高中物理二级结论
- 格式:doc
- 大小:125.23 KB
- 文档页数:5
[全]高中高考物理必考“二级结论”总结
一、力学
1. 平衡定律:物体在平面上平衡,则由一组互斥且合力为零的作用在物体身上。
2. 动量守恒定律:物体在受力过程中,它的动量总和保持不变(动量守恒定律)。
3. 能量守恒定律:物体在受力过程中,它的总能量总和保持不变(能量守恒定律)。
4. 运动定律:牛顿定律,重力作用时,物体受到的力与它的质量成正比,而且方向
和物体运动方向相反。
阻力守恒定律,只要恒定速度直线运动,则运动阻力与小量球的
质量} 运动量成正比,而且方向与小量球运动方向相同。
二、电学
1. 电荷守恒定律:任何系统中的电荷总和不变。
2. 欧拉定律:任何电路中,电位差的积分是电功的积分,而且绕线把开关改变电势
的变化,则欧拉定律的等号成立。
3. 高斯定律:当物体由完全不导体到完全导体时,电场强度在分隔处有跳变;当电
荷分布较为集中时,电场强度满足高斯定律。
三、热学
1. 热力学定律:能量守恒(热力学定律),任何物理系统的总的能量只是发生转换
不可消失。
2. 热放大定律:正温差扩大效应(热放大效应),表明热物质力学运动的正温差它
在高温处存在更强的力学运动速度。
3. 定压定容放热定律:恒定容狭放出的热量与容积有关,与压强无关。
4. 根-思定律:恒定压强放出的热量与压强有关,与容积无关。
高中物理的二级结论及重要知识点一.力 物体的平衡:1.几个力平衡,则一个力是与其它力合力平衡的力.2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小.三个大小相等的力平衡,力之间的夹角为1200.3.物体沿斜面匀速下滑,则μα=tg .4.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度、加速度相等,此后不等.5.同一根绳上的张力处处相等,大小相等的两个力其合力在其角平分线上.6.物体受三个力而处于平衡状态,则这三个力必交于一点(三力汇交原理).7.动态平衡中,如果一个力大小方向都不变,另一个力方向不变,判断第三个力的变化,要用矢量三角形来判断,求最小力时也用此法. 二.直线运动:1.匀变速直线运动:平均速度: T S S V V V V t 2221212+=+==时间等分时: S S aT n n -=-12 ,中间位置的速度:V V V S212222=+,纸带处理求速度、加速度: T S S V t2212+= ,212T S S a -=,()a S S n T n =--121 2.初速度为零的匀变速直线运动的比例关系:等分时间:相等时间内的位移之比 1:3:5:……等分位移:相等位移所用的时间之比3.竖直上抛运动的对称性:t 上= t 下,V 上= -V下4.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。
先求滑行时间,确定了滑行时间小于给出的时间时,用V 2=2aS 求滑行距离.5.“S=3t+2t 2”:a=4m/s2 ,V0=3m/s.6.在追击中的最小距离、最大距离、恰好追上、恰好追不上、避碰等中的临界条件都为速度相等.7.运动的合成与分解中:船头垂直河岸过河时,过河时间最短.船的合运动方向垂直河岸时,过河的位移最短.8.绳端物体速度分解:对地速度是合速度,分解时沿绳子的方向分解和垂直绳子的方向分解. 三.牛顿运动定律:1.超重、失重(选择题可直接应用,不是重力发生变化)超重:物体向上的加速度时,处于超重状态,此时物体对支持物(或悬挂物)的压力(或拉力)大于它的重力.失重:物体有向下的加速度时,处于失重状态,此时物体对支持物(或悬挂物)的压力(或拉力)小于它的重力。
高中物理常用二级结论
1.牛顿第二定律:物体的加速度与作用力成正比,与物体质量成反比。
其中,F=ma,F为作用力,m为物体质量,a为加速度。
2.功与能:物体的功等于物体受到的力与位移的乘积。
能量可以转化,但总能量守恒。
3.万有引力定律:任何两个物体之间都存在引力,大小与物体质量成正比,与物体之间距离的平方成反比。
4.热力学第一定律:能量守恒,能量不能被创造或者消灭,只能从一种形式转化为另一种形式。
5.电流和电势差:电流是电荷在导体中的流动,电势差是电荷在电场中移动的能量变化。
6.磁感应强度和磁通量:磁感应强度是单位面积垂直于磁场方向的磁通量,磁通量是磁场穿过一个平面的总磁通量。
