E 四点共线时取最小值AE .∠AB =BC =BE =6,∠ABH =∠EBH =60°,∠BH ∠AE ,AH =EH ,∠BAH =30°,∠BH =12AB =3,AH =∠AE =2AH =故答案为4、如图,∠ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为,则BC=_____.【详解】如图将∠ABP绕点A顺时针旋转60°得到∠AMG.连接PG,CM.∠AB=AC,AH∠BC,∠∠BAP=∠CAP ,∠PA=PA ,∠∠BAP∠∠CAP (SAS ),∠PC=PB ,∠MG=PB ,AG=AP ,∠GAP=60°,∠∠GAP 是等边三角形,∠PA=PG ,∠PA+PB+PC=CP+PG+GM ,∠当M ,G ,P ,C 共线时,PA+PB+PC 的值最小,最小值为线段CM 的长,∠AP+BP+CP 的最小值为,∠∠BAM=60°,∠BAC=30°,∠∠MAC=90°,∠AM=AC=2,作BN∠AC 于N .则BN=12AB=1,CN=25、如图,四边形ABCD 是正方形,∠ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM.∠ 求证:∠AMB∠∠ENB ;∠ ∠当M 点在何处时,AM +CM 的值最小;∠当M 点在何处时,AM +BM +CM 的值最小,并说明理由;∠ 当AM +BM +CM 的最小值为13 时,求正方形的边长.【答案】(1)∠AMB∠∠ENB ,证明略。
几何探究型问题(针对第25题)线段最值问题“费马点”问题【问题背景】“费马点”——就是到三角形三个顶点的距离之和最小的点.“费马点”问题在中考考查时主要隐藏在求PA+PB+PC的最小值问题,通常将某三角形绕点旋转一定的角度,从而将三条线段转化在同一条直线上,利用两点之间线段最短解决问题.【模型分析】对于一个各角不超过120°的三角形,“费马点”是对各边的张角都是120°的点,对于有一个角超过120°的三角形,费马点就是这个内角的顶点.费马点P使它到△ABC三个顶点的距离之和PA+PB+PC最小,这就是所谓的“费马”问题.如图,将△APC绕点A逆时针旋转60°到△AP′C′,则可以构造出等边三角形APP′,从而得到AP=PP′,CP=C′P′,所以将PA+PB+PC的值转化为PP′+PB+P′C′的值,则线段BC′的长即为所求的最小值.例题1.如图,已知点P为等边三角形ABC外接圆的劣弧BC上任意一点,求证:PB+PC=PA.证明:如答图,在P A上截取PM=PC,连接CM.∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,BC =AC .∵∠ABC =∠APC ,∴∠MPC =60°,∴△MPC 是等边三角形,∴∠MCP =60°,MC =PC ,∴∠ACM =∠BCP .在△BPC 和△AMC 中,⎩⎪⎨⎪⎧BC =AC ,∠BCP =∠ACM ,PC =MC ,∴△BPC ≌△AMC (SAS),∴BP =AM ,∴PB +PC =AM +PM =P A .2.已知三个村庄A ,B ,C 构成了如图所示的△ABC(其中∠A ,∠B ,∠C 均小于120°),现选取一点P 作为打水井,使水井P 到三个村庄A ,B ,C 所铺设的输水管总长度最小.求输水管总长度的最小值.解:如答图,以BC 为边在△ABC 的外部作等边三角形BCD ,连接AD .∴AD 的长就是△ABC 的费马距离. 易得∠ABD =90°,∴AD =AB 2+BD 2=5(km).答:输水管总长度的最小值为5 km.练习(2019·陕师大附中六模)问题提出(1)如图1,在△ABC 中,BC =2,将△ABC 绕点B 顺时针旋转60°得到△A ′BC ′,则CC ′=______.【解答】由旋转的性质可知∠CBC ′=60°,BC ′=BC ,则∠△BCC ′是等边三角形,故CC ′=BC =2.问题探究(2)如图2,在△ABC中,AB=BC=3,∠ABC=30°,点P为△ABC内一点,连接PA,PB,PC,求PA+PB+PC的最小值,并说明理由.解题思路将△ABP绕点B逆时针旋转60°得到△EBF,连接PF,EC.易证PA+PB+PC=EF+PF+PC;由PC+PF+EF≥EC,推出当点P,F在直线EC上时,PA+PB+PC的值最小,即为EC的长,求出EC的长即可解决问题.【解答】如答图1,将△ABP绕点B逆时针旋转60°得到△EBF,连接PF,EC.由旋转的性质可知△PBF是等边三角形,∴PB=PF.∵P A=EF,∴P A+PB+PC=EF+PF+PC.∵PC+PF+EF≥EC,∴当点P,F在直线EC上时,P A+PB+PC的值最小,易得BC=BE=BA=3,∠CBE=90°,∴EC=2BC=32,∴P A+PB+PC的最小值为3 2.问题解决(3)如图3,在四边形ABCD中,AD∥BC,AB=6,AD=4,∠ABC=∠BCD=60°.在四边形ABCD内部有一点P,满足∠APD=120°,连接BP,CP,点Q为△BPC内的任意一点,是否存在一点P和一点Q,使得PQ+BQ+CQ有最小值?若存在,请求出这个最小值;若不存在,请说明理由.解题思路将△PBQ绕点B逆时针旋转60°得到△EBG,则PQ=EG,△BQG是等边三角形,易知PQ+BQ+CQ=EG+GQ+QC≥EC,推出当EC取得最小值时,PQ +BQ +CQ 的值最小.延长BA 交CD 的延长线于点S ,作△ADS 的外接圆⊙O ,将线段BO ,BP 绕点B 逆时针旋转60°得到线段BO ′,BE ,连接EO ′,OB ,OP .易证△BEO ′≌△BPO(SAS),推出EO ′=OP =433,故点E 在以点O ′为圆心,433为半径的圆上,则当点E 在线段CO ′上时,EC 的值最小,最小值为CO ′-EO ′的长.【解答】如答图2,将△PBQ 绕点B 逆时针旋转60°得到△EBG ,连接GQ ,EC ,则PQ =EG ,△BQG 是等边三角形,∴BQ =QG ,∴PQ +BQ +CQ =EG +GQ +QC ≥EC ,∴当EC 取得最小值时,PQ +BQ +CQ 的值最小.如答图3,延长BA 交CD 的延长线于点S ,作△ADS 的外接圆⊙O ,连接OB .将线段BO ,BP 绕点B 逆时针旋转60°得到线段BO ′,BE ,连接EO ′,OP.易证△BEO ′≌△BPO (SAS),∴EO ′=PO .∵∠APD +∠ASD =180°,∴A ,P ,D ,S 四点共圆,∴OP =433,∴EO ′=433, ∴点E 在以点O ′为圆心,433为半径的圆上, ∴当点E 在线段CO ′上时,EC 的值最小,最小值为CO ′-EO ′的长,连接OO ′,延长OO ′到点R ,使得O ′R =OO ′,连接BR ,则∠OBR =90°,作RH ⊥CB 交CB 的延长线于点H ,O ′T ⊥CH 于点T ,OM ⊥BC 于点M .易知在Rt △OBM 中,BM =5,OM =1133, ∴OB =OM 2+BM 2=1433, ∴BR =3OB =14.易知△BHR ∽△OMB ,∴RH BM =BR OB,∴RH =5 3.∵HR ∥O ′T ∥OM ,OO ′=RO ′,∴TM =TH ,∴O ′T =RH +OM 2=1333,∴BT =O ′B 2-O ′T 2=3, ∴CO ′=CT 2+O ′T 2=2633, ∴CE =CO ′-EO ′=2633-433=2233, ∴PQ +BQ +CQ 的最小值为2233.类型三 “阿氏圆”问题【问题背景】“PA +k ·PB ”型的最值问题是近几年中考考查的热点,更是一个难点.当k 的值为1时,即可转化为“PA +PB ”之和最短问题,就可用我们常见的“将军饮马”问题模型来处理,即可以转化为轴对称问题来处理.当k 取任意不为1的正数时,此类问题的处理通常以动点P 的运动轨迹不同来分类,一般分为两类研究,即点P 在直线上运动和点P 在圆上运动.其中点P 在圆周上运动的类型称之为“阿氏圆”问题.【模型分析】如图1,⊙O 的半径为r ,点A ,B 都在⊙O 外,P 为⊙O 上一动点,已知r =k ·OB ,连接PA ,PB ,则当PA +k ·PB 的值最小时,点P 的位置如何确定?如图2,在线段OB 上截取OC ,使OC =k ·r ,则可证明△BPO 与△PCO 相似,即k ·PB =PC .故求PA +k ·PB 的最小值可以转化为PA +PC 的最小值,其中A ,C 为定点,P 为动点,当点P ,A ,C 共线时,PA +PC 的值最小,如图3.“阿氏圆”模型解题策略:第一步:连接动点与圆心O(一般将含有k 的线段两端点分别与圆心O 相连),即连接OB ,OP ;第二步:计算线段OP 与OB 及OP 与OA 的线段比,找到线段比为k 的情况,如例子中的OP OB =k ; 第三步:在OB 上取点C ,使得OC OP =OP OB ;第四步:连接AC ,与⊙O 的交点即为点P .例题如图,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 的半径为2,P 为圆上一动点,连接AP ,BP ,求AP +12BP 的最小值. 解:如答图,连接CP ,在CB 上取点D ,使CD =1,连接AD ,PD .∵CD CP =CP BC =12,∠PCD =∠BCD , ∴△PCD ∽△BCP ,∴PD BP =12, ∴PD =12BP ,∴AP +12BP =AP +PD , ∴要使AP +12BP 最小,则AP +PD 最小, 当点A ,P ,D 在同一条直线时,AP +PD 最小,即AP +12BP 的最小值为AD 的长. 在Rt △ACD 中,∵CD =1,AC =6,∴AD =AC 2+CD 2=37,∴AP +12BP 的最小值为37. 练习问题提出(1)如图1,已知线段AB 和BC ,AB =2,BC =5,则线段AC 的最小值为______.解题思路当点A 在线段BC 上时,线段AC 有最小值.【解答】∵当点A 在线段BC 上时,线段AC 有最小值,∴线段AC 的最小值为5-2=3.问题探究(2)如图2,已知在扇形COD 中,∠COD =90°,DO =CO =6,A 是OC的中点,延长OC 到点F ,使CF =OC ,P 是CD ︵上的动点,点B 是OD 上的一点,BD =1.①求证:△OAP ∽△OPF .解题思路由题意可得OA OP =OP OF =12,由相似三角形的判定可得△OAP ∽△OPF . 【解答】∵A 是OC 的中点,DO =CO =6=OP ,∴OA OP =12. ∵CF =OC ,∴OF =2OC =2OP ,∴OP OF =12, ∴OA OP =OP OF,且∠AOP =∠POF ,∴△OAP ∽△OPF .②求BP +2AP 的最小值.解题思路由相似三角形的性质可得PF =2AP ,可得BP +2AP =BP +PF ,即当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长,由勾股定理即可求解.【解答】∵△OAP ∽△OPF ,∴AP PF =OP OF =12, ∴PF =2AP .∵BP +2AP =BP +PF ,∴当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长.∵DO =CO =6,BD =1,∴BO =5,OF =12,∴BF =OB 2+OF 2=13.问题解决(3)如图3,有一个形状为四边形ABCD 的人工湖,BC =9千米,CD =4千米,∠BCD =150°,现计划在湖中选取一处建造一座假山P ,且BP =3千米,为方便游客观光,从C ,D 分别建小桥PD ,PC .已知建桥PD 每千米的造价是3万元,建桥PC 每千米的造价是1万元,建桥PD 和PC 的总造价是否存在最小值?若存在,请确定点P 的位置,并求出总造价的最小值,若不存在,请说明理由.(桥的宽度忽略不计)解题思路以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,点P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥CB ,可证△BPM ∽△BCP ,可得PC =3PM ,当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值,由勾股定理可求MD 的值,即可求出建桥PD 和PC 的总造价的最小值.【解答】存在.如答图,以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥BC 交BC 的延长线于点G .∵BM BP =13=BP BC,且∠PBM =∠CBP , ∴△BPM ∽△BCP ,∴PM CP =BM BP =13,∴PC =3PM . ∵建桥PD 和PC 的总造价为3PD +PC =3PD +3PM =3(PD +PM ),∴当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值.∵∠BCD =150°,∴∠DCG =30°.∵DG ⊥BC ,∴DG =12DC =23(千米),CG =3DG =6(千米), ∴MG =BC +CG -BM =9+6-1=14(千米),∴MD =DG 2+MG 2=413(千米),∴建桥PD 和PC 的总造价的最小值为3×413=1213万元.作业5.(2019·交大附中三模)问题提出(1)如图1,点M ,N 是直线l 外两点,在直线l 上找一点K ,使得MK +NK 最小. 问题探究(2)如图2,在等边三角形ABC 内有一点P ,且P A =3,PB =4,PC =5,求∠APB 的度数.问题解决(3)如图3,矩形ABCD是某公园的平面图,AB=30 3 米,BC=60米,现需要在对角线BD上修一凉亭E,使得到公园出口A,B,C的距离之和最小.问:是否存在这样的点E?若存在,请画出点E的位置,并求出EA+EB+EC的最小值;若不存在,请说明理由.解:(1)如答图1,连接MN,与直线l交于点K,点K即为所求.(2)如答图2,把△APB绕点A逆时针旋转60°得到△AP′C,连接PP′.由旋转的性质,得P′A=P A=3,P′C=PB=4,∠P AP′=60°,∠AP′C=∠APB,∴△APP′是等边三角形,∴PP′=P A=3,∠AP′P=60°.∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴△PP′C为直角三角形,且∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°,∴∠APB=∠AP′C=150°.(3)存在.如答图3,把△ABE绕点B逆时针旋转60°得到△A′BE′,连接EE′.答图由旋转的性质,得A′B=AB=30 3 米,BE′=BE,A′E′=AE,∠E′BE=60°,∠A′BA=60°,∴△E′BE是等边三角形,∴BE=EE′,∴EA +EB +EC =A ′E ′+EE ′+EC .根据两点之间线段最短,可知当EA +EB +EC =A ′C 时最短,连接A ′C ,与BD 的交点E 2即为所求,此时EA +EB +EC 最短,最短距离为A ′C 的长度.过点A ′作A ′G ⊥CB 交CB 的延长线于点G . ∵∠A ′BG =90°-∠A ′BA =90°-60°=30°, A ′G =12A ′B =12AB =12×303=153(米),∴GB =3A ′G =3×153=45(米), ∴GC =GB +BC =45+60=105(米).在Rt △A ′GC 中,A ′C =A ′G 2+GC 2=(153)2+1052=3013(米), 因此EA +EB +EC 的最小值为3013 米. 6.问题提出(1)如图1,已知△OAB 中,OB =3,将△OAB 绕点O 逆时针旋转90°得△OA ′B ′,连接BB ′,则BB ′=问题探究(2)如图2,已知△ABC 是边长为43的等边三角形,以BC 为边向外作等边三角形BCD ,P 为△ABC 内一点,将线段CP 绕点C 逆时针旋转60°,点P 的对应点为点Q .①求证:△DCQ ≌△BCP . ②求P A +PB +PC 的最小值. 问题解决(3)如图3,某货运场为一个矩形场地ABCD ,其中AB =500米,AD =800米,顶点A ,D 为两个出口,现在想在货运广场内建一个货物堆放平台P ,在BC 边上(含B ,C 两点)开一个货物入口M ,并修建三条专用车道P A ,PD ,PM .若修建每米专用车道的费用为10 000元,当M ,P 建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留根号)解:(1)由旋转的性质,得∠BOB ′=90°,OB =OB ′=3, 根据勾股定理,得BB ′=3 2. (2)①证明:∵△BDC 是等边三角形, ∴CD =CB ,∠DCB =60°.由旋转的性质,得∠PCQ =60°,PC =QC , ∴∠DCQ =∠BCP .在△DCQ 和△BCP 中,⎩⎪⎨⎪⎧CD =CB ,∠DCQ =∠BCP ,CQ =CP ,∴△DCQ ≌△BCP (SAS). ②如答图1,连接AD ,PQ . ∵PC =CQ ,∠PCQ =60°,∴△CPQ 是等边三角形,∴PQ =PC , 由①知DQ =PB ,∴P A +PB +PC =P A +QD +PQ ,由两点之间线段最短,得P A +QD +PQ ≥AD , ∴P A +PB +PC ≥AD ,∴当点A ,P ,Q ,D 在同一条直线上时,P A +PB +PC 取得最小值,即为AD 的长,过点D 作DE ⊥AC ,交AC 的延长线于点E . ∵△ABC 是边长为43的等边三角形, ∴CB =AC =43,∠BCA =60°, ∴CD =CB =43,∠DCE =60°, ∴DE =6,∠DAE =∠ADC =30°, ∴AD =12,即P A +PB +PC 的最小值为12.答图(3)如答图2,将△ADP 绕点A 逆时针旋转60°,得△AD ′P ′.由(2)知,当点M ,P ,P ′,D ′在同一条直线上时,P A +PM +PD 最小,最小值为D ′M 的长.∵M 在BC 上,∴当D ′M ⊥BC 时,D ′M 取得最小值. 设D ′M 交AD 于点E ,连接DD ′,AM ,DM . 易知△ADD ′是等边三角形,∴EM =AB =500米, ∴BM =400米,PM =EM -PE =(500-40033)米,∴D ′E =32AD =4003(米),∴D ′M =(4003+500)米, ∴最少费用为10 000×(4003+500)= 1 000 000(43+5)元.∴当M 建在BC 的中点(BM =400米)处,点P 在过M 且垂直于BC 的直线上,且在M上方(500-40033)米处时,修建专用车道的费用最少,最少费用为1 000 000(43+5)元.类型三 “阿氏圆”问题7.