2 概率基本知识、正态分布 33
- 格式:ppt
- 大小:9.34 MB
- 文档页数:54
正态分布概率正态分布是统计学中最为常见的连续概率分布之一,也被称为高斯分布。
它在自然界、社会科学和工程领域中具有广泛的应用。
正态分布的最重要特征是其对称性和集中性,因此它经常被用来对观测数据的分布进行建模和分析。
正态分布的概率密度函数由以下公式给出:f(x) = (1 / (σ * √(2π))) * e^(-(x-μ)² / (2σ²))其中,f(x) 表示随机变量 X 的概率密度函数值,e 是自然对数的底数,μ 是分布的均值,σ² 是分布的方差。
概率密度函数描述了在给定均值和方差的情况下,随机变量 X 取某一特定值的概率。
正态分布具有一些重要的特性,其中最重要的是:1. 对称性:正态分布是对称的,也就是说,它的概率密度函数在均值处达到最大值,并且两侧的概率密度相等。
2. 峰度:正态分布具有尖峰且平滑的形状。
如果一个分布的峰度是零,则称该分布为正态分布。
峰度的绝对值越大,分布的形状就越陡峭或扁平。
3. 标准化:正态分布可以通过减去均值并除以标准差来进行标准化,从而得到标准正态分布。
标准正态分布的均值为0,方差为1。
4. 中心极限定理:中心极限定理是正态分布的一个重要特性,它指出如果随机变量是由大量独立同分布的随机变量之和形成的,那么这个随机变量的分布将趋近于正态分布。
正态分布的概率计算是统计学中重要的任务之一。
我们可以使用正态分布表或计算机软件来计算特定区域的概率。
下面将介绍一些常用的概率计算方法。
1. 区间概率:给定一个间隔 [a, b],我们可以计算在该区间内随机变量 X 取值的概率。
这可以通过计算概率密度函数在该区间上的积分来实现。
2. 尾概率:尾概率是指随机变量 X 取值超过给定阈值的概率。
对于正态分布,我们可以使用标准正态分布表或计算机软件来计算尾概率。
3. 百分位数:百分位数是指给定概率下的随机变量取值。
对于正态分布,我们可以使用标准正态分布表或计算机软件来计算百分位数。
正态分布知识点高考正态分布,又称为高斯分布,是一种常见的连续型概率分布。
它在高考中占据重要地位,因此我们有必要了解并掌握相关的知识点。
本文将从基本概念、特点、参数、性质和应用等方面,介绍正态分布相关知识。
一、基本概念正态分布是一种理想的连续型概率分布,其概率密度函数呈钟形曲线,两头低,中间高,左右对称。
它由两个参数完全确定,即均值μ和标准差σ,分别决定了曲线的位置和形态。
二、特点1. 对称性:正态分布曲线是关于均值μ对称的,即在μ左右等距离的两个点处曲线的取值相等。
2. 唯一性:给定均值μ和标准差σ,正态分布曲线是唯一确定的,即每个参数对应一个特定的曲线。
3. 演趋性:正态分布曲线随着距离均值的增加或减少而变得越来越平缓,曲线两端向横轴无限延伸但不与其相交。
三、参数1. 均值μ:正态分布曲线的对称轴,决定了曲线的位置。
2. 标准差σ:正态分布曲线的形状参数,决定了曲线的宽度。
标准差越大,曲线越宽。
四、性质1. 正态分布曲线下的面积总和为1,即概率密度函数的积分等于1。
2. 68-95-99.7法则:在正态分布曲线上,约68%的数据位于均值的一个标准差范围内,约95%的数据位于均值的两个标准差范围内,约99.7%的数据位于均值的三个标准差范围内。
3. 随机变量的线性组合仍然服从正态分布。
4. 标准正态分布是均值为0,标准差为1的正态分布。
五、应用正态分布广泛应用于各个领域,包括自然科学、社会科学和工程等。
在高考中,正态分布常被用来描述和分析一些量化问题,如考试成绩、身高体重等。
利用正态分布的特性,可以进行相关问题的计算和预测。
总结:正态分布是一种重要的概率分布,具有对称性、唯一性和演趋性等特点。
它由均值和标准差两个参数完全确定,广泛应用于各个领域。
在高考中,掌握正态分布的基本概念、特点、参数、性质和应用非常重要,能够帮助学生更好地理解和解答相关问题。