7.光的折射和反射:光线在光学介质之间传播时会发生折射,反射则是光线遇到光滑表面时的反弹现象。
8.波动理论:波是一种能量传递的形式,具有波长和频率的特性,可以是机械波或者电磁波。
- 1 -。
物理重要二级结论一、运动学:1.匀变速直线运动:ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2逐差法:2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.绳端物体速度分解5.小船过河:⑴ 当船速大于水速时 ①船头的方向垂直于水流的方向时,所用时间最短,船v d t /= ②合速度垂直于河岸时,航程s 最短 s=d d 为河宽 ⑵当船速小于水速时 ①船头的方向垂直于水流的方向时,所用时间最短,船v d t /= ②合速度不可能垂直于河岸,最短航程船水v v d s ⨯=二、运动和力1.沿粗糙水平面滑行的物体: a=μg 2.沿光滑斜面下滑的物体: a=gsinα3.沿粗糙斜面下滑的物体 a =g(sinα-μcosα)TS S v v v v t t 222102/+=+==-202/tt v v v v +==-22202/t t v v v +=4.沿如图光滑斜面下滑的物体:5. 一起加速运动的物体系,若力是作用于1m 上,则1m 和2m 的相互作用力为212m m Fm N +⋅=与有无摩擦无关,平面,斜面,竖直方向都一样三、圆周运动,万有引力: 1. 绳模型最高点最小速度gR,最低点最小速度gR 5,上下两点拉压力之差6mg 2.竖直轨道圆运动的两种基本模型绳端系小球,从水平位置无初速度释放下摆到最低点:T=3mg ,a =2g,与绳长无关。
“杆”最高点v min =0,v 临 ,v > v 临,杆对小球为拉力 v = v 临,杆对小球的作用力为零 v < v 临,杆对小球为支持力3.人造卫星:'422222mg ma r Tm r m r v m r Mm G =====πω 推导卫星的线速度 ;卫星的运行周期 。
gRα增大, 时间变短当α=45°时所用时间最短 沿角平分线滑下最快小球下落时间相等小球下落时间相等αrGMv =GM r T 324π=卫星由近地点到远地点,万有引力做负功。
物理高中二级结论1. 嘿,你知道吗,在匀变速直线运动里,中间时刻的速度等于这段时间的平均速度呢!就好比跑步比赛,你在中间时刻的速度差不多就是你整个过程的平均速度啦!比如你跑 100 米,中间时刻的那个速度就很关键呀!2. 哇塞,在平抛运动中,速度偏转角的正切值是位移偏转角正切值的两倍!这就好像投篮,球的速度方向和它最终落地的位置角度之间有这样神奇的关系呢!你想想,是不是很有意思?3. 嘿呀,连接三角形两边中点的线段平行于第三边且等于第三边的一半,这在物理中也超有用的呀!就好像搭积木,中间那根连接的小木条就起着很重要的作用呢!比如在研究电路的时候就可以用到哦!4. 哎呀,在共点力平衡时,几个力首尾相接能构成封闭多边形呢!这就跟几个人手牵手围成一个圈一样,相互之间的力达到了一种平衡状态,很神奇吧!像拔河比赛中,两边的力就有这种感觉呀!5. 哇哦,静摩擦力的大小会随着外力的变化而变化,但有个最大值呢!这就好像拉一个很重的箱子,你开始拉不动,慢慢加力,摩擦力也在变化呀!比如在推桌子的时候就能体会到啦!6. 嘿,两物体发生相对滑动的临界条件是摩擦力达到最大静摩擦力!就好比两个人在冰面上,快要滑倒的那个瞬间,就是摩擦力到了极限呀!想想那种滑冰的场景就懂啦!7. 哇,斜面上的物体下滑力等于重力沿斜面向下的分力!这就像一个球在斜面上滚,那个让它往下滚的力就是重力分出来的呢!比如滑雪的时候就会有这种感觉哦!8. 呀,在光的折射中,入射角的正弦值与折射角的正弦值之比是常数!这就好像光线在不同介质中穿梭,有着特别的规律呢!就像你透过水面看东西,是不是感觉很奇妙呀!9. 嘿哟,在弹性碰撞中,碰撞前后系统的动能守恒哦!这就如同两个小球撞来撞去,能量在它们之间奇妙地转换呢!比如打台球的时候就能看到这种情况啦!10. 哇啦,楞次定律说感应电流的效果总是反抗引起感应电流的原因!这就像一个倔强的小孩,总是跟引起变化的因素对着干呢!像电磁感应实验中就能明显感受到呀!我觉得这些物理高中二级结论真的很神奇很有趣呀,能帮助我们更好地理解物理现象和解决问题呢!。
先想前提,后记结论力学 一.静力学:1.几个力平衡,则一个力是与其它力合力 平衡的力。
2.两个力的合力:F +F ≥F ≥F -F 。
三个大小相等的力平衡,力之间的夹大小合大小角为120度。