(2018·西工大附中三模) 问题提出(1)如图1,在△ABC 中,AB =AC ,BD 是AC 边的中线,请用尺规作图作出AB 边的中线CE ,并证明BD =CE ;问题探究(2)如图2,已知点P 是边长为6的正方形ABCD 内部一动点,P A =3,求PC +12PD 的最小值;问题解决(3)如图3,在矩形ABCD 中,AB =18,BC =25,点M 是矩形内部一动点,MA =15,当MC +35MD 最小时,画出点M 的位置,并求出MC +35MD 的最小值.解:(1)如答图1,线段EC 即为所求.证明:∵AB =AC ,AE =EB ,AD =CD ,∴AE =AD , 在△BAD 和△CAE 中,⎩⎪⎨⎪⎧AB =AC ,∠A =∠A ,AD =AE ,答图1∴△BAD ≌△CAE (SAS),∴BD =CE . (2)如答图2,在AD 上截取AE ,使得AE =32.∵P A 2=9,AE ·AD =32×6=9,∴P A 2=AE ·AD ,∴P A AD =AEP A.∵∠P AE =∠DAP ,∴△P AE ∽△DAP , ∴PE DP =P A DA =12,∴PE =12PD , ∴PC +12PD =PC +PE .∵PC +PE ≥EC ,∴PC +12PD 的最小值即为EC 的长,在Rt △CDE 中,∵∠CDE =90°,CD =6,DE =92,∴EC =62+(92)2=152,∴PC +12PD 的最小值为152.答图(3)如答图3,在AD 上截取AE ,使得AE =9. ∵MA 2=225,AE ·AD =9×25=225,∴MA 2=AE ·AD ,∴MA AD =AEMA.∵∠MAE =∠DAM ,∴△MAE ∽△DAM , ∴EM MD =MA DA =1525=35,∴ME =35MD , ∴MC +35MD =MC +ME .∵MC +ME ≥EC ,∴MC +35MD 的最小值即为EC 的长.如答图3,以点A 为圆心,AM 长为半径画弧,交EC 于点M ′,点M ′即为所求. 在Rt △CDE 中,∵∠CDE =90°,CD =18,DE =16, ∴EC =162+182=2145, ∴MC +35MD 的最小值为2145.8.(1)如图1,已知正方形ABCD 的边长为4,⊙B 的半径为2,P 是⊙B 上的一个动点,求PD +12PC 的最小值和PD -12PC 的最大值;(2)如图2,已知正方形ABCD 的边长为9,⊙B 的半径为6,P 是⊙B 上的一个动点,那么PD +23PC 的最小值为,PD -23PC 的最大值为(3)如图3,已知菱形ABCD 的边长为4,∠B =60°,⊙B 的半径为2,P 是⊙B 上的一个动点,那么PD +12PC 的最小值为,PD -12PC 的最大值为解:(1)如答图1,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG .∵PB BG =CBPB=2,∠PBG =∠CBP , ∴△PBG ∽△CBP , ∴PG CP =BG BP =12,∴PG =12PC , ∴PD +12PC =PD +PG .∵PD +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG =42+32=5.∵PD -12PC =PD -PG ≤DG ,∴如答图2,当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为5.答图(2)106,106.【解法提示】如答图3,在BC 上取一点G ,使BG =4,连接PG ,PB ,DG . ∵PB BG =64=32,CB PB =96=32,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴PG CP =BG BP =23, ∴PG =23PC ,∴PD +23PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +23PC 的值最小,最小值为DG =52+92=106.∵PD -23PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为106.答图(3)37,37.【解法提示】如答图4,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG ,作DF ⊥BC 交BC 的延长线于点F .∵PB BG =21=2,BC PB =42=2,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴PG CP =BG BP =12, ∴PG =12PC ,∴PD +12PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG 的长.在Rt △CDF 中,∵∠DCF =60°,CD =4, ∴DF =CD ·sin60°=23,CF =2,∴在Rt △GDF 中,DG =(23)2+52=37. ∴PD +12PC 的最小值为37.∵PD -12PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为37.。
专题12最值模型-费马点问题最值问题在中考数学常以压轴题的形式考查,费马点问题是由全等三角形中的手拉手模型衍生而来,主要考查转化与化归等的数学思想。
在各类考试中都以中高档题为主,中考说明中曾多处涉及。
本专题就最值模型中的费马点问题进行梳理及对应试题分析,方便掌握。
【模型背景】皮耶·德·费马,17世纪法国数学家,有“业余数学家之王”的美誉,之所以叫业余并非段位不够,而是因为其主职是律师,兼职搞搞数学.费马在解析几何、微积分等领域都有卓越的贡献,除此之外,费马广为人知的是以其名字命名的“费马小定理”、“费马大定理”等.费马点:三角形内的点到三个顶点距离之和最小的点。
【模型解读】结论1:如图,点M为△ABC内任意一点,连接AM、BM、CM,当M与三个顶点连线的夹角为120°时,MA+MB+MC的值最小。
注意:上述结论成立的条件是△ABC的最大的角要小于120º,若最大的角大于或等于120º,此时费马点就是最大角的顶点A。
(这种情况一般不考,通常三角形的最大顶角都小于120°)【模型证明】以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.∵△ABE为等边三角形,∴AB=BE,∠ABE=60°.而∠MBN=60°,∴∠ABM=∠EBN.在△AMB与△ENB中,∵AB BEABM EBNBM BN,∴△AMB≌△ENB(SAS).连接MN.由△AMB≌△ENB知,AM=EN.∵∠MBN=60°,BM=BN,∴△BMN为等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.∴当E、N、M、C四点共线时,AM+BM+CM的值最小.此时,∠BMC=180°﹣∠NMB=120°;∠AMB=∠ENB=180°﹣∠BNM=120°;∠AMC=360°﹣∠BMC﹣∠AMB=120°.费马点的作法:如图3,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点。
费马点最值问题一.模型例题(共4小题)1.问题的提出:如果点P 是锐角ABC ∆内一动点,如何确定一个位置,使点P 到ABC ∆的三顶点的距离之和PA PB PC ++的值为最小?问题的转化:把APC ∆绕点A 逆时针旋转60度得到△AP C '',连接PP ',这样就把确定PA PB PC ++的最小值的问题转化成确定BP PP P C +'+''的最小值的问题了,请你利用图1证明:PA PB PC BP PP P C ++=+'+''.问题的解决:当点P 到锐角ABC ∆的三顶点的距离之和PA PB PC ++的值为最小时,请你用一定的数量关系刻画此时的点P 的位置120APB APC ∠=∠=︒.问题的延伸:如图2是有一个锐角为30︒的直角三角形,如果斜边为2,点P 是这个三角形内一动点,请你利用以上方法,求点P 到这个三角形各顶点的距离之和的最小值.【解答】解:问题的转化:如图1,由旋转得:60PAP '∠=︒,PA P A '=,APP '∴∆是等边三角形,PP PA '∴=,PC P C '= ,PA PB PC BP PP P C ∴++=+'+''.问题的解决:满足:120APB APC ∠=∠=︒时,PA PB PC ++的值为最小;理由是:如图2,把APC ∆绕点A 逆时针旋转60度得到△AP C '',连接PP ',由“问题的转化”可知:当B 、P 、P '、C '在同一直线上时,PA PB PC ++的值为最小,120APB ∠=︒ ,60APP '∠=︒,180APB APP '∴∠+∠=︒,B ∴、P 、P '在同一直线上,由旋转得:120AP C APC ''∠=∠=︒,60AP P '∠=︒ ,180AP C AP P '''∴∠+∠=︒,P ∴、P '、C '在同一直线上,B ∴、P 、P '、C '在同一直线上,∴此时PA PB PC ++的值为最小,故答案为:120APB APC ∠=∠=︒;问题的延伸:如图3,Rt ACB ∆中,2AB = ,30ABC ∠=︒,1AC ∴=,BC =把BPC ∆绕点B 逆时针旋转60度得到△BP C '',连接PP ',当A 、P 、P '、C '在同一直线上时,PA PB PC ++的值为最小,由旋转得:BP BP '=,PBP '∠=,PC P C ''=,BC BC '=,BPP ∴∆'是等边三角形,PP PB '∴=,30ABC APB CBP APB C BP ''∠=∠+∠=∠+∠=︒ ,90ABC '∴∠=︒,由勾股定理得:AC '==,PA PB PC PA PP P C AC ''''∴++=++==则点P .2.如图,ABC ∆中,AB AC =,点P 为ABC ∆内一点,120APB BAC ∠=∠=︒.若4AP BP +=,则PC 的最小值为()A .2B .23C .5D .3【解答】解:把APB ∆绕点A 逆时针旋转120︒得到△AP C ',作AD PP ⊥'于D ,则AP AP =',120PAP ∠'=︒,120AP C APB ∠'=∠=︒,30AP P ∴∠'=︒,3PP ∴'=,90PP C ∠'=︒,4AP BP += ,4BP PA ∴=-,在Rt △PP C '中,22222(3)(4)4(1)12PC P P P C PA PA PA ='+'+--+,则PC 1223=,故选:B .3.如图,2的等边ABC ∆,平面内存在点P ,则3PA PB PC +的取值范围为大于22.【解答】解:如图,将BPC ∆绕点B 顺时针旋转120︒,得△BP C '',连接PP ',过点B 作BD PP ⊥'于点D ,ABC ∆ 是等边三角形,60ABC ∴∠=︒,AB BC BC =='=,AC AB BC ∴'=+'=120CBC PBP ∠'=∠'=︒ ,180ABC ABC CBC ∴∠'=∠+∠'=︒,∴点A ,B ,C '在同一条直线上,BP BP =' ,120PBP ∠'=︒,BD PP ⊥',30BPP BP P ∴∠'=∠'=︒,PD ∴=,2PP PD ∴'==,PA PP PC PA PC AC ∴+'+=++>',因为等边三角形的边长为PA PC ∴+的取值范围为大于等于故答案为:大于等于.4.问题探究将几何图形按照某种法则或规则变换成另一种几何图形的过程叫做几何变换.旋转变换是几何变换的一种基本模型.经过旋转,往往能使图形的几何性质明白显现.题设和结论中的元素由分散变为集中,相互之间的关系清楚明了,从而将求解问题灵活转化.问题提出:如图1,ABC ∆是边长为1的等边三角形,P 为ABC ∆内部一点,连接PA 、PB 、PC ,求PA PB PC ++的最小值.方法分析:通过转化,把由三角形内一点发出的三条线段(星型线)转化为两定点之间的折线(化星为折),再利用“两点之间线段最短”求最小值(化折为直).问题解决:如图2,将BPA ∆绕点B 逆时针旋转60︒至△BP A '',连接PP '、A C ',记A C '与AB 交于点D ,易知1BA BA BC '===,120A BC A BA ABC ''∠=∠+∠=︒.由BP BP '=,60P BP '∠=︒,可知△P BP '为正三角形,有PB P P '=.故PA PB PC P A P P PC A C '''++=++.因此,当A '、P '、P 、C 共线时,PA PB PC ++有最小值是学以致用:(1)如图3,在ABC ∆中,30BAC ∠=︒,4AB =,3CA =,P 为ABC ∆内部一点,连接PA 、PB 、PC ,则PA PB PC ++的最小值是5.(2)如图4,在ABC ∆中,45BAC ∠=︒,3AB CA ==,P 为ABC ∆内部一点,连接PA 、PB 、PC ,PB PC ++的最小值.(3)如图5,P 是边长为2的正方形ABCD 内一点,Q 为边BC 上一点,连接PA 、PD 、PQ ,求PA PD PQ ++的最小值.【解答】解:(1)如图3中,将APC ∆绕点A 逆时针旋转60︒得到AFE ∆,易知AFP ∆是等边三角形,90EAB ∠=︒,在Rt EAB ∆中,5BE ==,PA PB PC EF FP PB BE ++=++ ,5PA PB PC ∴++,PA PB PC ∴++的最小值为5.故答案为5.(2)如图4中,将APB ∆绕点A 逆时针旋转90︒得到AFE ∆,易知AFP ∆是等腰直角三角形,135EAB ∠=︒,作EH BA ⊥交BA 的延长线于H .在Rt EAH ∆中,90H ∠=︒ ,45EAH ∠=︒,AE AB ==2EH AH ∴==,在Rt EHC ∆中,EC ==PB PC FP EF PC CE ++=++,∴PB PC ++,∴PB PC ++(3)如图5中,将APD∆是等边三角形,∆绕点A逆时针旋转60︒得到AFE∆,则易知AFP作EH BC⊥于H,交AD于G.,PA PD PQ EF FP PQ EH++=++易知sin60=⋅︒=2EG AE==,GH AB∴=+EH2∴++,PA PD PQ2∴++2+.PA PD PQ二.同步练习(共20小题)5.法国数学家费马提出:在ABC∆内存在一点P,使它到三角形顶点的距离之和最小.人们称这个点为费马点,此时PA PB PC∆中,费马点P满足++的值为费马距离.经研究发现:在锐角ABCPC=,60∠=︒,则ABCPA=,4∆的费马点,且3APB BPC CPA120∠=∠=∠=︒,如图,点P为锐角ABC费马距离为7+【解答】解:如图:120APB BPC CPA∠=∠=∠=,60ABC∠=︒,1360∴∠+∠=︒,1260∠+∠=︒,2460∠+∠=︒,14∴∠=∠,23∠=∠,BPC APB∴∆∆∽∴PC PB PB PA=,即212PB=PB∴=.7PA PB PC∴++=+故答案为:7+.6.在ABC∆中,90ACB∠=︒,点P为ABC∆内一点.(1)如图1,连接PB,PC,将BCP∆沿射线CA方向平移,得到DAE∆,点B,C,P的对应点分别为点D,A,E,连接CE.如果BP CE⊥,3BP=,6AB=,则CE=(2)如图2,连接PA,PB,PC,当8AC BC==时,求PA PB PC++的最小值.【解答】解:(1)如图1,连接BD、CD,BCP ∆ 沿射线CA 方向平移,得到DAE ∆,//BC AD ∴且BC AD =,90ACB ∠=︒ ,∴四边形BCAD 是矩形,6CD AB ∴==,3BP = ,3DE BP ∴==,BP CE ⊥ ,//BP DE ,DE CE ∴⊥,∴在Rt DCE ∆中,CE ===;故答案为:(2)如图2所示,以点A 为旋转中心,将ABP ∆顺时针旋转60︒得到AMN ∆,连接BN .由旋转可得,AMN ABP ∆≅∆,MN BP ∴=,PA AM =,60PAM BAN ∠=︒=∠,AB AN =,PAM ∴∆、ABN ∆都是等边三角形,PA PM ∴=,PA PB PC CP PM MN ∴++=++,当8AC BC ==时,AB =,当C 、P 、M 、N 四点共线时,由CA CB =,NA NB =可得CN 垂直平分AB ,12AQ AB CQ ∴==,NQ ==,∴此时CN CP PM MN PA PB PC =++=++=+.即PA PB PC ++的最小值为+.7.如图,在ABC ∆中,3AB =,2AC =,60BAC ∠=︒,P 为ABC ∆内一点,则PA PB PC ++的最小值为【解答】解:如图,将ABP ∆绕着点A 逆时针旋转60︒,得到AEH ∆,连接EP ,CH ,过点C 作CN AH ⊥,交HA 的延长线于N ,ABP AHE ∴∆≅∆,BAP HAE ∴∠=∠,AE AP =,3AH AB ==,60BAH ∠=︒,60HAB EAP ∴∠=∠=︒,AEP ∴∆是等边三角形,AE AP EP ∴==,AP BP PC PC EP EH ∴++=++,∴当点H ,点E ,点P ,点C 共线时,PA PB PC ++有最小值HC ,18060CAN BAH BAC ∠=︒-∠-∠=︒ ,CN AN ⊥,30ACN ∴∠=︒,112AN AC ∴==,CN ==,4HN AH AN ∴=+=,HC ∴=,PA PB PC ∴++,8.如图,ABC ∆中,30ABC ∠=︒,5AB =,6BC =,P 是ABC ∆内部的任意一点,连接PA 、PB 、PC ,则PA PB PC ++【解答】解:如图,以BP 为边作等边三角形BPD ,将BPC ∆绕点B 顺时针旋转60︒,得到BDC '∆,连接AC ',BPD ∆ 是等边三角形,BP BD DP ∴==,60PBD ∠=︒,将BPC ∆绕点B 顺时针旋转60︒,PC C D '∴=,PBC DBC '∠=∠,6BC BC '==,603090ABC ABP PBD DBC PBD ABC PBC ''∴∠=∠+∠+∠=∠+∠+∠=︒+︒=︒,PA PB PC PA PD DC '++=++ ,∴当点A ,点P ,点D ,点C '共线时,PA PB PC ++有最小值为PC ',PC '∴===,9.如图,在ABC ∆中,90ACB ∠=︒,点P 为ABC ∆内一点,连接PA 、PB 、PC ,当3AC =,6AB =时,则PA PB PC ++的最小值是【解答】解:如图所示,以点A 为旋转中心,将ABP ∆顺时针旋转60︒得到ANM ∆,连接BN .由旋转可得,AMN APB ∆≅∆,MN BP ∴=,PA AM =,60PAM BAN ∠=︒=∠,AB AN =,PAM ∴∆、ABN ∆都是等边三角形,PA PM ∴=,PA PB PC CP PM MN ∴++=++,当3AC =,6AB =时,BC =,1sin 2ABC ∴∠=,30ABC ∴∠=︒,60ABN ∠=︒ ,90CBN ∴∠=︒当C 、P 、M 、N 四点共线时,PA PB PC ++的值最小,最小值CN ===,故答案为:.10.