4.正态分布 (1)正态分布的定义态变量概率密度曲线的函数表达式为22()2()x f x μσ--=,x ∈R ,其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ.(2)正态曲线的性质①曲线位于x 轴上方,与x 轴不相交,与x 轴之间的面积为1; ②曲线是单峰的,它关于直线x =μ对称; ③曲线在x =μ处达到峰值1σ2π;④当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散. (3)正态总体在三个特殊区间内取值的概率值①P (μ-σ<X ≤μ+σ)=0.682__6;②P (μ-2σ<X ≤μ+2σ)=0.954__4;③P (μ-3σ<X ≤μ+3σ)=0.997__4.④正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.5.(2017·西安调研)已知随机变量X 服从正态分布N (3,1),且P (X >2c -1)=P (X <c +3),则c =________.①P (X <a )=1-P (X ≥a );②P (X <μ-σ)=P (X ≥μ+σ).【训练4】 (2017·常德一模)已知随机变量X ~N (1,σ2),若P (0<X <2)=0.4,则P (X ≤0)=( ) A.0.6B.0.4C.0.3D.0.28.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.7.假设每天从甲地去乙地的旅客人数X 是服从正态分布N (800,502)的随机变量,记一天中从甲地去乙地的旅客人数800<X ≤900的概率为p 0,则p 0=________.【例1】 某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为56和45,且各株大树是否成活互不影响.求移栽的4株大树中: ⑴至少有1株成活的概率;⑴两种大树各成活1株的概率1.(2019·广东省汕头市联考)在某市高中某学科竞赛中,某一个区4 000名考生的参赛成绩统计如图所示.(1)求这4 000名考生的竞赛平均成绩x -(同一组中的数据用该组区间的中点值作代表);(2)由直方图可认为考生竞赛成绩Z 服从正态分布N (μ,σ2),其中μ,σ2分别取考生的平均成绩x -和考生成绩的方差s 2,那么该区4 000名考生成绩超过84.81分(含84.81分)的人数估计有多少?(3)如果用该区参赛考生成绩的情况来估计全市参赛考生的成绩情况,现从全市参赛考生中随机抽取4名考生,记成绩低于84.81分的考生人数为ξ,求P (ξ≤3)(精确到0.001).附:①s 2=204.75,204.75=14.31;②Z ~N (μ,σ2),则P (μ-σ<Z ≤μ+σ)=0.682 7,P (μ-2σ<Z ≤μ+2σ)=0.954 5; ③0.841 354=0.501.3.(2019·合肥一模)已知某公司生产的一种产品的质量X (单位:克)服从正态分布N (100,4),现从该产品的生产线上随机抽取10 000件产品,其中质量在[98,104]内的产品估计有( )(附:若X 服从N (μ,σ2),则P (μ-σ<X <μ+σ)=0.682 7,P (μ-2σ<X <μ+2σ)=0.954 5) A.4 093件 B.4 772件 C.6 827件D.8 186件(2017·常德一模)已知随机变量X ~N (1,σ2),若P (0<X <2)=0.4,则P (X ≤0)=( ) A.0.6B.0.4C.0.3D.0.24.