3.物体沿斜面匀速下滑,则μ=tanα。
4.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度 加速度相等,此后不等。
二.运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以地为参照物。
2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便:=V ==-V 2/t 221V V +TS S 221+3.匀变速直线运动:当时间等分时:S n -Sn-1=aT .2位移中点的即时速度:V s/2= ,V s/2>V t/222221V V +纸带点迹求速度加速度:V t/2=, a=, a=T S S 212+212TSS -21)1(T n S S n--4.自由落体:V t (m/s): 10 20 30 40 50 = gtH 总(m ):5 20 45 80 125 = gt 2/2H 分(m):5 15 25 35 45 = gt 22/2 – gt 12 /2g=10m/s 25.上抛运动:对称性:t 上= t 下 V 上= -V下6.相对运动:相同的分速度不产生相对位移。
7.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。
先求滑行时间,确定了滑行时间小于给出的时间时,用V 2=2aS 求滑行距离。
8."S=3t+2t 2”:a=4m/s 2,V 0=3m/s 。
(s = v 0t+ at 2/2)9.绳端物体速度分解:对地速度是合速度,分解为沿绳的分速度合垂直绳的分速度。
三.运动定律:1.水平面上滑行:a=-µg2.系统法:动力-阻力=m总g绳牵连系统3.沿光滑斜面下滑:a=gSinα时间相等: 450时时间最短: 无极值:4.一起加速运动的物体:N=F,(N为物体间相互作用力),与有无摩212mmm+擦(μ相同)无关,平面斜面竖直都一样。
物理重要二级结论一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。
三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。
2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。
5.物体沿倾角为α的斜面匀速下滑时, μ= tan α 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。
7.绳上的张力一定沿着绳子指向绳子收缩的方向。
8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。
9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。
用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )2 位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···② 经过1S 0时、2 S 0时、3 S 0时···时间比: :3:2:1:3:2:1ΛF已知方向F 2的最小值F 2的最小值F 2的最小值F 2③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。
高中物理二级结论汇总
高中物理二级结论汇总如下:
1. 竖直上抛运动:
1. 上升阶段:只受重力,加速度为g,做匀减速运动。
2. 下降阶段:只受重力,做加速运动,加速度仍为g。
3. 整个过程(往返运动):先减速后加速,整个过程时间比为1:1,
位移大小比为1:3。
2. 平抛运动:
1. 水平方向:匀速直线运动。
2. 竖直方向:自由落体运动,或初速度为零的匀加速直线运动(只考
虑重力的话)。
3. 合速度方向:抛出点正上方时,与水平方向成45度角;不断下落,角度越来越小,速度分解后,平行水平分量不变。
3. 万有引力:
1. 所有物体间引力大小与它们质量的乘积成正比,与它们距离的平方
成反比。
2. 在同一星球上不同高度(或不同纬度)的地方重力加速度不同(向
心加速度与半径成反比)。
3. 物体随倾斜轨道做匀速圆周运动时,受到的万有引力可以分为沿轨
道切线方向的分量和径向分量的力(也叫向心力)。
只有径向的力才
能使物体做匀速圆周运动。