已知,如图在ABC ∆中,30ACB ∠=︒,5BC =,6AC =,在ABC ∆内部有一点D ,连接DA 、DB 、DC ,则DA DB ++【解答】解:如图,过点C 作CE CD ⊥,且CE CD =,连接DE ,将ADC ∆绕点C 逆时针旋转90︒得到FEC ∆,连接FB ,过点F 作FH BC ⊥,交BC 的延长线于H ,CE CD ⊥ ,CE CD =,DE ∴=,将ADC ∆绕点C 逆时针旋转90︒得到FEC ∆,EF AD ∴=,90ACF ∠=︒,6CF AC ==,DA DB DB EF DE ∴++=++,∴当点F ,点E ,点D ,点B 共线时,DA DB ++有最小值为FB ,18060FCH ACF ACB ∠=︒-∠-∠=︒ ,30CFH ∴∠=︒,132CH CF ∴==,FH ==,BF ∴==11.如图,在ABC ∆中,30BAC ∠=︒,AC =,8AB =,点D 在ABC ∆内,连接DA 、DB 、DC ,则DC DB ++的最小值是【解答】解:如图,将ADB ∆绕点A 顺时针旋转120︒得到AEF ∆,连接DE ,CF ,过点F 作FH CA ⊥交CA的延长线于H .AD AE = ,120DAE ∠=︒,BD EF =,DE ∴=,DC DB DA DC DE EF ∴++=++,CD DE EF CF ++ ,在Rt ABC ∆中,90ACB ∠=︒,8AB =,30BAC ∠=︒,cos30AB AB ∴=⋅︒=在Rt AFH ∆中,90H ∠=︒,8AF AB ==,30FAH ∠=︒,142FH AF ∴==,AH ==,CH AC AH ∴=+=,CF ∴===,CD DB ∴+,CF ∴的最小值为.故答案为:.12.如图,ABC ∆中,30ABC ∠=︒,4AB =,5BC =,P 是ABC ∆内部的任意一点,连接PA ,PB ,PC ,则PA PB PC ++【解答】解:如图,将ABP ∆绕着点B 逆时针旋转60︒,得到DBE ∆,连接EP ,CD ,ABP DBE∴∆≅∆ABP DBE ∴∠=∠,4BD AB ==,60PBE ∠=︒,BE PE =,AP DE =,BPE ∴∆是等边三角形EP BP∴=AP BP PC PC EP DE∴++=++∴当点D ,点E ,点P ,点C 共线时,PA PB PC ++有最小值CD30ABC ABP PBC∠=︒=∠+∠ 30DBE PBC ∴∠+∠=︒90DBC ∴∠=︒CD ∴==,13.如图,P 为正方形ABCD 内的动点,若2AB =,则PA PB PC ++【解答】解:将BPC ∆绕点B 顺时针旋转60︒,得到△BP C '',BP BP '∴=,60PBP '∠=︒,BPC ∆≅△BP C '',BPP '∴∆是等边三角形,PC P C ''=,PBC P BC ''∠=∠,2BC BC '==,BP PP '∴=,PA PB PC AP PP P C '''∴++=++,∴当AP ,PP ',P C ''在一条直线上,PA PB PC ++有最小值,最小值是AC '的长,60150ABP PBP P BC ABP PBC '''∠+∠+∠=︒+∠+∠=︒ ,30EBC ∴∠=︒,1EC '∴=,BE '==,2AE ∴=+,AF ∴===,14.如图,在边长为6的正方形ABCD 中,点M ,N 分别为AB 、BC 上的动点,且始终保持BM CN =.连接MN ,以MN 为斜边在矩形内作等腰Rt MNQ ∆,若在正方形内还存在一点P ,则点P 到点A 、点D 、点Q 的距离之和的最小值为3+【解答】解:设BM x =,则6BN x =-,222MN BM BN =+ ,2222(6)2(3)18MN x x x ∴=+-=-+,∴当3x =时,MN 最小,此时Q 点离AD 最近,3BM BN == ,Q ∴点是AC 和BD 的交点,22AQ DQ AD ∴===,过点Q 作QM AD '⊥于点M ',在ADQ ∆内部过A 、D 分别作30M DP M AP ∠'=∠'=︒,则120APD APQ DPQ ∠=∠=∠=︒,点P 就是费马点,此时PA PD PQ ++最小,在等腰Rt AQD ∆中,AQ DQ ==,QM AD '⊥,232AM QM AQ ∴='==,故cos30AM PA '︒=,解得:PA =PM '=故3QP =PD =,则233PA PD PQ ++=⨯+=+,∴点P 到点A 、点D 、点Q 的距离之和的最小值为3+,故答案为3+.15.如图,点D 为等边三角形ABC 内一点,且120BDC ∠=︒,则AD BD 的最小值为32.【解答】解:如图,将BCD ∆绕点C 顺时针旋转60︒得到ACE ∆,连接DE ,过点A 作AH DE ⊥于H .CD CE = ,60DCE ∠=︒,DCE ∴∆是等边三角形,60EDC DEC ∴∠=∠=︒,120BDC AEC ∠=∠=︒ ,60AED ∴∠=︒,BD AE = ,∴AD AD BD AE=,AH DE ⊥ ,AD AH ∴,∴ADAH BD AE,90AHE ∠=︒ ,60AEB ∠=︒,∴sin 60AH AE =︒=,∴AD BD ,∴AD BD 的最小值为32.16.如图,已知矩形ABCD ,4AB =,6BC =,点M 为矩形内一点,点E 为BC 边上任意一点,则MA MD ME ++的最小值为4+【解答】解:将AMD ∆绕点A 逆时针旋转60︒得到△AM D '',由性质的性质可知:MD M D ='',ADD ∆'和AMM ∆'均为等边三角形,AM MM ∴=',MA MD ME D M MM ME ∴++='+'+,D M ∴'、MM '、ME 共线时最短,由于点E 也为动点,∴当D E BC '⊥时最短,此时易求得4D E D G GE '='+=+,MA MD ME ∴++的最小值为4+17.如图,在直角三角形ABC ∆内部有一动点P ,90BAC ∠=︒,连接PA ,PB ,PC ,若6AC =,8AB =,求PA PB PC ++的最小值【解答】解:如图,将ACP ∆绕点C 顺时针旋转60︒得到ECF ∆,连接PF ,BE ,作EH BA ⊥交BA 的延长线于H .由旋转的旋转可知:PA EF =,PCF ∆,ACE ∆是等边三角形,PF PC ∴=,PA PB PC EF FP PB ∴++=++,EF FP PB BE ++ ,∴当B ,P ,F ,E 共线时,PA PB PC ++的值最小,90BAC ∠=︒ ,60CAE ∠=︒,180906030HAE ∴∠=︒-︒-︒=︒,EH AH ⊥ ,6AE AC ==,132EH AE ∴==.AH ==,BE ∴===,PA PB PC ∴++的最小值为故答案为18.若点P 为ABC ∆所在平面上一点,且120APB BPC CPA ∠=∠=∠=︒,则点P 叫做ABC ∆的费马点.当三角形的最大角小于120︒时,可以证明费马点就是“到三角形的三个顶点的距离之和最小的点”.即PA PB PC ++最小.(1)如图1,向ABC ∆外作等边三角形ABD ∆,AEC ∆.连接BE ,DC 相交于点P ,连接AP .①证明:点P 就是ABC ∆费马点;②证明:PA PB PC BE DC ++==;(2)如图2,在MNG ∆中,MN =,75M ∠=︒,3MG =.点O 是MNG ∆内一点,则点O 到MNG ∆三个顶点的距离和的最小值是【解答】(1)证明:①如图11-中,作AM CD ⊥于M ,AN BE ⊥于N 设AB 交CD 于O .ADB ∆ ,ACE ∆都是等边三角形,AD AB ∴=,AC AE =,60DAB CAE ∠=∠=︒,DAC BAE ∴∠=∠,()ADC ABE SAS ∴∆≅∆,CD BE ∴=,DAC ABE S S ∆∆=,ADC ABE ∠=∠,AM CD ⊥ ,AN BE ⊥,∴1122CD AM BE AN ⋅⋅=⋅⋅,AM AN ∴=,APM APN ∴∠=∠,AOD POB ∠=∠ ,60OPB DAO ∴∠=∠=︒,60APN APM ∴∠=∠=︒,120APC BPC APC ∴∠=∠=∠=︒,∴点P 是就是ABC ∆费马点.②在线段PD 上取一点T ,使得PT PA =,连接AT .60APT ∠=︒ ,PT PA =,APT ∴∆是等边三角形,60PAT ∴∠=︒,AT AP =,60DAB TAP ∠=∠=︒ ,DAT BAP ∴∠=∠,AD AB = ,()DAT BAP SAS ∴∆≅∆,PB DT ∴=,PD DT PT PA PB ∴=+=+,PA PB PC PD PC CD BE ∴++=+==.(2)解:如图2:以MG 为边作等边三角形MGD ∆,以OM 为边作等边OME ∆.连接ND ,作DF NM ⊥,交NM 的延长线于F.MGD ∆ 和OME ∆是等边三角形OE OM ME ∴==,60DMG OME ∠=∠=︒,MG MD =,GMO DME∴∠=∠在GMO ∆和DME ∆中,OM ME GMO DME MG MD =⎧⎪∠=∠⎨⎪=⎩,()GMO DME SAS ∴∆≅∆,OG DE∴=NO GO MO DE OE NO∴++=++∴当D 、E 、O 、N 四点共线时,NO GO MO ++值最小,75NMG ∠=︒ ,60GMD ∠=︒,135NMD ∴∠=︒,45DMF ∴∠=︒,3MG = 322MF DF ∴==,3211222NF MN MF ∴=+==,ND ∴=MO NO GO ∴++,,19.问题提出(1)如图①,在ABC ∆中,2BC =,将ABC ∆绕点B 顺时针旋转60︒得到△A B C ''',则CC '=2;问题探究(2)如图②,在ABC ∆中,3AB BC ==,30ABC ∠=︒,点P 为ABC ∆内一点,连接PA 、PB 、PC ,求PA PB PC ++的最小值,并说明理由;问题解决(3)如图③,在四边形ABCD 中,//AD BC ,6AB =,4AD =,60ABC BCD ∠=∠=︒.在四边形ABCD 内部有一点,满足120APD ∠=︒,连接BP 、CP ,点Q 为BPC ∆内的任意一点,是否存在一点P 和一点Q ,使得PQ BQ CQ ++有最小值?若存在,请求出这个最小值;若不存在,请说明理由.【解答】解:(1)如图①,由旋转的性质可知:BCC ∆'是等边三角形,2CC BC ∴'==,故答案为2.(2)如图②,将ABP ∆绕点B 逆时针旋转60︒得到BFE ∆,连接PF ,EC .由旋转的性质可知:PBF ∆是等边三角形,PB PF ∴=,PA EF = ,PA PB PC PC PF EF ∴++=++,PC PF EF EC ++ ,∴当P ,F 在直线EC 上时,PA PB PC ++的值最小,易证3BC BE BA ===,90CBE ∠=︒,EB BC ⊥ ,EC ∴==,PA PB PC ∴++的最小值为.(3)(3)如图③1-中,将PBQ ∆绕点B 逆时针旋转60︒得到EBG ∆,则PQ EG =,BQG ∆是等边三角形,BQ QG ∴=,PQ EG =,PQ BQ CQ EG GQ QC EC ∴++=++,EC ∴的值最小时,QP QB QC ++的值最小,如图③2-中,延长BA 交CD 的延长线于J ,作ADJ ∆的外接圆O ,将线段BO ,BP 绕点B 逆时针旋转60︒得到线段BO ',BE ,连接EO ',OB ,OP .易证()BEO BPO SAS ∆'≅∆,EO OP ∴'=,180APD AJD ∠+∠=︒ ,A ∴,P ,D ,J 四点共圆,OP ∴=,433EO ∴'=,∴点E 的运动轨迹是以O '为圆心,433为半径的圆,∴当点E 在线段CO '上时,EC 的值最小,最小值CO EO ='-',连接OO',延长OO'到R,使得O R OO'=',连接BR,则90OBR∠=︒,作RH CB⊥交CB的延长线于H,O T CH'⊥于T,OM BC⊥于M.在Rt OBM∆中,5BM=,OM=1433OB∴=,14BR∴==,由BHR OMB∆∆∽,∴RH BRBM OB=,RH∴=,////HR O T OM',OO RO'=',TM TH∴=,2RH OMO T+∴'==,3BT∴==,3CO∴'==,CO EO∴'-'=.QP QB QC∴++的最小值为.20.如图1,在ABC∆中,90ACB∠=︒,点P为ABC∆内一点.(1)连接PB,PC,将BCP∆沿射线CA方向平移,得到DAE∆,点B,C,P的对应点分别为点D,A,E,连接CE.①依题意,请在图2中补全图形;②如果BP CE⊥,3BP=,6AB=,求CE的长.(2)如图3,连接PA ,PB ,PC ,求PA PB PC ++的最小值.小慧的作法是:以点A 为旋转中心,将ABP ∆顺时针旋转60︒得到AMN ∆,那么就将PA PB PC ++的值转化为CP PM MN ++的值,连接CN ,当点P 落在CN 上时,此题可解.请你参考小慧的思路,在图3中证明PA PB PC CP PM MN ++=++.并直接写出当4AC BC ==时,PA PB PC ++的最小值.【解答】解:(1)①补全图形如图所示;②如图,连接BD 、CDBCP ∆ 沿射线CA 方向平移,得到DAE ∆,//BC AD ∴且BC AD =,90ACB ∠=︒ ,∴四边形BCAD 是矩形,6CD AB ∴==,3BP = ,3DE BP ∴==,BP CE ⊥ ,//BP DE ,DE CE ∴⊥,∴在Rt DCE ∆中,223692733CE CD DE =-=-==;(2)证明:如图所示,以点A 为旋转中心,将ABP ∆顺时针旋转60︒得到AMN ∆,连接BN .由旋转可得,AMN ABP ∆≅∆,MN BP ∴=,PA AM =,60PAM BAN ∠=︒=∠,AB AN =,PAM ∴∆、ABN ∆都是等边三角形,PA PM ∴=,PA PB PC CP PM MN ∴++=++,当4AC BC ==时,AB =,当C 、P 、M 、N 四点共线时,由CA CB =,NA NB =可得CN 垂直平分AB ,12AQ AB CQ ∴==,NQ ==,∴此时CN CP PM MN PA PB PC =++=++=+.21.(1)阅读材料:如图(1),四边形ABCD 是正方形,ABE ∆是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60︒得到BN ,连接EN 、AM 、CM ,①求证:AMB ENB ∆≅∆;②当M 点在何处时,AM CM +的值最小;③当M 点在何处时,AM BM CM ++的值最小,并说明理由;(2)根据阅读材料所提供的数学思想和方法,完成下面的题目:如图(2),A 、B 、C 、D 四个城市恰好为一个正方形的四个顶点,要建立一个公路系统,使每两个城市之间都有公路相通,并使整个公路系统的总长为最短,应当如何修建?请画出你的设计图.【解答】解:(1)① 四边形ABCD 是正方形,ABE ∆是等边三角形,AB BC BE ∴==,60ABE ∠=︒,将BM 绕点B 逆时针旋转60︒得到BN ,BN BM ∴=,60MBN ∠=︒,ABE MBN ∴∠=∠,EBN ABM ∴∠=∠,且AB BE =,MB NB =,()AMB ENB SAS ∴∆≅∆;②当M 点落在BD 的中点时,A 、M 、C 三点共线时,AM CM +的值最小;③如图1,连接CE ,当M 点位于BD 与CE 的交点处时,AM BM CM ++的值最小,理由如下:连接MN ,由(1)知,AMB ENB ∆≅∆,AM EN ∴=,60MBN ∠=︒ ,MB NB =,BMN ∴∆是等边三角形,BM MN ∴=,AM BM CM EN MN CM ∴++=++,根据“两点之间线段最短”,得EN MN CM EC ++=最短,∴当M 点位于BD 与CE 的交点处时,AM BM CM ++的值最小,即等于EC 的长;(2)如图2,作等边ABQ ∆和等边CDP ∆,等边CEH ∆,同理可证CHP CED ∆≅∆,则CH CE =,PH DE =,DE CE PH HE ∴+=+,∴点H ,点P ,点E 三点共线时,DE CE +的值最小值为PE ,同理,AF BF +的最小值为FQ ,DE CE EF AF BF PE FE FQ ∴++++++,∴点P ,点E ,点F ,点Q 共线时,并使整个公路系统的总长为最短,即最短距离为PQ ,∴设计图:(30)EDC ECD FAB FBA ∠=∠=∠=∠=︒22.已知,在ABC ∆中,30ACB ∠=︒(1)如图1,当2AB AC ==,求BC 的值;(2)如图2,当AB AC =,点P 是ABC ∆内一点,且2PA =,21PB =3PC =,求APC ∠的度数;(3)如图3,当4AC =,7()AB CB CA >,点P 是ABC ∆内一动点,则PA PB PC ++的最小值为43.【解答】解:(1)如图1中,作AP BC ⊥于P .AB AC = ,AP BC ⊥,BP PC ∴=,在Rt ACP ∆中,2AC = ,30C ∠=︒,cos303PC AC ∴=︒=2BC PC ∴==.(2)如图2中,将APB ∆绕点A 逆时针旋转120︒得到QAC ∆.AB AC = ,30C ∠=︒,120BAC ∴∠=︒,2PA AQ ∴==,PB QC ==,120PAQ ∠=︒ ,PQ ∴=222PQ PC QC ∴+=,90QPC ∴∠=︒,30APQ ∠=︒ ,3090120APC ∴∠=︒+︒=︒.(3)如图3中,将BCP ∆绕点C 逆时针旋转60︒得到△CB P '',连接PP ',AB ',则90ACB ∠'=︒.PA PB PC PA PP P B ++=+'+'' ,∴当A ,P ,P ',B '共线时,PA PB PC ++的值最小,最小值AB ='的长,由AB =4AC =,30C ∠=︒,可得BC CB ='=,AB ∴'=.23.阅读下列材料:小华遇到这样一个问题,如图1,ABC∆内部有一点P,连BC=,5AC=,在ABCACB∆中,30∠=︒,6接PA、PB、PC,求PA PB PC++的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将APC∆,连接PD、BE,则BE的长即为所求.∆绕点C顺时针旋转60︒,得到EDC(1)请你写出图2中,PA PB PC++(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD中,60∠=︒,在菱形ABCD内部有一点P,请在图3中画出并指明长度等于ABC++最小值的线段(保留画图痕迹,画出一条即可);PA PB PC②若①中菱形ABCD的边长为4,请直接写出当PA PB PC++值最小时PB的长.【解答】解:(1)如图2. 将APC∆绕点C顺时针旋转60︒,得到EDC∆,∴∆≅∆,APC EDC∠=︒,ACP ECD==,60PCD∴∠=∠,5AC EC∴∠+∠=∠+∠,ACP PCB ECD PCB∴∠+∠=∠=︒,30ECD PCB ACBBCE ECD PCB PCD∴∠=∠+∠+∠=︒+︒=︒.306090在Rt BCEBC=,5,6CE=,∆中,90∠=︒BCE∴==BE即PA PB PC++(2)①将APC∆,连接PE、DE,∆绕点C顺时针旋转60︒,得到DEC则线段BD 等于PA PB PC ++最小值的线段;②如图31-中,当B 、P 、E 、D 四点共线时,PA PB PC ++值最小,最小值为BD . 将APC ∆绕点C 顺时针旋转60︒,得到DEC ∆,APC DEC ∴∆≅∆,CP CE ∴=,60PCE ∠=︒,PCE ∴∆是等边三角形,PE CE CP ∴==,60EPC CEP ∠=∠=︒.菱形ABCD 中,1302ABP CBP ABC ∠=∠=∠=︒,603030PCB EPC CBP ∴∠=∠-∠=︒-∠︒=︒,30PCB CBP ∴∠=∠=︒,BP CP ∴=,同理,DE CE =,BP PE ED ∴==.连接AC ,交BD 于点O ,则AC BD ⊥.在Rt BOC ∆中,90BOC ∠=︒ ,30OBC ∠=︒,4BC =,cos 4BO BC OBC ∴=∠=⨯2BD BO ∴==,13BP BD ∴==即当PA PB PC ++值最小时PB24.已知抛物线2142y x bx =-++的对称轴为1x =,与y 交于点A ,与x 轴负半轴交于点C ,作平行四边形ABOC 并将此平行四边形绕点O 顺时针旋转90︒,得到平行四边形A B O C ''''.(1)求抛物线的解析式和点A 、C 的坐标;(2)求平行四边形ABOC 和平行四边形A B O C ''''重叠部分△OC D '的周长;(3)若点P 为AOC ∆内一点,直接写出PA PC PO ++的最小值(结果可以不化简)以及直线CP的解析式.【解答】解:(1)由已知得,112()2bx =-=⨯-,则1b =,抛物线的解析式为2142y x x =-++,(0,4)A ∴,令0y =,得21402x x -++=,12x ∴=-,24x =.(2)在ABCD 中,90OAB AOC ∠=∠=︒,则//AB CO,OB ∴==2OC OC '==,OC D OCA B ∴∠'=∠=∠,C OD BOA ∠'=∠,∴△C OD BOA '∆∽,∴C OD BOA C OC C OB '∆'=== AOB ∆的周长为6+,∴△C OD '的周长为565(6255+⨯=+;(3)此点位费马点,设三角形AOB 的三边为a ,b ,c ,2OC = ,4OA =,AC ==,PA PB PC ++==.直线CP解析式为1)2y x =-+-.。