设每天从甲地去乙地的旅客人数为随机变量X ,且X ~N (800,502),则一天中从甲地去乙地的旅客人数少于900的概率为( )(参考数据:若X ~N (μ,σ2),有P (μ-σ<X <μ+σ)=68.3%,P (μ-2σ<X <μ+2σ)=95.4%,P (μ-3σ<X <μ+3σ)=99.7%) A.97.7% B.68.3% C.99.7%D.95.4%5.某班有50名学生,一次考试的数学成绩ξ服从正态分布N (100,102),已知P (90<ξ<100)=0.3,估计该班学生数学成绩不小于110分的人数为________.10.若随机变量X ~N (μ,σ2),且P (X >5)=P (X <-1)=0.2,则P (2<X <5)=________.14.设X ~N (1,1),其正态分布密度曲线如图所示,那么向正方形ABCD 中随机投掷10 000个点,试估计落入阴影部分的点的个数.(注:若X ~N (μ,σ2),则P (μ-σ<X <μ+σ)=68.3%,P (μ-2σ<X <μ+2σ)=95.4%)15.已知随机变量X ~B (2,p ),Y ~N (2,σ2),若P (X ≥1)=0.64,P (0<Y <2)=p ,求P (Y >4)的值. 1 某项大型赛事,需要从高校选拔青年志愿者,某大学生实践中心积极参与,从8名学生会干部(其中男生5名,女生3名)中选3名参加志愿者服务活动.若所选3名学生中的女生人数为X ,求X 的分布列及均值.20.(本小题满分10分)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布(70,100)N 。
正态分布知识点正态分布是统计学中最为重要的概率分布之一,也被称为高斯分布。
它在自然界、人类社会和经济现象中都有着广泛的应用。
正态分布是一种连续型概率分布,其概率密度函数呈钟形曲线,呈现出对称性和集中性。
正态分布的形状可以通过其期望值(均值)和标准差来描述。
期望值表示数据的中心位置,标准差表示数据的离散程度。
通常情况下,正态分布的均值、中值和众数(最常出现的值)是相等的,呈现出对称性。
正态分布的曲线在均值附近最高,在离均值越远的位置,曲线越低。
正态分布的曲线在均值两侧对称,这意味着大约68%的数据位于均值的一个标准差范围内,大约95%的数据位于均值的两个标准差范围内,大约99.7%的数据位于均值的三个标准差范围内。
这种统计规律被称为“68-95-99.7法则”。
正态分布可以用来描述许多自然现象,例如身高、体重、智力水平等。
在这些现象中,大多数个体集中在均值附近,而离均值越远的个体越少。
这也解释了为什么大多数人的身高在平均身高附近,而极矮或极高的个体数量较少。
正态分布在统计学中有许多应用。
首先,它可以用来进行数据分析和假设检验。
通过分析数据的分布情况,可以判断某个变量是否服从正态分布。
在假设检验中,可以利用正态分布假设来进行参数估计和推断。
其次,正态分布可以用来进行抽样推断。
根据中心极限定理,当样本容量足够大时,样本均值的分布接近于正态分布。
这意味着我们可以通过对样本数据进行统计分析,来推断总体的性质和特征。
正态分布还可以用于建立概率模型和预测。
在金融领域,股票价格的波动、汇率变动等都可以用正态分布进行建模。
在质量控制中,正态分布被用来评估生产过程的稳定性和规范性。
此外,正态分布的特点也对科学研究和实践有着重要意义。
在实验设计中,可以通过对因素的测量,了解数据是否服从正态分布,从而选择适当的统计方法和模型。
总之,正态分布作为统计学中的重要概率分布,具有许多重要的应用。
其形状对称、集中性强的特点,使得它成为了许多自然现象和实际问题的理想模型。