这些只是一部分二级结论,详细的物理二级结论建议您查阅物理教辅
资料或咨询物理老师。
高考物理 “二级结论”集一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。
2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。
三个大小相等的共点力平衡,力之间的夹角为1200。
3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。
4.三力共点且平衡,则312123sin sin sin F F F ααα==(拉密定理)。
5.物体沿斜面匀速下滑,则tan μα=。
6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度、加速度相等,此后不等。
7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。
因其形变被忽略,其拉力可以发生突变,“没有记忆力”。
8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。
9.轻杆能承受纵向拉力、压力,还能承受横向力。
力可以发生突变,“没有记忆力”。
二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物; 在处理动力学问题时,只能以地为参照物。
2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便:T S S V V V V t 2221212+=+==3.匀变速直线运动:时间等分时, S S aT n n -=-12,位移中点的即时速度V V V S 212222=+,V V S t22>纸带点痕求速度、加速度:TS S V t 2212+=,212T S S a -=,()a S S n T n =--121 4.匀变速直线运动,v0 = 0时:时间等分点:各时刻速度比:1:2:3:4:5 各时刻总位移比:1:4:9:16:25 各段时间内位移比:1:3:5:7:9 位移等分点:各时刻速度比:1∶2∶3∶…… 到达各分点时间比1∶2∶3∶…… 通过各段时间比1∶()12-∶(23-)∶……5.自由落体:n秒末速度(m/s):10,20,30,40,50n秒末下落高度(m):5、20、45、80、125第n秒内下落高度(m):5、15、25、35、456.上抛运动:对称性:t t下上=,v v=下上,22mvhg=7.相对运动:共同的分运动不产生相对位移。
2020新课程高中物理复习 “二级结论”集一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。
2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。
三个大小相等的共点力平衡,力之间的夹角为1200。
3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。
4.三力共点且平衡,则312123sin sin sin F F F ααα==(拉密定理)。
5.物体沿斜面匀速下滑,则tan μα=。
6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度、加速度相等,此后不等。
7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。
因其形变被忽略,其拉力可以发生突变,“没有记忆力”。
8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。
9.轻杆能承受纵向拉力、压力,还能承受横向力。
力可以发生突变,“没有记忆力”。
二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物; 在处理动力学问题时,只能以地为参照物。