专题12 动点最值之费马点模型费马点模型:如图,在△ABC内部找到一点P,使得PA+PB+PC的值最小.当点P满足∠APB=∠BPC=∠CPA=120º,则PA+PB+PC的值最小,P点称为三角形的费马点.特别地,△ABC中,最大的角要小于120º,若最大的角大于或等于120º,此时费马点就是最大角的顶点A(这种情况一般不考,通常三角形的最大顶角都小于120°)费马点的性质:1.费马点到三角形三个顶点距离之和最小。
2.费马点连接三顶点所成的三夹角皆为120°。
费马点最小值解法:以△ABC任意一边为边向外作等边三角形,这条边所对两顶点的距离即为最小值证明过程:将△APC边以A为顶点逆时针旋转60°,得到AQE,连接PQ,则△APQ为等边三角形,PA=PQ。
即PA+PB+PC=PQ+PB+PC,当B、P、Q、E四点共线时取得最小值BE例题1. 已知:△ABC是锐角三角形,G是三角形内一点。
△AGC=△AGB=△BGC=120°.求证:GA+GB+GC的值最小.【解析】证明:将△BGC逆时针旋转60°,连GP,DB.则△CGB△△CPD;△ △CPD=△CGB=120°,CG=CP,GB=PD, BC=DC,△GCB=△PCD.△ △GCP=60°,△ △BCD=60°,△ △GCP和△BCD都是等边三角形。
△ △AGC=120°, △CGP=60°.△ A、G、P三点一线。
△ △CPD=120°, △CPG=60°.△ G、P、D三点一线。
△ AG、GP、PD三条线段同在一条直线上。
△ GA+GC+GB=GA+GP+PD=AD.△ G点是等腰三角形内到三个顶点的距离之和最小的那一点例题2. 已知正方形ABCD内一动点E到A、B、C求正方形的边长.【解析】如图,连接AC,把△AEC绕点C顺时针旋转60°,得到△GFC,连接EF、BG、A G,可知△EFC、△AGC都是等边三角形,则EF=CE.又FG=AE,△AE+BE+CE = BE+EF+FG.△ 点B、点G为定点(G为点A绕C点顺时针旋转60°所得).△ 线段BG即为点E到A、B、C三点的距离之和的最小值,此时E、F两点都在BG上.设正方形的边长为a,那么BO=CO=2a,GC, GO=2a.△ BG=BO+GO=2.△ 点E到A、B、C△aa=2.【变式训练1】已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点。
ABCP中考数学复习线段和差最值系列之费马点皮耶·德·费马,17世纪法国数学家,有“业余数学家之王”的美誉,之所以叫业余并非段位不够,而是因为其主职是律师,兼职搞搞数学.费马在解析几何、微积分等领域都有卓越的贡献,除此之外,费马广为人知的是以其名字命名的“费马小定理”、“费马大定理”等.言归正传,今天的问题不是费马提出来的,是他解决的,故而叫费马点. 问题:在△ABC 内找一点P ,使得P A +PB +PC 最小.【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.以上依据似乎都用不上,怎么办?若点P 满足∠PAB=∠BPC=∠CPA=120°,则PA+PB+PC 值最小,P 点称为该三角形的费马点.一、如何作费马点问题要从初一学到的全等说起:(1)如图,分别以△ABC 中的AB 、AC 为边,作等边△ABD 、等边△ACE . (2)连接CD 、BE ,即有一组手拉手全等:△ADC ≌△ABE .(3)记CD 、BE 交点为P ,点P 即为费马点.(到这一步其实就可以了)(4)以BC 为边作等边△BCF ,连接AF ,必过点P ,有∠P AB =∠BPC =∠CP A =120°.在图三的模型里有结论:(1)∠BPD =60°;(2)连接AP ,AP 平分∠DPE .有这两个结论便足以说明∠P AB =∠BPC =∠CP A =120°.但是在这里有个小小的要求,细心的同学会发现,这个图成立的一个必要条件是∠BAC <120°,若120BAC ∠≥︒ ,这个图就不是这个图了,会长成这个样子:EB ACAB CDE此时CD 与BE 交点P 点还是我们的费马点吗?显然这时候就不是了,显然P 点到A 、B 、C 距离之和大于A 点到A 、B 、C 距离之和.所以,是的,你想得没错,此时三角形的费马点就是A 点!当然这种情况不会考的,就不多说了.二、为什么是这个点为什么P 点满足∠P AB =∠BPC =∠CP A =120°,P A +PB +PC 值就会最小呢?归根结底,还是要重组这里3条线段:P A 、PB 、PC 的位置,而重组的方法是构造旋转!在上图3中,如下有△ADC ≌△ABE ,可得:CD =BE .类似的手拉手,在图4中有3组,可得:AF =BE =CD .巧的,它们仨的长度居然一样长!更巧的是,其长度便是我们要求的P A +PB +PC 的最小值,这一点是可以猜想得到的,毕竟最小值这个结果,应该也是个特别的值! 接下来才是真正的证明:考虑到∠APB =120°,∴∠APE =60°,则可以AP 为边,在PE 边取点Q 使得PQ =AP ,则△APQ 是等边三角形.△APQ 、△ACE 均为等边三角形,且共顶点A ,故△APC ≌△AQE ,PC =QE . 以上两步分别转化P A =PQ ,PC =QE ,故P A +PB +PC =PB +PQ +QE =BE .没有对比就没有差别,我们换个P 点位置,如下右图,同样可以构造等边△APQ ,同样有△APC ≌△AQE ,转化P A =PQ ,PC =QE ,显然,P A +PB +PC =PB +PQ +QE >BE .还剩下第3个问题!如果说费马点以前还算是课外的拓展内容,那现在,已经有人把它搬上了中考舞台!【中考再现】问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE 与BC 交于点P ,可推出结论:P A +PC =PE .问题解决:如图2,在△MNG 中,MN =6,∠M =75°,MG=O 是△MNG 内一点,则点O 到△MNG 三个顶点的距离和的最小值是______.【分析】本题的问题背景实际上是提示了解题思路,构造60°的旋转,当然如果已经了解了费马点问题,直接来解决就好了!如图,以MG 为边作等边△MGH ,连接NH ,则NH 的值即为所求的点O 到△MNG 三个顶点的距离和的最小值.(此处不再证明)过点H 作HQ ⊥NM 交NM 延长线于Q 点,根据∠NMG =75°,∠GMH =60°,可得∠HMQ =45°,∴△MHQ 是等腰直角三角形, ∴MQ =HQ =4,∴NH== 练习题1.如图,在△ABC 中,△ACB=90°,AB=AC=1,P 是△ABC 内一点,求P A +PB +PC 的最小值.2. 如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.NG图2图1ABCD EPHGN M464Q HGN MABCDME3.如图,矩形ABCD中,AB=10,BC=15,现在要找两点E、F,则EA+EB+EF+FC+FD的最小值为__________4.如图,等腰Rt∆ABC中,AB=4,P为∆ABC内部一点,则PA+PB+PC的最小值为_______5.如图,∆ABC中,AB=4,,∠ABC=75°,P为∆ABC内的一个动点,连接PA、PB、PC,则PA+PB+PC的最小值为________6.如图,P为正方形ABCD对角线BD上一动点,若AB=2,则PA+PB+PC的最小值为______7.在Rt∆ABC中,∠ACB=90°,AC=1,,点O为Rt∆ABC内一点,连接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,则OA+OB+OC=_______8.如图,在四边形ABCD中,∠B=60°,AB=BC=3,AD=4,∠BAD=90°,点P是四边形内部一点,则PA+PB+PD的最小值是______9.如图,点P是矩形ABCD对角线BD上的一个动点,已知AB=2,,则PA+PB+PC 的最小值为_______10.如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则PA+PB+PD的最小值为__________11.已知,在∆ABC中,∠ACB=30°点P是ABC内一动点,则PA+PB+PC的最小值为__________12.如图,设点P到等边三角形ABC两顶点A、B的距离分别为2则PC的最大值为______13.如图,设点P到正方形ABCD两顶点A、D的距离为2PC的最大值为________14.如图,设点P到正方形ABCD两顶点A、D的距离为2则PO的最大值为_________.15.如图,在Rt∆ABC中,∠BAC=90⁰,AB=AC,点D是BC边上一动点,连接AD,把AD 绕点A逆时针旋转90⁰,得到AE,连接CE、DE,点F是DE的中点,连接CF问题:在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小,当PA+PB+PC 取最小值时,AP的长为m,用含有m的式子表示CE的长.参考答案1.7.8.7 9.3 10. 12.2+13.2+1 15.32m +。
旋转中的最值模型(费马点模型)【知识点归纳】费马点模型:如图,在△ABC内部找到一点P,使得PA+PB+PC的值最小.当点P满足∠APB=∠BPC=∠CPA=120º,则PA+PB+PC的值最小,P点称为三角形的费马点.特别地,△ABC中,最大的角要小于120º,若最大的角大于或等于120º,此时费马点就是最大角的顶点A(这种情况一般不考,通常三角形的最大顶角都小于120°)费马点的性质:1.费马点到三角形三个顶点距离之和最小。
2.费马点连接三顶点所成的三夹角皆为120°。
费马点最小值解法:以△ABC任意一边为边向外作等边三角形,这条边所对两顶点的距离即为最小值证明过程:将△APC边以A为顶点逆时针旋转60°,得到AQE,连接PQ,则△APQ为等边三角形,PA=PQ。
即PA+PB+PC=PQ+PB+PC,当B、P、Q、E四点共线时取得最小值BE【例题精讲】例1.(等边三角形费马点)如图,在ABC V 中,3AB =,2AC =,60BAC Ð=°,P 为ABC V 内一点,则PA PB PC ++的最小值为 .【点睛】本题考查了全等三角形判定与性质,旋转的性质,以及等边三角形的性质和求线段最值的问题,掌握做辅助线是解题的关键.例2.(直角三角形费马点)如图,已知Rt △ABC 中,∠ABC =90°,∠ACB =30°,斜边AC =4,点P 是三角形内的一动点,则PA +PB +PC 的最小值是 .∵∠90,30ABC ACB °°=Ð=,AC 2,AB \=结AD,BE,CE.若AB=DE=BC=10,∠ABC=75°,则AD+BE+CE的最小值为.【点睛】本题考查轴对称求最短距离,熟练掌握轴对称的性质,通过构造平行四边形、旋转例4.(加权费马点)如图,Rt ABC △中,30CAB Ð=°,3BC =,点P 为ABC V 内一点,连接,,PA PB PC ,则PC PB +的最小值为 .++++的最小值为.AP BP PQ QC QD∴AP BP PQ CQ DQ ++++B P P P PQ QQ Q C ¢¢¢¢¢¢=++++,∴当,,,,,B P P Q Q C ¢¢¢¢六点共线时AP BP PQ CQ ++++连接,¢¢BB CC ,∵AB AB ¢=,60B AB ¢Ð=°,∴ABB ¢V 是等边三角形,∴1AB BB ¢¢==,∴B ¢在AB 的垂直平分线上,例6.(培优综合)在ABCD Y 中,45ABC Ð=°,连接AC ,已知AB AC ==E 在线段AC 上,将线段DE 绕点D 顺时针旋转 90° 为线段DF .(1)如图1,线段AC 与线段BD 的交点和点E 重合,连接EF ,求线段EF 的长度;(2)如图2,点G 为DC 延长线上一点,使得GC EC =,连接FG 交AD 于点H ,求证:CD =;(3)如图3,在(2)的条件下,平面内一点P ,当HP CP +最小时,求HPB △的面积.∵45BAC Ð=°,AB AC ==∴45ACB ABC Ð=Ð=°,BAC Ð∴2222BC AB ==´=,∵ABCD Y ,∴45DCG ABC Ð=Ð=°,CD∵90BAC Ð=°,AB CD ∥,∴AC GD ^,90GCA ECD Ð=Ð=°,又∵GC EC =,AC DC =,∴()SAS GCA ECD V V ≌,∴GA ED =,GAC EDC Ð=Ð,∵ED FD =,ED FD ^,∴GA FD =,90AGC GDF Ð+Ð=°-Ð由旋转的性质可得,2BC BC ¢==,∵AD BC ∥,∴90AIB Ð=°,45IAB ABC Ð=Ð=°,∴222122IB IA AB ===´=,在Rt IC H ¢V 中,12IC IB BC ¢¢=+=+22223213C H IC IH ¢¢=+=+=,∵1122BC H S C H BJ BC IH ¢¢¢=⋅=⋅V ,即:在Rt IBH V 中,221BH IB IH =+=在Rt BJH V 中,22JH BH BJ =-=【课后训练】1.如图,在ABC V 中,90,5,BAC AB AC Ð==°=P 为ABC V 内部一点,则点P 到ABC V 三个顶点之和的最小值是 .∴BAP HAE Ð=Ð,AE AP =,AH AB ==∴60HAB EAP Ð=Ð=°,∴AEP △是等边三角形,∴AE AP EP ==,∴AP BP PC EP EH PC ++=++,∴当点H 、E 、P 、C 共线时,AP BP PC ++∵18018060NAC BAH BAC Ð=°-Ð-Ð=°-条动线段MN BC ∥,且MN =,则AN BM CN ++的最小值为 .【点睛】本题考查了平行四边形的判定与性质,旋转变换,的一半,等边三角形的判定与性质,勾股定理,两点之间线段最短等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题..如图,点M 是矩形ABCD 内一点,且,,MA MD MN ,则MA MD MN ++的最小值为 .【答案】7532+根据旋转的性质有:ADD ¢\△为等边三角形,同理AMM ¢V 为等边三角形,AM AM MM ¢==\MA MD MN +\+=\当线段M D ¢¢、MM 在矩形ABCD 中,D 即可知四边形ABEF 是矩形,ADD ¢QV 为等边三角形,\12AF FD AD ===\2D F D A AF ¢¢=-4.如图,P为正方形ABCD内的动点,若AB=2,则PA+PB+PC的最小值为.(1)如图1,已知150AOB Ð=°,120BOC Ð=°,将BOC V 绕点C 按顺时针方向旋转60°得ADC △.①DAO Ð的度数是 ;②用等式表示线段OA ,OB ,之间的数量关系,并证明;(2)设AOB a Ð=,BOC b Ð=.①当a ,b 满足什么关系时,OA OB OC ++有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边ABC V 的边长为1,直接写出OA OB OC ++的最小值.QV ADC BOC \≌△△,OCD ÐCD OC \=,ADC BOC Ð=ÐOCD \△是等边三角形,OC OD CD \==,COD Ð=150AOB Ð=°Q ,120BOC Ð=90AOC \Ð=°,\O C OC ¢\=,O A OA ¢¢=,A C BC ¢=,A O C AOC ¢¢Ð=Ð.(1)如图1, 连接DE BE 、, 若5,3BCE ABE S S ==V V ,求BED S V ;(2)如图2, 若,DM BC DM BM ^=, 延长BE 交DM 于点N , 且NM MC =, 求证:AD DN =-;(3)如图3,若4,90AD AB ABD ==Ð=°,P 为BCD △内一点,请直接写出PD PC PB ++的最小值.∵,DM BC DM BM ^=,∴BDM V 是等腰直角三角形,∴222BD BM DM DM =+=∴BD BF =,∴45F BDM CBD Ð=Ð=Ð=∴90DBF Ð=°,∴2DF BD =,∴4CH BC ==,DCH BCD BCH Ð=Ð+Ð∴PG PC =,∴PD PC PB PD PG GH DH ++=++³即当点D ,P ,G ,H 四点共线时,PD 在Rt DCH △中,22DH CD CH =+=即PD PC PB ++的最小值为27.【点睛】本题主要考查了等边三角形的判定和性质,平行四边形的性质,勾股定理,图形的形ACFG ,点D 恰好在线段GF 上.(1)若AB的长度比BC少4,8V的面积;AC=,求ABC(2)求证:BG DG-;(3)已知点P是ABCV的顶点和边重合,在(1)的条件下,请直V内一动点,且P不与ABC接写出PA PB++的最小值.∵90BED HEG Ð=Ð=°,∴BED HED HEG Ð-Ð=Ð-即BEH DEG Ð=Ð,∵EMG BED EBG =Ð+Ð=∠∴EBG GDE Ð=Ð,∵90BAC Ð=°,∴1122ABC S AB AC BC AG =´=´△,∴6824105AB AC AG BC ´´===,针旋转90°交DC 的延长线于点F ,求证:AE CF =;(2)边长4AB =把边AB 沿BE 翻折.①如图2,若点P 落在对角线BD 上,则AE = ;②如图3,点G 在边CD 上,1DG =,连接AG 、BG ,当点P 落在ABG V 内部时(不含边上),线段AE 长度的取值范围为 ;(3)如图4,点M 是正方形ABCD 内一点,连接MA 、MC ,若5AB =,求MA MC +最小值;(4)如图5,点M 是矩形ABCD 内一点,连接,,MA MB MC ,若AB =4BC =,则MA MB MC ++最小值为 .当点P 落到BG 上,连接由折叠的性质可得,∴=EPG EDG ÐÐ∵1DG =,(3)①当A 、M AM MC AC +>,②当点A 、M 、C ∵AB BC =,ABC Ð(4)如图,将V ∴A M AM ¢¢=,BM 又∵60M BM ¢Ð=°∴M BM ¢V 是等边三角形,【点睛】本题考查正方形的性质、折叠的性质、旋转的性质、全等三角形的判定与性质、等腰直角三角形的性质与判定、勾股定理、等边三角形的判定与性质、切线的性质,熟练掌握相关性质是解题的关键.。
几何探究型问题(针对第25题)线段最值问题“费马点”问题【问题背景】“费马点”——就是到三角形三个顶点的距离之和最小的点.“费马点”问题在中考考查时主要隐藏在求PA+PB+PC的最小值问题,通常将某三角形绕点旋转一定的角度,从而将三条线段转化在同一条直线上,利用两点之间线段最短解决问题.【模型分析】对于一个各角不超过120°的三角形,“费马点”是对各边的张角都是120°的点,对于有一个角超过120°的三角形,费马点就是这个内角的顶点.费马点P使它到△ABC三个顶点的距离之和PA+PB+PC最小,这就是所谓的“费马”问题.如图,将△APC绕点A逆时针旋转60°到△AP′C′,则可以构造出等边三角形APP′,从而得到AP=PP′,CP=C′P′,所以将PA+PB+PC的值转化为PP′+PB+P′C′的值,则线段BC′的长即为所求的最小值.例题1.如图,已知点P为等边三角形ABC外接圆的劣弧BC上任意一点,求证:PB+PC=PA.证明:如答图,在P A上截取PM=PC,连接CM.∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,BC =AC .∵∠ABC =∠APC ,∴∠MPC =60°,∴△MPC 是等边三角形,∴∠MCP =60°,MC =PC ,∴∠ACM =∠BCP .在△BPC 和△AMC 中,⎩⎪⎨⎪⎧ BC =AC ,∠BCP =∠ACM ,PC =MC ,∴△BPC ≌△AMC (SAS),∴BP =AM ,∴PB +PC =AM +PM =P A .2.已知三个村庄A ,B ,C 构成了如图所示的△ABC(其中∠A ,∠B ,∠C 均小于120°),现选取一点P 作为打水井,使水井P 到三个村庄A ,B ,C 所铺设的输水管总长度最小.求输水管总长度的最小值.解:如答图,以BC 为边在△ABC 的外部作等边三角形BCD ,连接AD .∴AD 的长就是△ABC 的费马距离.易得∠ABD =90°,∴AD =AB 2+BD 2=5(km).答:输水管总长度的最小值为5 km.练习(2019·陕师大附中六模)问题提出(1)如图1,在△ABC 中,BC =2,将△ABC 绕点B 顺时针旋转60°得到△A ′BC ′,则CC ′=______.【解答】由旋转的性质可知∠CBC ′=60°,BC ′=BC ,则∠△BCC ′是等边三角形,故CC ′=BC =2.问题探究(2)如图2,在△ABC中,AB=BC=3,∠ABC=30°,点P为△ABC内一点,连接PA,PB,PC,求PA+PB+PC的最小值,并说明理由.解题思路将△ABP绕点B逆时针旋转60°得到△EBF,连接PF,EC.易证PA+PB+PC=EF+PF+PC;由PC+PF+EF≥EC,推出当点P,F在直线EC上时,PA+PB+PC的值最小,即为EC的长,求出EC的长即可解决问题.【解答】如答图1,将△ABP绕点B逆时针旋转60°得到△EBF,连接PF,EC.由旋转的性质可知△PBF是等边三角形,∴PB=PF.∵P A=EF,∴P A+PB+PC=EF+PF+PC.∵PC+PF+EF≥EC,∴当点P,F在直线EC上时,P A+PB+PC的值最小,易得BC=BE=BA=3,∠CBE=90°,∴EC=2BC=32,∴P A+PB+PC的最小值为3 2.问题解决(3)如图3,在四边形ABCD中,AD∥BC,AB=6,AD=4,∠ABC=∠BCD=60°.在四边形ABCD内部有一点P,满足∠APD=120°,连接BP,CP,点Q为△BPC内的任意一点,是否存在一点P和一点Q,使得PQ+BQ+CQ有最小值?若存在,请求出这个最小值;若不存在,请说明理由.解题思路将△PBQ绕点B逆时针旋转60°得到△EBG,则PQ=EG,△BQG是等边三角形,易知PQ+BQ+CQ=EG+GQ+QC≥EC,推出当EC取得最小值时,PQ +BQ +CQ 的值最小.延长BA 交CD 的延长线于点S ,作△ADS 的外接圆⊙O ,将线段BO ,BP 绕点B 逆时针旋转60°得到线段BO ′,BE ,连接EO ′,OB ,OP .易证△BEO ′≌△BPO(SAS),推出EO ′=OP =433,故点E 在以点O ′为圆心,433为半径的圆上,则当点E 在线段CO ′上时,EC 的值最小,最小值为CO ′-EO ′的长.【解答】如答图2,将△PBQ 绕点B 逆时针旋转60°得到△EBG ,连接GQ ,EC ,则PQ =EG ,△BQG 是等边三角形,∴BQ =QG ,∴PQ +BQ +CQ =EG +GQ +QC ≥EC ,∴当EC 取得最小值时,PQ +BQ +CQ 的值最小.如答图3,延长BA 交CD 的延长线于点S ,作△ADS 的外接圆⊙O ,连接OB .将线段BO ,BP 绕点B 逆时针旋转60°得到线段BO ′,BE ,连接EO ′,OP.易证△BEO ′≌△BPO (SAS),∴EO ′=PO .∵∠APD +∠ASD =180°,∴A ,P ,D ,S 四点共圆,∴OP =433,∴EO ′=433, ∴点E 在以点O ′为圆心,433为半径的圆上, ∴当点E 在线段CO ′上时,EC 的值最小,最小值为CO ′-EO ′的长,连接OO ′,延长OO ′到点R ,使得O ′R =OO ′,连接BR ,则∠OBR =90°,作RH ⊥CB 交CB 的延长线于点H ,O ′T ⊥CH 于点T ,OM ⊥BC 于点M .易知在Rt △OBM 中,BM =5,OM =1133, ∴OB =OM 2+BM 2=1433, ∴BR =3OB =14.易知△BHR ∽△OMB ,∴RH BM =BR OB,∴RH =5 3.∵HR ∥O ′T ∥OM ,OO ′=RO ′,∴TM =TH ,∴O ′T =RH +OM 2=1333,∴BT =O ′B 2-O ′T 2=3, ∴CO ′=CT 2+O ′T 2=2633, ∴CE =CO ′-EO ′=2633-433=2233, ∴PQ +BQ +CQ 的最小值为2233.类型三 “阿氏圆”问题【问题背景】“PA +k ·PB ”型的最值问题是近几年中考考查的热点,更是一个难点.当k 的值为1时,即可转化为“PA +PB ”之和最短问题,就可用我们常见的“将军饮马”问题模型来处理,即可以转化为轴对称问题来处理.当k 取任意不为1的正数时,此类问题的处理通常以动点P 的运动轨迹不同来分类,一般分为两类研究,即点P 在直线上运动和点P 在圆上运动.其中点P 在圆周上运动的类型称之为“阿氏圆”问题.【模型分析】如图1,⊙O 的半径为r ,点A ,B 都在⊙O 外,P 为⊙O 上一动点,已知r =k ·OB ,连接PA ,PB ,则当PA +k ·PB 的值最小时,点P 的位置如何确定?如图2,在线段OB 上截取OC ,使OC =k ·r ,则可证明△BPO 与△PCO 相似,即k ·PB =PC .故求PA +k ·PB 的最小值可以转化为PA +PC 的最小值,其中A ,C 为定点,P 为动点,当点P ,A ,C 共线时,PA +PC 的值最小,如图3.“阿氏圆”模型解题策略:第一步:连接动点与圆心O(一般将含有k 的线段两端点分别与圆心O 相连),即连接OB ,OP ;第二步:计算线段OP 与OB 及OP 与OA 的线段比,找到线段比为k 的情况,如例子中的OP OB =k ; 第三步:在OB 上取点C ,使得OC OP =OP OB ;第四步:连接AC ,与⊙O 的交点即为点P .例题如图,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 的半径为2,P 为圆上一动点,连接AP ,BP ,求AP +12BP 的最小值. 解:如答图,连接CP ,在CB 上取点D ,使CD =1,连接AD ,PD .∵CD CP =CP BC =12,∠PCD =∠BCD , ∴△PCD ∽△BCP ,∴PD BP =12, ∴PD =12BP ,∴AP +12BP =AP +PD , ∴要使AP +12BP 最小,则AP +PD 最小, 当点A ,P ,D 在同一条直线时,AP +PD 最小,即AP +12BP 的最小值为AD 的长. 在Rt △ACD 中,∵CD =1,AC =6,∴AD =AC 2+CD 2=37,∴AP +12BP 的最小值为37. 练习问题提出(1)如图1,已知线段AB 和BC ,AB =2,BC =5,则线段AC 的最小值为______.解题思路当点A 在线段BC 上时,线段AC 有最小值.【解答】∵当点A 在线段BC 上时,线段AC 有最小值,∴线段AC 的最小值为5-2=3.问题探究(2)如图2,已知在扇形COD 中,∠COD =90°,DO =CO =6,A 是OC的中点,延长OC 到点F ,使CF =OC ,P 是CD ︵上的动点,点B 是OD 上的一点,BD =1.①求证:△OAP ∽△OPF .解题思路由题意可得OA OP =OP OF =12,由相似三角形的判定可得△OAP ∽△OPF . 【解答】∵A 是OC 的中点,DO =CO =6=OP ,∴OA OP =12. ∵CF =OC ,∴OF =2OC =2OP ,∴OP OF =12, ∴OA OP =OP OF,且∠AOP =∠POF ,∴△OAP ∽△OPF .②求BP +2AP 的最小值.解题思路由相似三角形的性质可得PF =2AP ,可得BP +2AP =BP +PF ,即当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长,由勾股定理即可求解.【解答】∵△OAP ∽△OPF ,∴AP PF =OP OF =12, ∴PF =2AP .∵BP +2AP =BP +PF ,∴当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长.∵DO =CO =6,BD =1,∴BO =5,OF =12,∴BF =OB 2+OF 2=13.问题解决(3)如图3,有一个形状为四边形ABCD 的人工湖,BC =9千米,CD =4千米,∠BCD =150°,现计划在湖中选取一处建造一座假山P ,且BP =3千米,为方便游客观光,从C ,D 分别建小桥PD ,PC .已知建桥PD 每千米的造价是3万元,建桥PC 每千米的造价是1万元,建桥PD 和PC 的总造价是否存在最小值?若存在,请确定点P 的位置,并求出总造价的最小值,若不存在,请说明理由.(桥的宽度忽略不计)解题思路以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,点P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥CB ,可证△BPM ∽△BCP ,可得PC =3PM ,当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值,由勾股定理可求MD 的值,即可求出建桥PD 和PC 的总造价的最小值.【解答】存在.如答图,以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥BC 交BC 的延长线于点G .∵BM BP =13=BP BC,且∠PBM =∠CBP , ∴△BPM ∽△BCP ,∴PM CP =BM BP =13,∴PC =3PM . ∵建桥PD 和PC 的总造价为3PD +PC =3PD +3PM =3(PD +PM ),∴当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值.∵∠BCD =150°,∴∠DCG =30°.∵DG ⊥BC ,∴DG =12DC =23(千米),CG =3DG =6(千米), ∴MG =BC +CG -BM =9+6-1=14(千米),∴MD =DG 2+MG 2=413(千米),∴建桥PD 和PC 的总造价的最小值为3×413=1213万元.作业5.(2019·交大附中三模)问题提出(1)如图1,点M ,N 是直线l 外两点,在直线l 上找一点K ,使得MK +NK 最小. 问题探究(2)如图2,在等边三角形ABC 内有一点P ,且P A =3,PB =4,PC =5,求∠APB 的度数.问题解决(3)如图3,矩形ABCD是某公园的平面图,AB=30 3 米,BC=60米,现需要在对角线BD上修一凉亭E,使得到公园出口A,B,C的距离之和最小.问:是否存在这样的点E?若存在,请画出点E的位置,并求出EA+EB+EC的最小值;若不存在,请说明理由.解:(1)如答图1,连接MN,与直线l交于点K,点K即为所求.(2)如答图2,把△APB绕点A逆时针旋转60°得到△AP′C,连接PP′.由旋转的性质,得P′A=P A=3,P′C=PB=4,∠P AP′=60°,∠AP′C=∠APB,∴△APP′是等边三角形,∴PP′=P A=3,∠AP′P=60°.∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴△PP′C为直角三角形,且∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°,∴∠APB=∠AP′C=150°.(3)存在.如答图3,把△ABE绕点B逆时针旋转60°得到△A′BE′,连接EE′.答图由旋转的性质,得A′B=AB=30 3 米,BE′=BE,A′E′=AE,∠E′BE=60°,∠A′BA=60°,∴△E′BE是等边三角形,∴BE=EE′,∴EA +EB +EC =A ′E ′+EE ′+EC .根据两点之间线段最短,可知当EA +EB +EC =A ′C 时最短,连接A ′C ,与BD 的交点E 2即为所求,此时EA +EB +EC 最短,最短距离为A ′C 的长度.过点A ′作A ′G ⊥CB 交CB 的延长线于点G . ∵∠A ′BG =90°-∠A ′BA =90°-60°=30°, A ′G =12A ′B =12AB =12×303=153(米),∴GB =3A ′G =3×153=45(米), ∴GC =GB +BC =45+60=105(米).在Rt △A ′GC 中,A ′C =A ′G 2+GC 2=(153)2+1052=3013(米), 因此EA +EB +EC 的最小值为3013 米. 6.问题提出(1)如图1,已知△OAB 中,OB =3,将△OAB 绕点O 逆时针旋转90°得△OA ′B ′,连接BB ′,则BB ′=问题探究(2)如图2,已知△ABC 是边长为43的等边三角形,以BC 为边向外作等边三角形BCD ,P 为△ABC 内一点,将线段CP 绕点C 逆时针旋转60°,点P 的对应点为点Q .①求证:△DCQ ≌△BCP . ②求P A +PB +PC 的最小值. 问题解决(3)如图3,某货运场为一个矩形场地ABCD ,其中AB =500米,AD =800米,顶点A ,D 为两个出口,现在想在货运广场内建一个货物堆放平台P ,在BC 边上(含B ,C 两点)开一个货物入口M ,并修建三条专用车道P A ,PD ,PM .若修建每米专用车道的费用为10 000元,当M ,P 建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留根号)解:(1)由旋转的性质,得∠BOB ′=90°,OB =OB ′=3, 根据勾股定理,得BB ′=3 2. (2)①证明:∵△BDC 是等边三角形, ∴CD =CB ,∠DCB =60°.由旋转的性质,得∠PCQ =60°,PC =QC , ∴∠DCQ =∠BCP .在△DCQ 和△BCP 中,⎩⎪⎨⎪⎧CD =CB ,∠DCQ =∠BCP ,CQ =CP ,∴△DCQ ≌△BCP (SAS). ②如答图1,连接AD ,PQ . ∵PC =CQ ,∠PCQ =60°,∴△CPQ 是等边三角形,∴PQ =PC , 由①知DQ =PB ,∴P A +PB +PC =P A +QD +PQ ,由两点之间线段最短,得P A +QD +PQ ≥AD , ∴P A +PB +PC ≥AD ,∴当点A ,P ,Q ,D 在同一条直线上时,P A +PB +PC 取得最小值,即为AD 的长,过点D 作DE ⊥AC ,交AC 的延长线于点E . ∵△ABC 是边长为43的等边三角形, ∴CB =AC =43,∠BCA =60°, ∴CD =CB =43,∠DCE =60°, ∴DE =6,∠DAE =∠ADC =30°, ∴AD =12,即P A +PB +PC 的最小值为12.答图(3)如答图2,将△ADP 绕点A 逆时针旋转60°,得△AD ′P ′.由(2)知,当点M ,P ,P ′,D ′在同一条直线上时,P A +PM +PD 最小,最小值为D ′M 的长.∵M 在BC 上,∴当D ′M ⊥BC 时,D ′M 取得最小值. 设D ′M 交AD 于点E ,连接DD ′,AM ,DM . 