2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便: T S S V V V V t 2221212+=+==3.匀变速直线运动:时间等分时, S S aT n n -=-12,位移中点的即时速度V V V S212222=+, V V S t 22>纸带点痕求速度、加速度: TS S V t2212+= ,212T S S a -=,()a S S n T n =--121 4.匀变速直线运动,v 0 = 0时:时间等分点:各时刻速度比:1:2:3:4:5 各时刻总位移比:1:4:9:16:25 各段时间内位移比:1:3:5:7:9位移等分点:各时刻速度比:1∶2∶3∶…… 到达各分点时间比1∶2∶3∶…… 通过各段时间比1∶()12-∶(23-)∶……5.自由落体:n 秒末速度(m/s ): 10,20,30,40,50 n 秒末下落高度(m):5、20、45、80、125 第n 秒内下落高度(m):5、15、25、35、456.上抛运动:对称性:t t 下上=,v v =下上, 202m v h g=7.相对运动:共同的分运动不产生相对位移。
8.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。
先求滑行时间,确定了滑行时间小于给出的时间时,用22v as =求滑行距离。
9.绳端物体速度分解:对地速度是合速度,分解为沿绳的分速度和垂直绳的分速度。
10.两个物体刚好不相撞的临界条件是:接触时速度相等或者匀速运动的速度相等。
11.物体滑到小车(木板)一端的临界条件是:物体滑到小车(木板)一端时与小车速度相等。
12.在同一直线上运动的两个物体距离最大(小)的临界条件是:速度相等。
三、运动定律:1.水平面上滑行:a=μg 2.系统法:动力-阻力=m总a 3.沿光滑斜面下滑:a=gSin α时间相等: 450时时间最短: 无极值:4.一起加速运动的物体,合力按质量正比例分配:F m m m N 212+=,与有无摩擦(μ相同)无关,平面、斜面、竖直都一样。
5.几个临界问题: αgtg a = 注意α角的位置!光滑,相对静止 弹力为零 弹力为零 6.速度最大时合力为零:汽车以额定功率行驶四、圆周运动 万有引力:1.向心力公式:v m R f m R Tm R m R mv F ωππω=====222222442.在非匀速圆周运动中使用向心力公式的办法:沿半径方向的合力是向心力。
3.竖直平面内的圆运动(1)“绳”类:最高点最小速度gR ,最低点最小速度5gR ,上、下两点拉力差6mg 要通过顶点,最小下滑高度2.5R 。
(2)绳端系小球,从水平位置无初速下摆到最低点:弹力3mg ,向心加速度2g (3)“杆”:最高点最小速度0,最低点最小速度gR 4。
4.重力加速2r GMg =,g 与高度的关系:()g h R R g ⋅+=22 5.解决万有引力问题的基本模式:“引力=向心力”6.人造卫星: V =r GM ω=3r GM T =2πGMr 3a =2rGM以上各式只能对围绕中心天体做匀速圆周运动的卫星来讨论它们的各参量的大小关系,不适于对卫星的变轨过程进行讨论。
高度大则速度小、周期大、加速度小、动能小、重力势能大、机械能大。
速率与半径的平方根成反比,周期与半径的平方根的三次方成正比。
同步卫星轨道在赤道上空,h=5.6R,v = 3.1 km/s对地球卫星来说,最小周期约为84分钟。
最大加速度为g ,最大速度为7.9km/s 7.卫星因受阻力损失机械能:高度下降、速度增加、周期减小。
8.“黄金代换”:由重力等于引力导出:GM=gR29.在卫星里与重力有关的实验不能做――完全失重10.双星:引力是双方的向心力,两星角速度相同,星与旋转中心的距离跟星的质量成反比。
11.第一宇宙速度:Rg V =1,RGM V =1,V 1=7.9km/s五、机械能:1.求机械功的途径:(1)用定义求恒力功。
(2)用做功和效果(用动能定理或能量守恒)求功。
(3)由图象求功。
(4)用平均力求功(力与位移成线性关系时) (5)由功率求功。
2.保守力(类似重力,电场力。
分子力等)做功只与初末位置有关。
与路径无关。
3.功能关系: Q =f ·S 相对=系统失去的动能,Q 等于摩擦力对两物体所做总功的大小。
4.保守力的功等于对应势能增量的负值:p E W ∆-=保。
(重力,电场力。
分子力,弹簧弹力) 5.作用力的功与反作用力的功不一定符号相反,其总功也不一定为零。
6.传送带以恒定速度运行,小物体无初速放上,达到共同速度过程中,相对滑动距离等于小物体对地位移,摩擦生热等于小物体获得的机械能。
六、动量:1.反弹:动量变化量大小()∆p m v v =+122.“弹开”(初动量为零,分成两部分):速度和动能都与质量成反比。