易知△ADD ′是等边三角形,∴EM =AB =500米, ∴BM =400米,PM =EM -PE =(500-40033)米,∴D ′E =32AD =4003(米),∴D ′M =(4003+500)米, ∴最少费用为10 000×(4003+500)= 1 000 000(43+5)元.∴当M 建在BC 的中点(BM =400米)处,点P 在过M 且垂直于BC 的直线上,且在M上方(500-40033)米处时,修建专用车道的费用最少,最少费用为1 000 000(43+5)元.类型三 “阿氏圆”问题7.(2018·西工大附中三模) 问题提出(1)如图1,在△ABC 中,AB =AC ,BD 是AC 边的中线,请用尺规作图作出AB 边的中线CE ,并证明BD =CE ;问题探究(2)如图2,已知点P 是边长为6的正方形ABCD 内部一动点,P A =3,求PC +12PD 的最小值;问题解决(3)如图3,在矩形ABCD 中,AB =18,BC =25,点M 是矩形内部一动点,MA =15,当MC +35MD 最小时,画出点M 的位置,并求出MC +35MD 的最小值.解:(1)如答图1,线段EC 即为所求.证明:∵AB =AC ,AE =EB ,AD =CD ,∴AE =AD , 在△BAD 和△CAE 中,⎩⎪⎨⎪⎧AB =AC ,∠A =∠A ,AD =AE ,答图1∴△BAD ≌△CAE (SAS),∴BD =CE . (2)如答图2,在AD 上截取AE ,使得AE =32.∵P A 2=9,AE ·AD =32×6=9,∴P A 2=AE ·AD ,∴P A AD =AEP A.∵∠P AE =∠DAP ,∴△P AE ∽△DAP , ∴PE DP =P A DA =12,∴PE =12PD , ∴PC +12PD =PC +PE .∵PC +PE ≥EC ,∴PC +12PD 的最小值即为EC 的长,在Rt △CDE 中,∵∠CDE =90°,CD =6,DE =92,∴EC =62+(92)2=152,∴PC +12PD 的最小值为152.答图(3)如答图3,在AD 上截取AE ,使得AE =9. ∵MA 2=225,AE ·AD =9×25=225,∴MA 2=AE ·AD ,∴MA AD =AEMA.∵∠MAE =∠DAM ,∴△MAE ∽△DAM , ∴EM MD =MA DA =1525=35,∴ME =35MD , ∴MC +35MD =MC +ME .∵MC +ME ≥EC ,∴MC +35MD 的最小值即为EC 的长.如答图3,以点A 为圆心,AM 长为半径画弧,交EC 于点M ′,点M ′即为所求. 在Rt △CDE 中,∵∠CDE =90°,CD =18,DE =16, ∴EC =162+182=2145, ∴MC +35MD 的最小值为2145.8.(1)如图1,已知正方形ABCD 的边长为4,⊙B 的半径为2,P 是⊙B 上的一个动点,求PD +12PC 的最小值和PD -12PC 的最大值;(2)如图2,已知正方形ABCD 的边长为9,⊙B 的半径为6,P 是⊙B 上的一个动点,那么PD +23PC 的最小值为,PD -23PC 的最大值为(3)如图3,已知菱形ABCD 的边长为4,∠B =60°,⊙B 的半径为2,P 是⊙B 上的一个动点,那么PD +12PC 的最小值为,PD -12PC 的最大值为解:(1)如答图1,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG .∵PB BG =CBPB=2,∠PBG =∠CBP , ∴△PBG ∽△CBP , ∴PG CP =BG BP =12,∴PG =12PC , ∴PD +12PC =PD +PG .∵PD +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG =42+32=5.∵PD -12PC =PD -PG ≤DG ,∴如答图2,当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为5.答图(2)106,106.【解法提示】如答图3,在BC 上取一点G ,使BG =4,连接PG ,PB ,DG . ∵PB BG =64=32,CB PB =96=32,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴PG CP =BG BP =23, ∴PG =23PC ,∴PD +23PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +23PC 的值最小,最小值为DG =52+92=106.∵PD -23PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为106.答图(3)37,37.【解法提示】如答图4,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG ,作DF ⊥BC 交BC 的延长线于点F .∵PB BG =21=2,BC PB =42=2,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴PG CP =BG BP =12, ∴PG =12PC ,∴PD +12PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG 的长.在Rt △CDF 中,∵∠DCF =60°,CD =4, ∴DF =CD ·sin60°=23,CF =2,∴在Rt △GDF 中,DG =(23)2+52=37. ∴PD +12PC 的最小值为37.∵PD -12PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为37.。
费马点与加权费马点详细总结知识点梳理【常规费马点】【加权费马点】题型一普通费马点最值问题题型二加权费马点·单系数型题型三加权费马点·多系数型知识点梳理【常规费马点】【问题提出】如图△ABC所有的内角都小于120度,在△ABC内部有一点P,连接PA、PB、PC,当PA+PB+PC的值最小时,求此时∠APB与∠APC的度数.【问题处理】如图1,将△ACP绕着点C顺时针旋转60度得到△A'CP',则△ACP≌△A'CP',CP=CP',AP =A'P',又∵∠PCP'=60°,∴△PCP'是等边三角形,∴PP'=PC,∴PA+PB+PC=P'A'+PB+PP',如图2,当且仅当点B、P、P'、A'共线时,PA+PB+PC最小,最小值为A'B,此时∠BPC=∠APC=∠APB =120°【问题归纳】如费马点就是到三角形的三个顶点的距离之和最小的点.费马点结论:①对于一个各角不超过120°的三角形,费马点是对各边的张角都是120°的点,所以三角形的费马点也叫三角形的等角中心;②对于有一个角超过120°的三角形,费马点就是这个内角的顶点.【如何作费马点】如图3,连接AA',我们发现△ACA'为等边三角形,点P在A'B上,同理,我们可以得到等边△BAB',点P也在CB'上,因此,我们可以以△ABC三角形任意两边为边向外构造等边三角形,相应连线的交点即为费马点。
(最大角小于120°时)【例1】如图,在△ABC中,∠ACB=90°,AB=AC=1,P是△ABC内一点,求PA+PB+PC的最小值.【答案】6+2 2【分析】如图,以AC为边构造等边△ACD,连接BD,BD的长即为PA+PB+PC的最小值.至于点P的位置?这不重要!如何求BD?考虑到△ABC和△ACD都是特殊的三角形,过点D作DH⊥BA交BA的延长线于H点,根据勾股定理,即可得出结果.【练习1】如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+ MD+ME的最小值为______.【分析】依然构造60°旋转,将三条折线段转化为一条直线段.分别以AD、AM为边构造等边△ADF、等边△AMG,连接FG,易证△AMD≌△AGF,∴MD=GF∴ME+MA+MD=ME+EG+GF过F作FH⊥BC交BC于H点,线段FH的长即为所求的最小值.【加权费马点】如果所求最值中三条线段的系数有不为1的情况,我们把这类问题归为加权费马点问题,解决方法类似,也是通过旋转进行线段转化,只不过要根据系数的情况选择不同的旋转或放缩方法。
专题19最值问题中的费马点模型【模型展示】特点费马点:三角形内的点到三个顶点距离之和最小的点如图,点M 为锐角△ABC 内任意一点,连接AM 、BM 、CM ,当M 与三个顶点连线的夹角为120°时,MA+MB+MC 的值最小【证明】以AB 为一边向外作等边三角形△ABE ,将BM 绕点B 逆时针旋转60°得到BN ,连接EN .∵△ABE 为等边三角形,∴AB =BE ,∠ABE =60°.而∠MBN =60°,∴∠ABM =∠EBN .在△AMB 与△ENB 中,∵,∴△AMB ≌△ENB (SAS ).【模型证明】解决方案如图,在锐角△ABC 外侧作等边△ACB',连接BB’.求证:BB'过△ABC 的费马点P,且BB'=PA+PB+PC.【证明】在BB'上取点P,使∠BPC=120°,连接AP,在PB'上截取PE=PC,连接CE.∵∠BPC=120°,∴∠EPC=60°,∴△PCE 为等边三角形,∴PC=CE,∠PCE=60°,∠CEB'=120°.∵△ACB'为等边三角形,∴AC=B'C,∠ACB'=60°,∴∠PCA+∠ACE=∠ACE+∠ECB'=60°,∴∠PCA=∠ECB',∴△ACP≌△B'CE,∴∠APC=∠B'EC=120°,PA=EB',∴∠APB=∠APC=∠BPC=120°,∴P为△ABC的费马点,∴BB'过△ABC的费马点P,且BB'=EB'+PB+PE=PA+PB+PC.如图,在△ABC中,以它的边AB,AC为边,分别在形外作等边三角形ABD,ACE,连接BE,CD.求证:BE=DC.【证明】由已知可得AB=AD,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE.在△BAE和△DAC中,∴△BAE≌△DAC,∴BE=DC.【题型演练】一、单选题1.数学很多的知识都是以发明者的名字命名的,如韦达定理、杨辉三角、费马点等,你知道平面直角坐标系是哪一位法国的数学家创立的,并以他的名字命名的吗?()A .迪卡尔B .欧几里得C .欧拉D .丢番图【答案】A【分析】根据实际选择对应科学家--迪卡尔.【详解】平面直角坐标系是法国的数学家迪卡尔创立的,并以他的名字命名.故选A【点睛】本题考核知识点:数学常识.解题关键点:了解数学家的成就.2.已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC 的费马点(Fermat point ).已经证明:在三个内角均小于120°的△ABC 中,当∠APB =∠APC =∠BPC =120°时,P 就是△ABC的费马点.若点P DEF 的费马点,则PD +PE +PF =()A .B .1C .6D .【答案】B【详解】解:如图:等腰Rt △DEF 中,DE =DF D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP =∠MFP =30°,则EM =DM =1,故cos30°=EMEP ,解得:PE =PF PM DP =1﹣PD +PE +PF 1+.故选B .点睛:此题主要考查了解直角三角形,正确画出图形进而求出PE 的长是解题关键.3.已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC 的费马点(Fermat point ).已经证明:在三个内角均小于120°的△ABC 中,当∠APB =∠APC =∠BPC =120°时,P 就是△ABC 的费马点.若点P 是腰长为6的等腰直角三角形DEF 的费马点,则PD +PE +PF =()A .6B .3C .D .9【分析】根据题意画出图形,根据勾股定理可得EF ,由过点D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP =∠MFP =30°就可以得到满足条件的点P ,易得EM =DM =MF =PM 、PE 、PF ,继而求出PD 的长即可求解.【详解】解:如图:等腰Rt △DEF 中,DE =DF =6,∴EF =过点D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP =∠MFP =30°,则∠EPF=∠FPD=∠DPE=120°,点P 就是马费点,∴EM =DM =MF =设PM =x ,PE =PF=2x ,在Rt △EMP 中,由勾股定理可得:222PM EM PE +=,即()22182x x +=,解得:1x =2x =,即PM ,∴PE =PF =故DP =DM -PM =,则PD +PE +PF =3.故选B .【点睛】此题主要考查了等腰直角三角形的性质、勾股定理的应用,正确画出做辅助线构造直角三角形进而求出PM 的长是解题关键.4.已知点P 是ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫ABC 的费马点(Fermatpoint ).已经证明:在三个内角均小于120︒的ABC 中,当120APB APC BPC Ð=Ð=Ð=°时,P 就是ABC的费马点.若点P 的等腰直角三角形DEF 的费马点,则PD PE PF ++=()A .6B3C .D .9【分析】根据题意首先画出图形,过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,求出PE ,PF ,DP 的长即可解决问题.【详解】解:如图:过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,在等腰Rt DEF △中,DE DF =,DM EF ⊥,EF ∴=EM DM ∴==∵∠PEM =30°,∠PME =90°,∴EP =2PM ,则()2222PM EM PM +=,解得:1PM =,则2PE =,故1DP ,同法可得2PF =,则1223PD PE PF ++++=.故选:B .【点睛】此题主要考查了等腰三角形的性质,正确画出图形进而求出PE 的长是解题关键.二、填空题5.已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC 的费马点(Fermatpoint ),已经证明:在三个内角均小于120°的△ABC 中,当∠APB=∠APC=∠BPC=120°时,P 就是△ABC的费马点,若P 就是△ABC 的费马点,若点P 的等腰直角三角形DEF 的费马点,则PD+PE+PF=_____.1.【详解】如图:等腰Rt △DEF 中,,过点D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP=∠MFP=30°,则EM=DM=1,故cos30°=EMEP ,解得:DP=111+.6.若P 为△ABC 所在平面上一点,且∠APB=∠BPC=∠CPA=120o ,则点P 叫做△ABC 的费马点.若点P 为锐角△ABC 的费马点,且∠ABC=60o ,PA=3,PC=4,则PB 的值为___________.【答案】【详解】如图,根据三角形的内角和定理可得∠PAB +∠PBA =180°-∠APB =60°,再由∠PBC +∠PBA =∠ABC =60°,即可得∠PAB =∠PBC ,又因∠APB =∠BPC =120°,即可判定△AB P ∽△BCP ,根据相似三角形的性质可得PA PB PB PC=,即2PB PA PC =⋅,再由PA =3,PC =4,即可求得PB =7.法国数学家费马提出:在△ABC 内存在一点P ,使它到三角形顶点的距离之和最小.人们称这个点为费马点,此时PA +PB +PC 的值为费马距离.经研究发现:在锐角△ABC 中,费马点P 满足∠APB =∠BPC =∠CPA =120°,如图,点P 为锐角△ABC 的费马点,且PA =3,PC =4,∠ABC =60°,则费马距离为_____.【答案】【分析】根据相似三角形的判定和性质,即可求解.【详解】解:如图:∵∠APB =∠BPC =∠CPA =120,∠ABC =60°,∴∠1+∠3=60°,∠1+∠2=60°,∠2+∠4=60°,∴∠1=∠4,∠2=∠3,∴△BPC ∽△APB ∴PC PB PB PA=即PB 2=12∴PB =∴7PA PB PC ++=+故答案为:7+【点睛】本题考查了轴对称-最短路线问题,解决本题的关键是利用相似三角形的判定和性质.8.已知:到三角形3个顶点距离之和最小的点称为该三角形的费马点.如果ABC 是锐角(或直角)三角形,则其费马点P 是三角形内一点,且满足120APB BPC CPA ∠=∠=∠=︒.(例如:等边三角形的费马点是其三条高的交点).若AB AC BC ===,P 为ABC 的费马点,则PA PB PC ++=_________;若2,4AB BC AC ===,P 为ABC 的费马点,则PA PB PC ++=_________.【答案】5【分析】①作出图形,过,B C 分别作30DBP DCP ∠=∠=︒,勾股定理解直角三角形即可②作出图形,将APC △绕点A 逆时针旋转60︒,P 为ABC 的费马点则,,,B P P C ''四点共线,即PA PB PC ++=BC ',再用勾股定理求得即可【详解】①如图,过A 作AD BC ⊥,垂足为D ,过,B C 分别作30DBP DCP ∠=∠=︒,则PB PC =,P 为ABC 的费马点AB AC BC ===12BD DC BC ∴==tan 30PD BD ∴︒==1PD ∴=2sin 30PD PB ∴==︒∴2AD ==∴PA PB PC ++=5②如图:2,4AB BC AC ===.22216,16AB BC BC ∴+==222AB BC AC ∴+=90ABC ∠=︒1sin sin 302BC BAC AC ∠===︒ 30BAC ∴∠=︒将APC △绕点A 逆时针旋转60︒由旋转可得:APC AP C ''△≌△,,AP AP PC P C AC AC ''''∴===60CAC PAP ''∠=∠=︒APP '∴ 是等边三角形,∴90BAC '∠=︒P 为ABC 的费马点即,,,B P P C ''四点共线时候,PA PB PC ++=BC '∴PA PB PC ++=BP PP P C '''++=BC '===故答案为:①5,②【点睛】本题考查了勾股定理,旋转的性质,锐角三角函数,等腰三角形性质,作出旋转的图形是解题的关键.本题旋转,PAB PBC △△也可,但必须绕顶点旋转.三、解答题9.如图(1),P 为 ABC 所在平面上一点,且∠APB =∠BPC =∠CPA =120°,则点P 叫做 ABC 的费马点.(1)若点P 是等边三角形三条中线的交点,点P (填是或不是)该三角形的费马点.(2)如果点P 为锐角 ABC 的费马点,且∠ABC =60°.求证: ABP ∽ BCP ;(3)已知锐角 ABC ,分别以AB 、AC 为边向外作正 ABE 和正 ACD ,CE 和BD 相交于P 点.如图(2)①求∠CPD 的度数;②求证:P 点为 ABC 的费马点.【答案】(1)是;(2)见解析;(3)①60°,②见解析【分析】(1)由等边三角形的性质证明30,ABP PAB ∠=∠=︒可得120,APB ∠=︒同法可得:120,APC BPC ∠=∠=︒从而可得结论;(2)由P 为锐角 ABC 的费马点,且∠ABC =60°,证明∠PAB =∠PBC ,∠APB =∠BPC =120°,从而可得△ABP ∽△BCP ;(3)①如图2所示:由△ABE 与△ACD 都为等边三角形,证明△ACE ≌△ADB (SAS ),利用全等三角形的性质可得∠CPD =∠6=∠5=60°;②先证明△ADF ∽△PCF ,可得,AF DF PF CF=再证明△AFP ∽△DFC .可得∠APC =∠CPD +∠APF =120°,再证明∠BPC =120°,从而可得结论.【详解】解:(1)如图1所示:∵AB =BC ,BM 是AC 的中线,∴MB 平分∠ABC .同理:AN 平分∠BAC ,PC 平分∠BCA .∵△ABC 为等边三角形,∴∠ABP =30°,∠BAP =30°.∴∠APB =120°.同理:∠APC =120°,∠BPC =120°.∴P 是△ABC 的费马点.故答案为:是.(2)P 为锐角 ABC 的费马点,且∠ABC =60°.∴∠APB =∠BPC =120°,∴∠PAB +∠PBA =180°﹣∠APB =60°,∠PBC +∠PBA =∠ABC =60°,∴∠PAB =∠PBC ,∴△ABP ∽△BCP .(3)如图2所示:①∵△ABE 与△ACD 都为等边三角形,∴∠BAE =∠CAD =60°,AE =AB ,AC =AD ,∴∠BAE +∠BAC =∠CAD +∠BAC ,即∠EAC =∠BAD ,在△ACE 和△ABD 中,AC AD EAC BAD AE AB =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△ADB (SAS ),∴∠1=∠2,∵∠3=∠4,∴∠CPD =∠6=∠5=60°;②证明:12,34,∠=∠∠=∠ ∴△ADF ∽△PCF ,,AF DF PF CF∴=∵∠AFP =∠CFD ,∴△AFP ∽△DFC .∴∠APF =∠ACD =60°,∴∠APC =∠CPD +∠APF =120°,660,∠=︒ ∴∠BPC =120°,∴∠APB =360°﹣∠BPC ﹣∠APC =120°,∴P 点为△ABC 的费马点.【点睛】本题考查的是等边三角形的性质,三角形全等的判定与性质,三角形相似的判定与性质,确定图中隐含的全等三角形与相似三角形是解题的关键.10.背景资料:在已知△ABC 所在平面上求一点P ,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图①,当△ABC三个内角均小于120°时,费马点P在△ABC内部,此时∠APB=∠BPC=∠CPA=120°,此时,PA+PB+PC的值最小.解决问题:(1)如图②,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB=;基本运用:(2)请你利用第(1)题的解答思想方法,解答下面问题:如图③,△ABC中,∠CAB=90°,AB=AC,E,F为BC上的点,且∠EAF=45°,判断BE,EF,FC之间的数量关系并证明;能力提升:(3)如图④,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为Rt△ABC的费马点,连接AP,BP,CP,求PA+PB+PC的值.【答案】(1)150°;(2)E′F2=CE′2+FC2,理由见解析;(3.【详解】试题分析:(1)(2)首先把△ACE绕点A顺时针旋转90°,得到△ACE′.连接E′F,由旋转的性质得,AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,然后再证明△EAF≌△E′AF可得E′F=EF,,再利用勾股定理可得结论;(3)将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,根据已知证明C、O、A′、O′四点共线,在Rt△A′BC中,利用勾股定理求得A′C的长,根据新定义即可得OA+OB+OC.试题解析:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∴将△ABP绕顶点A逆时针旋转60°得到△ACP′,如图,连结PP′,∴AP=AP′=3,∠PAP′=60°,P′C=PB=4,∠APB=∠AP′C,∴△APP′为等边三角形,∴∠PP′A=60°,PP′=AP=3,在△PP′C中,∵PP′=3,P′C=4,PC=5,∴PP′2+P′C2=PC2,∴△PP′C为直角三角形,∠PP′C=90°,∴∠AP′C=∠PP′A+∠PP′C=60°+90°=150°,∴∠APB=150°,故答案为150°;(2)E′F2=CE′2+FC2,理由如下:如图2,把△ABE绕点A逆时针旋转90°得到△ACE′,由旋转的性质得,AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,∵∠EAF=45°,∴∠E′AF=∠CAE′+∠CAF=∠BAE+∠CAF=∠BAC﹣∠EAF=90°﹣45°=45°,∴∠EAF=∠E′AF,在△EAF和△E′AF中,AE AEEAF E AF AF AF''=⎧⎪∠=∠⎨⎪=⎩,∴△EAF≌△E′AF(SAS),∴E′F=EF,∵∠CAB=90°,AB=AC,∴∠B=∠ACB=45°,∴∠E′CF=45°+45°=90°,由勾股定理得,E′F2=CE′2+FC2,即EF2=BE2+FC2;(3)如图3,将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,∵在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,∴AB=2,∴∵△AOB绕点B顺时针方向旋转60°,∴△A′O′B如图所示;∠A′BC=∠ABC+60°=30°+60°=90°,∵∠C=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=∠BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,,∴.【点睛】本题考查了旋转、全等三角形的判定与性质等,是一道综合性题目,正确的作出辅助线是解题的关键.11.若P 为△ABC 所在平面上一点,且120APB BPC CPA ∠=∠=∠=︒,则点P 叫做△ABC 的费马点.(1)若点P 为锐角△ABC 的费马点,且∠ABC =60°,PA =3,PC =4,则PB 的值为________;(2)如图,在锐角△ABC 外侧作等边ACB ' 连结BB '.求证:BB '过△ABC 的费马点P ,且BB PA PB PC '=++.【答案】(1)(2)证明见解析【分析】(1)由题意可得△ABP ∽△BCP ,所以2PB PA PC =⋅,即PB ;(2)在BB '上取点P ,使∠BPC =120°,连接AP ,再在PB '上截取PE =PC ,连接CE .由此可以证明△PCE 为正三角形,再利用正三角形的性质得到PC =CE ,∠PCE =60°,120CEB '∠=︒,而ACB ' 为正三角形,由此也可以得到=AC B C ',60ACB '∠=︒,现在根据已知的条件可以证明ACP ≌ B CE ',然后利用全等三角形的性质即可证明题目的结论.(1)∵∠PAB +∠PBA =180°-∠APB =60°,∠PBC +∠PBA =∠ABC =60°,∴∠PAB =∠PBC ,又∵∠APB =∠BPC =120°,∴ABP BCP ∽ ,∴PA PB PB PC=,∴212PB PA PC =⋅=,∴PB =(2)证明:在BB '上取点P ,使∠BPC =120°.连接AP ,再在PB '上截取PE =PC ,连接CE .∠BPC =120°,∴∠EPC =60°,∴△PCE 为正三角形,∴PC =CE ,∠PCE =60°,120CEB ∠'=︒.∵ACB ' 为正三角形,∴AC B C =',60ACB ∠'=︒,∴60PCA ACE ACE ECB ∠+∠=∠+∠'=︒,∴PCA ECB ∠=∠',∴ACP B CE '≌ ,∴120APC B EC PA EB ∠=∠'=︒=',,∴∠APB =∠APC =∠BPC =120°,∴P 为△ABC 的费马点.∴BB '过△ABC 的费马点P ,且BB EB PB PE PA PB PC ''=++=++.【点睛】此题考查了相似三角形的性质与判定,全等三角形的性质与判定,等腰三角形与等边三角形的性质及三角形内角和为180°等知识;此类已知三角形边之间的关系求角的度数的题,一般是利用等腰(等边)三角形的性质得出有关角的度数,进而求出所求角的度数.12.若一个三角形的最大内角小于120°,则在其内部有一点所对三角形三边的张角均为120°,此时该点叫做这个三角形的费马点.如图1,当△ABC 三个内角均小于120°时,费马点P 在△ABC 内部,此时120APB BPC CPA ∠=∠=∠=︒,PA PB PC ++的值最小.(1)如图2,等边三角形ABC 内有一点P ,若点P 到顶点A ,B ,C 的距离分别为3,4,5,求APB ∠的度数.为了解决本题,小林利用“转化”思想,将△ABP 绕顶点A 旋转到ACP '△处,连接PP ',此时ACP ABP ' ≌,这样就可以通过旋转变换,将三条线段PA ,PB ,PC 转化到一个三角形中,从而求出APB ∠=______.(2)如图3,在图1的基础上延长BP ,在射线BP 上取点D ,E ,连接AE ,AD .使AD AP =,DAE PAC ∠=∠,求证:BE PA PB PC =++.(3)如图4,在直角三角形ABC 中,90ABC ∠=︒,30ACB ∠=︒,1AB =,点P 为直角三角形ABC 的费马点,连接AP ,BP ,CP ,请直接写出PA PB PC ++的值.【答案】(1)150°(2)见解析【分析】(1)由全等三角形的性质得到AP ′=AP =3、CP ′=BP =4,∠AP ′C =∠APB ,再根据旋转性质,证明△APP ′为等边三角形,△PP ′C 为直角三角形,最后由∠APB =∠AP ′C =∠AP ′P +∠PP ′C 解答;(2)由费马点的性质得到120APB ∠=︒,60APD ∠=︒,再证明APC ADE ≌(ASA),由全等三角形对应边相等的性质解得PC DE =,最后根据线段的和差解答;(3)将△APB 绕点B 顺时针旋转60°至△A ′P ′B 处,连接PP ′,由勾股定理解得BC ,由旋转的性质,可证明△BPP ′是等边三角形,再证明C 、P 、A ′、P ′四点共线,最后由勾股定理解答.(1)解:∵ACP ABP ' ≌,∴AP ′=AP =3、CP ′=BP =4,∠AP ′C =∠APB ,由题意知旋转角∠PAP ′=60°,∴△APP ′为等边三角形,PP ′=AP =3,∠AP ′P =60°,由旋转的性质可得:AP ′=AP =PP ′=3,CP ′=4,PC=5,∵32+42=52∴△PP ′C 为直角三角形,且∠PP ′C =90°,∴∠APB =∠AP ′C =∠AP ′P +∠PP ′C =60°+90°=150°;故答案为:150°;(2)证明:∵点P 为△ABC 的费马点,∴120APB ∠=︒,∴60APD ∠=︒,又∵AD AP =,∴APD 为等边三角形∴AP PD AD ==,60PAD ADP ∠=∠=︒,∴120ADE ∠=︒,∴ADE APC ∠=∠,在△APC 和△ADE 中,PAC DAE AP AD APC ADE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴APC ADE ≌(ASA);∴PC DE =,∵BE BP PD DE =++,∴BE =PA +PB +PC ;(3)解:如图,将△APB 绕点B 顺时针旋转60°至△A ′P ′B 处,连接PP ′,∵在Rt △ABC 中,∠C =90°,AC =1,∠ABC =30°,∴AB =2,∴BC =把△APB 绕点B 顺时针方向旋转60°得到△A ′P ′B ,∴∠A ′BC =∠ABC +60°=30°+60°=90°,∵∠C =90°,AC =1,∠ABC =30°,∴AB =2AC =2,∵△APB 绕点B 顺时针方向旋转60°,得到△A ′P ′B ,∴A ′B =AB =2,BP =BP ′,A ′P ′=AP ,∴△BPP ′是等边三角形,∴BP =PP ′,∠BPP ′=∠BP ′P =60°,∵∠APC =∠CPB =∠BPA =120°,∴∠CPB +∠BPP ′=∠BP ′A ′+∠BP ′P =120°+60°=180°,∴C 、P 、A ′、P ′四点共线,在Rt △A ′BC 中,A C '=,∴PA +PB +PC =A ′P ′+PP ′+PC =A ′C【点睛】本题考查全等三角形的判定与性质、等边三角形的判定与性质、勾股定理、旋转的性质、费马点等知识,是重要考点,有难度,掌握相关知识,正确做出辅助线是解题关键.13.【问题背景】17世纪有着“业余数学家之王”美誉的法国律师皮耶·德·费马,提出一个问题:求作三角形内的一个点,使它到三角形三个顶点的距离之和最小后来这点被称之为“费马点”.如图,点P 是ABC 内的一点,将APC △绕点A 逆时针旋转60°到AP C '' ,则可以构造出等边APP ' ,得AP PP '=,CP CP '=,所以PA PB PC ++的值转化为PP PB P C +'+''的值,当B ,P ,P ',C 四点共线时,线段BC 的长为所求的最小值,即点P 为ABC 的“费马点”.(1)【拓展应用】如图1,点P 是等边ABC 内的一点,连接PA ,PB ,PC ,将PAC △绕点A 逆时针旋转60°得到AP C '' .①若3PA =,则点P 与点P '之间的距离是______;②当3PA =,5PB =,4PC =时,求AP C ∠'的大小;(2)如图2,点P 是ABC 内的一点,且90BAC ∠=︒,6AB =,AC =PA PB PC ++的最小值.【答案】(1)①3;②150°;(2)【分析】(1)①根据旋转的性质即可求出PP '的值;②先证△ABP ≌ACP '△,利用全等的性子求出对应的边长,通过勾股定理的逆定理得到90CPP ∠=︒′,即可求出AP C ∠'的大小;(2)将△APC 绕C 点顺时针旋转60°得到A P C ′′,先求出120BCA ∠=︒′,然后证明CPP △′为等边三角形,当B 、P 、P '、A '四点共线时,PA PB PC ++和最小,用勾股定理求出BA '的值即可.(1)①如图,将PAC △绕A 逆时针旋转60°,则AP AP =',60PAP ∠'=︒,∴APP ' 为等边三角形,3PP PA ∴==′;②∵△ABC 为等边三角形,∴AB =AC ,∠BAP +∠PAC =60°,又∵APP ' 是等边三角形,∴∠PAC +CAP ∠′=60°,∴∠BAP =CAP ∠′,在△ABP 与ACP '△中,AB AC BAP CAP AP AP =⎧⎪∠=∠⎨⎪=⎩′′,∴△ABP ≌ACP '△(SAS ),∴5,3,4,BP CP PP PC ====′′∴222PP PC CP +=′′,90CPP ∴∠=︒′,60+90=150APC APP CPP ∴∠=∠+∠︒︒︒′′=,又∵旋转,∴=150AP C APC ∠=∠=︒′;(2)如图,将△APC 绕C 点顺时针旋转60°得到A P C ′′,则,60ACP A CP ACP ACP ∠=∠∠+∠=︒′′′,在Rt ABC 中,BC ===1,30,602AC BC ABC ACB =∴∠=︒∠=︒ ,60ACP BCP ∴∠+∠=︒,又∵,60ACP A CP ACP ACP ∠=∠∠+∠=︒′′′,60ACP A CP ∴∠+∠=︒′′′,120BCP ACP ACP A CP ∴+∠+∠+∠=︒′′′,过A '作A D '⊥BC 交BC 的延长线于点D ,则18012060A CD BCD BCA ∠=∠-∠=︒-︒=︒′′,30CA D ∴∠=︒′,A C AC ==′CD ∴30°所对的直角边等于斜边的一半),3A D ∴=′,60,PCP PC CP ∠=︒= ′′,CPP ∴' 为等边三角形,当B 、P 、P '、A '四点共线时,PA PB PC ++和最小,在Rt BDA △′中,3BD BC CD DA =+===′,BA ∴==′,∴PA PB PC ++的最小值为【点睛】本题考查了旋转变换,全等三角形的判定和性质,解题的关键在于能够添加辅助线构造全等三角形解决问题.14.如图1,点M 为锐角三角形ABC 内任意一点,连接,,AM BM CM .以AB 为一边向外作等边三角形ABE △,将BM 绕点B 逆时针旋转60︒得到BN ,连接EN .(1)求证:AMB ENB △≌△;(2)若AM BM CM ++的值最小,则称点M 为ABC 的费马点.若点M 为ABC 的费马点,求此时,,AMB BMC CMA ∠∠∠的度数;(3)受以上启发,你能想出作锐角三角形的费马点的一个方法吗?请利用图2画出草图,并说明作法以及理由.【答案】(1)见解析;(2)120BMC ∠=︒:120AMB ∠=︒;120AMC ∠=︒;(3)见解析【分析】(1)结合等边三角形的性质,根据SAS 可证△AMB ≌△ENB(2)连接MN ,由(1)的结论证明ΔBMN 为等边三角形,所以BM =MN ,即AM+BM+CM =EN+MN+CM ,所以当E 、N 、M 、C 四点共线时,AM+BM+CM 的值最小,从而可求此时∠AMB 、∠BMC 、ΔCMA 的度数;(3)根据(2)中费马点的定义,又△ABC 的费马点在线段EC 上,同理也在线段BF 上,因此线段EC 和BF 的交点即为△ABC 的费马点.【详解】解:(1)证明:∵ABE △为等边三角形,∴,60AB BE ABE =∠=︒.而60M BN ∠=︒,∴ABM EBN ∠=∠.在AMB 与ENB △中,AB BE ABM EBN BM BN =⎧⎪∠=∠⎨⎪=⎩∴(SAS)AMB ENB ≌.(2)连接MN .由(1)知,AM EN =.∵60,MBN BM BN ∠=︒=,∴BMN 为等边三角形.∴BM MN =.∴AM BM CM EN MN CM ++=++.∴当E 、N 、M 、C 四点共线时,AM BM CM ++的值最小.