3.一维弹性碰撞(两个运动物体相互碰撞):()'=-++V m m V m V m m 112122122,()V m m V m V m m 221211122'=-++ 式中的速度均为矢量,使用前应先规定正方向。
动物碰静物:V 2=0, ()'=-+'=+V m m V m m V m V m m 112112211122,质量大碰小,一起向前;小碰大,向后转;质量相等,速度交换。
碰撞中动能不会增大,反弹时被碰物体动量大小可能超过原物体的动量大小。
4.A追上B发生碰撞,则(1)V A >V B (2)A 的动量和速度减小,B 的动量和速度增大 (3)动量守恒 (4)动能不增加 (5)A 不穿过B ('<'V V A B )。
.一般碰撞的结果总是介于完全弹性与完全非弹性之间。
5 物体由静止放置在匀速运动的传送带上,在物体加速过程中,物体获得的机械能与在该过程中产生的热量相等,均等于电动机消耗的能量的一半。
6.双弹簧振子在光滑直轨道上运动,弹簧为原长时一个振子速度最大,另一个振子速度最小;弹簧最长和最短时(弹性势能最大)两振子速度一定相等。
7.解决动力学问题的思路:(1)如果是瞬时问题只能用牛顿第二定律去解决。
如果是讨论一个过程,则可能存在三条解决问题的路径。
(2)如果作用力是恒力,三条路都可以,首选功能或动量。
如果作用力是变力,只能从功能和动量去求解。
(3)已知距离或者求距离时,首选功能。
已知时间或者求时间时,首选动量。
(4)运动的传递过程找动量关系。
能量转化和转移过程找功能关系。
(5)在复杂情况下,同时动用多种关系。
8.子弹击木块类习题:在地面光滑、没有拉力情况下,每一个子过程有两个方程: (1)动量守恒(2)能量关系。
从最初到相对静止的过程中 S m /d/S M =(M+2m)/(M+m)/m9 总动量为零的平均动量守恒中的位移关系为 10常用到功能关系:摩擦力乘以相对滑动的距离等于摩擦产生的热,等于系统失去的动能。
七、振动和波:1.物体做简谐振动,在平衡位置达到最大值的量有速度、动量、动能在最大位移处达到最大值的量有回复力、加速度、势能通过同一点有相同的位移、速率、回复力、加速度、动能、势能,只可能有不同的运动方向经过半个周期,物体运动到对称点,速度大小相等、方向相反。
半个周期内回复力的总功为零,总冲量为2t mv经过一个周期,物体运动到原来位置,一切参量恢复。
一个周期内回复力的总功为零,总冲量为零。
2.波传播过程中介质质点都作受迫振动,都重复振源的振动,只是开始时刻不同。
波源先向上运动,产生的横波波峰在前;波源先向下运动,产生的横波波谷在前。
波的传播方式:前端波形不变,向前平移并延伸。
3.由波的图象讨论波的传播距离、时间、周期和波速等时:注意“双向”和“多解”。
4.波形图上,介质质点的运动方向:“上坡向下,下坡向上”5.波进入另一介质时,频率不变、波长和波速改变,波长与波速成正比。
6.波发生干涉时,看不到波的移动。
振动加强点和振动减弱点位置不变,互相间隔。
八、热学1.阿伏加德罗常数把宏观量和微观量联系在一起。
宏观量和微观量间计算的过渡量:物质的量(摩尔数)。
2.分析气体过程有两条路:一是用参量分析(PV/T=C )、二是用能量分析(ΔE=W+Q )。
3.一定质量的理想气体,内能看温度,做功看体积,吸放热综合以上两项用能量守恒分析。
九、静电学:1.电势能的变化与电场力的功对应,电场力的功等于电势能增量的负值:电电E W ∆-=。
2.电现象中移动的是电子(负电荷),不是正电荷。
3.粒子飞出偏转电场时“速度的反向延长线,通过电场中心”。
偏距S y =222mdv qul 偏角正切tg θ=2mdv qul先经过加加速电场U1,再经过偏转电场U2,偏距S y =1224dU L U 偏角正切tg θ= 122dU LU4.讨论电荷在电场里移动过程中电场力的功、电势能变化相关问题的基本方法:定性用电场线(把电荷放在起点处,分析功的正负,标出位移方向和电场力的方向,判断电场方向、电势高低等);5.只有电场力对质点做功时,其动能与电势能之和不变。
只有重力和电场力对质点做功时,其机械能与电势能之和不变。
6.电容器接在电源上,电压不变;断开电源时,电容器电量不变;改变两板距离,场强不变。
7.电容器充电电流,流入正极、流出负极; 电容器放电电流,流出正极,流入负极。
十、恒定电流:1.串联电路:U 与R 成正比,U R R R U 2111+=。
P 与R 成正比,P R R R P 2111+=。
2.并联电路:I 与R 成反比, I R R R I 2121+=。