此时,180120BMC NMB ∠=︒-∠=︒:180120AMB ENB BNM ∠=∠=︒-∠=︒;360120AMC BMC AMB ∠=-∠-∠=︒︒.(3)如图2,分别以ABC 的AB ,AC 为一边向外作等边ABE △和等边ACF △,连接,CE BF ,相交于M ,则点M 即为ABC 的费马点,由(2)知,ABC 的费马点在线段EC 上,同理也在线段BF 上.因此线段EC 与BF 的交点即为ABC 的费马点.(方法不唯一,正确即可)【点睛】本题考查了等边三角形的性质,三角形全等的判定与性质,掌握三角形全等的判定和性质是解题的关键.15.如图,在ABC 中,30,6,5ACB BC AC ∠=︒==,在ABC 内部有一点P ,连接PA 、PB 、PC .(加权费马点)求:(1)PA PB PC ++的最小值;(2)PA PB +的最小值(3)PA PB +的最小值;(4)2PA PB +的最小值(5)12PA PB +的最小值;(6)24PA PB ++的最小值(7)42PA PB ++的最小值;(8)345PA PB PC ++的最小值【答案】(1(2;(3;(4);(5)132;(6)26;(7);(8)214【分析】(1)将BPC △绕点B 顺时针旋转60 得到BP C ''△,则BP BP '=,P C PC '=,60PBP '∠= ,可以推出BPP ' 为等边三角形,得到BP PP '=,则PA PB PC PA PP PC ''++=++,即可得到A 、P 、P '、C '四点共线时,PA PB PC ++最小,最小值为AC ',然后证明==90ACC ACB BCC ''+o ∠∠∠,由此利用勾股定理求解即可;(2)将BPC △绕点C 逆时针旋转90 得到CP B ''△,则可证明PP '=,从而得到PA PB PA PP P B ''+=++,则当A 、P 、P '、B '四点共线时PA PB PC ++最小,最小值为AB ',过点A 再作B C '的垂线,垂足为E ,利用勾股定理求出532AE ==,172B E B C EC ''=+=,由此即可得到答案;(3)将BPC △绕点C 逆时针旋转120 得到B PC ''△,则可证明PP ',则PA PB PA PP P B '''+=++,故当A 、P 、P '、B '四点共线时PA PB +最小,最小值为AB ',过点A 再作B C '的垂线,垂足为E ,利用勾股定理求出532CE ==,12532B E CE CB +''=+=,由此即可得到答案;(4)将BPC △绕点C 顺时针旋转60 ,得到CP A ''V ,再将CP A ''V 以点C 为位似中心放大2倍,得到CP A ''''V ,连接PP ',先证明P P ''=,则可以得到2PA PB A P P P PB ''''''+=++,故当A '',P '',P ,B 共线时2PA PB +最小,最小为A B '',然后证明=90BCA ACB ACA ''''=+o ∠∠∠,即可利用勾股定理求解;(5)将BPC △绕点C 顺时针旋转60 ,得到CP A ''V ,再将CP A ''V 以点C 为位似中心缩小2倍,得到CP A ''''V ,同(4)原理可证得当A '',P '',P ,B 共线时12PA PB ++最小,最小为A B '',然后证明=90BCA ACB ACA ''''=+o ∠∠∠,由此求解即可;(6)由124422PA PB PA PB PC ⎛⎫++=++ ⎪ ⎪⎝⎭可由(5)得:24PA PB ++的最小值为26;(7)由422(2)PA PB PA PB ++=++可由(4)得42PA PB ++的最小值为;(8)将BPC △绕点C 顺时针旋转90 ,得到CP A ''V ,再将CP A ''V 以点C 为位似中心缩小34倍,得到CP A ''''V ,同理可以证得当A 、P 、P ''、A '',共线时345PA PB PC ++的值最小.在BCA '' 中,120BCA ACB ACA ''∠=+'='o ∠∠,31544A C CA =='',过点A ''作A E BC ''⊥交BC 延长线于E ,然后求出EA '',BE 的长,由此即可求解.【详解】解:(1)如图3-2,将BPC △绕点B 顺时针旋转60 得到BPC ''△,∴BP BP '=,P C PC '=,60PBP '∠= ,∴BPP ' 为等边三角形,∴BP PP '=,∴PA PB PC PA PP PC ''++=++,∴A 、P 、P '、C '四点共线时,PA PB PC ++最小,最小值为AC '同理可证BCC ' 为等边三角形,∴6CC BC '==,=60BCC 'o ∠,∴==90ACC ACB BCC ''+o ∠∠∠,∴AC '=∴PA PB PC ++;(2)如图3-4,将BPC △绕点C 逆时针旋转90 得到CP B ''△,∴B P BP ''=,P C PC '=,90PCP '=o ∠,=P CB PCB ''∠∠,6CB CB '==,∴PP '=,∴PA PB PA PP P B ''+=++,∴当A 、P 、P '、B '四点共线时,PA PB PC ++最小,最小值为AB '∵∠ACB =30°,∴=30ACP PCB ACP P CB ''∠+∠=∠+∠o ∴120ACB PCP ACP P CB ''''∠=∠+∠+∠=o ,过点A 再作B C '的垂线,垂足为E ,∴∠AEC =90°,∠ACE =60°,∴∠CAE =30°,∴1522CE AC ==∴532AE ==,172B E B C EC ''=+=,∴AB '=,∴PA PB +(3)如图3-6,将BPC △绕点C 逆时针旋转120 得到B PC ''△,∴B P BP ''=,P C PC '=,120PCP '=o ∠,=P CB PCB ''∠∠,6CB CB '==,∴30CPP CP P ''==o ∠∠,过点C 作CE PP '⊥于E ,∴12CE CP =,PE P E '=,∴PE ==,∴PP '=,∴当A 、P 、P '、B '四点共线时,PA PB +最小,最小值为AB '∵∠ACB =30°,∴=30ACP PCB ACP P CB ''∠+∠=∠+∠o ∴==150ACB PCP ACP P CB ''''++o ∠∠∠∠,过点A 再作B C '的垂线,垂足为E ,∴∠AEC =90°,∠ACE =3°,∴1522AE AC ==∴CE =∴12532B E CE CB +''=+=∴AB ='=,∴PA PB ++(4)如图3-8,将BPC △绕点C 顺时针旋转60 ,得到CP A ''V ,再将CP A ''V 以点C 为位似中心放大2倍,得到CP A ''''V ,连接PP '由旋转的性质得5CA CA '==,CP CP '=,PA P A ''=,==60PCP ACA ''o ∠∠,∴10CA ''=,2CP CP ''=,22P A A P AP '''==''',PCP '△是等边三角形,∴PP P C P P '''''==,=60PP C 'o ∠,∴==30PP P P PP '''''o ∠∠,∴=90P PC ''o ∠,∴P P ''=,∴当A '',P '',P ,B 共线时2PA PB +最小,最小为A B '',∵=90BCA ACB ACA ''''=+o ∠∠∠,∴A B ''=∴2PA PB +的最小值为;(5)如图3-10,将BPC △绕点C 顺时针旋转60 ,得到CP A ''V ,再将CP A ''V 以点C 为位似中心缩小2倍,得到CP A ''''V ,同(4)原理可证得当A '',P '',P ,B 共线时1322PA PB PC ++最小,最小为A B '',∵=90BCA ACB ACA ''''=+o ∠∠∠,在Rt BCA '' 中,6BC =,15=22CA CA '='132BA =='',1322PA PB PC ++最小为132;(6)∵124422PA PB PA PB PC ⎛⎫++=++ ⎪ ⎪⎝⎭∴由(5)得:24PA PB ++的最小值为26;(7)∵422(2)PA PB PA PB ++=++∴由(4)得42PA PB ++的最小值为;(8)如图3-12,将BPC △绕点C 顺时针旋转90 ,得到CP A ''V ,再将CP A ''V 以点C 为位似中心缩小34倍,得到CP A ''''V ,同理可以证得当A 、P 、P ''、A '',共线时345PA PB PC ++的值最小.在BCA '' 中,120BCA ACB ACA ''∠=+'='o ∠∠,31544A C CA =='',过点A ''作A E BC ''⊥交BC 延长线于E ,∴60A CE ∠=''o ,∴30CA E ∠=''o ,∴115=28CE CA ''=,∴EA =''1568BE BC CE =+=+,∴214BA =='',345PA PB PC ++的最小值为214.【点睛】本题主要考查了旋转的性质,勾股定理,位似,含30度角的直角三角形的性质,等边三角形的性质与判定,等腰三角形的性质与判定等等,解题的关键在于能够作出辅助线,找到P 点在什么位置时,线段的和最小.16.阅读材料:平面几何中的费马问题是十七世纪法国数学家、被誉为业余数学家之王的皮埃尔·德·费马提出的一个著名的几何问题.1643年,在一封写给意大利数学家和物理学家托里拆利的私人信件中,费马提出了下面这个极富挑战性和趣味性的几何难题,请求托里拆利帮忙解答:给定不在一条直线上的三个点A ,B ,C ,求平面上到这三个点的距离之和最短的点P 的位置.托里拆利成功地解决了费马的问题.后来人们就把平面上到一个三角形的三个顶点A,B,C距离之和最小的点称为 ABC的费马-托里拆利点,也简称为费马点或托里拆利点.问题解决:(1)费马问题有多种不同的解法,最简单快捷的还是几何解法.如图1,我们可以将 BPC绕点B顺时针旋转60°得到 BDE,连接PD,可得 BPD为等边三角形,故PD=PB,由旋转可得DE=PC,因PA+PB+PC=PA+PD+DE,由可知,PA+PB+PC的最小值与线段的长度相等;(2)如图2,在直角三角形ABC内部有一动点P,∠BAC=90°,∠ACB=30°,连接PA,PB,PC,若AB=2,求PA+PB+PC的最小值;(3)如图3,菱形ABCD的边长为4,∠ABC=60°,平面内有一动点E,在点E运动过程中,始终有∠BEC=90°,连接AE、DE,在 ADE内部是否存在一点P,使得PA+PD+PE最小,若存在,请直接写出PA+PD+PE的最小值;若不存在,请说明理由.【答案】(1)两点之间,线段最短;AE;(2);(3)存在,【分析】(1)连接AE,由两点之间线段最短即可求解;(2)在Rt△ABC中先求出AC,将△BPC绕点C顺时针旋转60°得到△CDE,连接PD、AE,由两点之间线段最短可知,PA+PB+PC的最小值与线段AE的长度相等,根据勾股定理即可求解;(3)在△ADE内部取一点P,连接PA、PD、PE,把△PAD饶点D顺时针旋转60°得到△FGD,根据旋转的性质和两点之间线段最短可知,PA+PD+PE的最小值与线段GE的长度相等,再根据圆的特点、菱形与勾股定理即可求出GE,故可求解.【详解】(1)连接AE,如图,由两点之间线段最短可知,PA+PB+PC的最小值为线段AE的长故答案为:两点之间线段最短;AE;(2)∵在Rt△ABC中,∠BAC=90°,∠ACB=30°,AB=2∴BC=2AB=4由勾股定理可得AC=如图2,将△BPC绕点C顺时针旋转60°得到△CDE,连接PD、AE,可得△CPD为等边三角形,∠BCE=60°∴PD=PC由旋转可得DE=PB,CE=BC=4∴PA+PB+PC=PA+DE+PD由两点之间线段最短可知,PA+PB+PC的最小值与线段AE的长度相等∵∠ACE=∠ACB+∠BCE=30°+60°=90°∴在Rt△ACE中,AE=即PA+PB+PC的最小值为;(3)存在在 ADE内部是否存在一点P,使得PA+PD+PE最小,如图3,在△ADE内部取一点P,连接PA、PD、PE,把△PAD饶点D顺时针旋转60°得到△FGD,连接PF、GE、AG,可得△PDF、△ADG均为等边三角形∴PD=PF由旋转可得PA=GF∴PA+PD+PE=GF+PF+PE,两点之间线段最短可知,PA+PD+PE的最小值与线段GE的长度相等∵∠BEC=90°∴点E在以BC为直径的 O上,如图3则OB=OC=12BC=2如图3,连接OG交 O于点H,连接CG交AD于点K,连接AC,则当点E与点H重合时,GE取最小值,即PA+PD+PE的最小值为线段GH的长∵菱形ABCD的边长为4,∠ABC=60°∴AB=BC=CD=AD=4∴△ABC、△ACD均为等边三角形∴AC=CD=AD=DG=AG=4,∠ACB=∠ACD=60°∴四边形ACDG是菱形,∠ACG=12∠ACD=30°∴CG、AD互相垂直平分∴DK=12AD=2∴根据勾股定理得CK =∴CG =2CK =∵∠OCG =∠ACB +∠ACG =60°+30°=90°∴在Rt △OCG 中,OG =∵OH =OC =2∴GH =OG -OH即PA +PD +PE 的最小值为.【点睛】此题主要考查四边形与圆综合的最短距离,解题的关键是熟知旋转的性质、圆周角定理及两点之间的距离特点.17.综合与实践材料一:“转化思想”是几何变换中常用的思想,例如将图形进行旋转变换,实现图形位置的“转化”,把一般情形转化为特殊情形,使问题化难为易.它是一种以变化的、运动的观点来处理孤立的、离散问题的思想.材料二:皮埃尔·德·费马(如图),17世纪法国律师和业余数学家,被誉为“业余数学家之王”.1638年勒·笛卡儿邀请费马思考关于三个顶点距离为定值的问题,费马经过思考并由此推出费马点的相关结论.定义:若一个三角形的最大内角小于120,︒则在其内部有一点所对三角形三边的张角均为120, 此时该点叫做这个三角形的费马点.如图1,当ABC 三个内角均小于120︒时,费马点Р在ABC 内部,此时APB ∠=120,BPC CPA PA PB PC ∠=∠=︒++的值最小.(1)如图2,等边三角形ABC 内有一点,P 若点P 到顶点,,A B C 的距离分别为3,4,5,求APB ∠的度数.为了解决本题,小林利用“转化”思想,将ABP 绕顶点A 旋转到'ACP 处,连接',PP 此时'ACP ≅ ,ABP 这样就可以通过旋转变换,将三条线段,PA PB ,PC 转化到一个三角形中,从而求出APB ∠=o ;(2)如图3,在图1的基础上延长BP ,在射线BP 上取点,D E ,连接,AE AD .使,AD AP =DAE ∠=,PAC ∠求证:BE PA PB PC =++;(3)如图4,在Rt ABC 中,90,30,1,ABC ACB AB ∠=∠=︒= 点P 为Rt ABC 的费马点,连接,,AP BP CP ,请直接写出PA PB PC ++的值.【答案】(1)150;(2)见解析;(3【分析】(1)根据旋转变换前后的两个三角形全等,全等三角形对应边相等,全等三角形对应角相等以及等边三角形的判定和勾股定理逆定理解答;(2)根据题意,先证明△APD 是等边三角形,再证明APC ADE ∆≅∆,得到PC DE =,然后即可得到结论成立.(3)将△APB 绕点B 顺时针旋转60°至△A′P′B 处,连接PP′,根据直角三角形30°角所对的直角边等于斜边的一半求出AB=2AC ,即A′B 的长,再根据旋转的性质求出△BPP′是等边三角形,根据等边三角形的三条边都相等可得BP=PP′,等边三角形三个角都是60°求出∠BPP′=∠BP′P=60°,然后求出C 、P 、A′、P′四点共线,再利用勾股定理列式求出A′C ,从而得到PA+PB+PC=A′C .【详解】()1解:∵△ACP′≌△ABP ,∴AP′=AP=3、CP′=BP=4、∠AP′C=∠APB ,由题意知旋转角∠PAP′=60°,∴△APP′为等边三角形,PP′=AP=3,∠AP′P=60°,易证△PP′C 为直角三角形,且∠PP′C=90°,∴∠APB=∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故答案为:150︒;()2证明: 点P 为ABC 的费马点,120,APB ∴∠=︒60,APD ∴∠=︒又,AD AP = APD ∴ 为等边三角形。
最值问题2(费马点)
1、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.
2、已知:P是边长为1的等边三角形ABC内的一点,求PA+PB+PC的最小值.
图2
图1
A'
P
P
A A
B
C
B
C
3、(延庆)(本题满分4分)阅读下面材料:
阅读下面材料:
小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值。
小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP 逆时针旋转60°得到△A ’BC,连接A A '
,当点A 落在C A '
上时,此题可解(如图2).
请你回答:AP 的最大值是 . 参考小伟同学思考问题的方法,解决下列问题:
如图3,等腰Rt △ABC .边AB=4,P 为△ABC 内部一点, 则AP+BP+CP 的最小值是 .(结果可以不化简)
图3
C
A
B
P
4、(朝阳二模)阅读下列材料:
小华遇到这样一个问题,如图1, △ABC 中,∠ACB =30º,BC =6,AC =5,在△ABC 内部有一点P ,连接P A 、PB 、PC ,求P A +PB +PC 的最小值.
小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC 绕点C 顺时针旋转60º,得到△EDC ,连接PD 、BE ,则BE 的长即为所求.
(1)请你写出图2中,P A +PB +PC 的最小值为 ; (2)参考小华的思考问题的方法,解决下列问题:
①如图3,菱形ABCD 中,∠ABC =60º,在菱形ABCD 内部有一点P ,请在图3
中画出并指明长度等于P A +PB +PC 最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD 的边长为4,请直接写出当P A +PB +PC 值最小时PB 的长.
D
E
A
C B
P
图 2
D
A
C
B
图 3
A C
B P
图1
5、(海淀二模)如图. 在平面直角坐标系xOy 中. 点B 的坐标为(0,2). 点D 在x 轴的正半
轴上. 30ODB ∠=︒. OE 为△BOD 的中线. 过B 、E 两点的抛物线2
3
6
y ax x c =+
+与x 轴相交于A 、F 两点(A 在F 的左侧).
(1) 求抛物线的解析式;
(2) 等边△OMN 的顶点M 、N 在线段AE 上. 求AE 及AM 的长; (3) 点P 为△ABO 内的一个动点. 设m PA PB PO =++.
请直接写出m 的最小值, 以及m 取得最小值时, 线段AP 的长. (备用图)。