正态分布知识点总结ppt一、概念1. 正态分布,又称高斯分布,是一种连续概率分布2. 具有单峰对称的特点3. 由于其形状近似于钟形,因此也被称为钟形曲线二、特征1. 均值μ:描述分布的中心位置2. 标准差σ:描述数据点相对于均值的离散程度3. 标准差越大,曲线扁平度越高4. 标准差越小,曲线陡峭度越高5. 正态分布的均值、众数和中位数都相等三、标准正态分布1. 当均值μ=0,标准差σ=1时的正态分布2. 应用范围更广,便于做概率计算3. 可通过Z变换,将任意正态分布转化为标准正态分布四、性质1. 概率密度函数:f(x) = (1/σ√(2π)) * e^(-(x-μ)²/(2σ²))2. 总体均值、中位数、众数相等3. 68-95-99.7法则:在正态分布下,大约68%的数据落在均值±1个标准差内,大约95%的数据落在均值±2个标准差内,大约99.7%的数据落在均值±3个标准差内五、应用1. 统计学:用于研究样本数据的分布规律2. 自然科学:许多自然现象的分布都符合正态分布,如身高、体重等3. 工程学:用于分析质量控制、可靠性分析等六、假设检验1. 基于正态分布的概率性质,可对样本数据进行假设检验2. 通过计算样本均值和标准差,判断总体参数是否满足要求七、实际案例1. 身高分布:研究人群的身高分布规律,制定人体工程学标准2. 质量控制:监控产品的质量符合正态分布,及时发现异常情况3. 信用评分:应用正态分布评估个人信用等级八、常见问题1. 如何判断一组数据是否符合正态分布?- 绘制直方图或概率图查看数据分布形状- 进行正态性检验,如Shapiro-Wilk检验、K-S检验等2. 如果数据不符合正态分布,影响有哪些?- 在统计分析中应当选择非参数检验方法- 在数据建模和预测中需要考虑非线性因素的影响九、总结正态分布是统计学中的基础概率分布,具有广泛的应用价值。
正态分布是统计学中一种常见的概率分布,也称为高斯分布。
它在许多实际问题的建模和分析中都有重要应用。
本文将从基本概念、性质和应用等方面介绍正态分布。
1. 基本概念正态分布是一种连续型的概率分布,其特点是呈钟形曲线,对称分布于均值周围。
正态分布的定义由两个参数确定,分别是均值μ和标准差σ。
记为N(μ, σ^2),表示随机变量X服从均值为μ,标准差为σ的正态分布。
2. 性质正态分布具有许多重要的性质,包括:2.1 对称性正态分布是关于均值对称的。
也就是说,分布在均值μ左侧的曲线与分布在均值右侧的曲线是相似的。
2.2 峰度和偏度正态分布的峰度是指其曲线的陡峭程度。
正态分布的峰度为3,称为正态分布的峰度系数。
高于3的峰度表示曲线更陡峭,低于3的峰度表示曲线更平缓。
正态分布的偏度是指其曲线的对称性。
正态分布的偏度为0,表示曲线对称。
大于0的偏度表示曲线向左偏斜,小于0的偏度表示曲线向右偏斜。
2.3 中心极限定理中心极限定理是指在一定条件下,独立同分布的随机变量之和近似服从正态分布。
这个定理在统计学中有广泛的应用,使得正态分布成为统计推断的基础。
3. 应用正态分布在实际问题中有广泛的应用,下面介绍几个常见的应用场景:3.1 统计推断正态分布在统计推断中起到至关重要的作用。
通过收集样本数据,我们可以根据正态分布的性质进行参数估计和假设检验等统计分析。
3.2 财务分析正态分布在财务分析中也有重要应用。
例如,股票市场的收益率往往服从正态分布,基于正态分布的模型可以用于分析和预测股票的风险和收益。
3.3 质量控制正态分布在质量控制中用于判断产品质量是否符合要求。
通过收集产品的测量数据,可以利用正态分布的性质进行质量控制和异常检测。
3.4 自然科学研究正态分布在自然科学研究中也有广泛应用。
例如,地震的震级、物种的体重和身高等都可以用正态分布进行建模和分析。
结论正态分布是统计学中最重要的概率分布之一,具有许多重要的性质和应用。
高考正态分布知识点在统计学中,正态分布是一种重要的概率分布,也被称为钟形曲线或高斯分布。
在高考数学中,正态分布是一个常见的考察点,学生需要了解和掌握与正态分布相关的概念、性质和应用。
下面将详细介绍高考正态分布的知识点。
一、正态分布的定义和性质1. 正态分布的定义:正态分布是指在数理统计中,如果随机变量X服从一个数学期望为μ、方差为σ²的正态分布,则记为X~N(μ, σ²),其中N表示正态分布。
2. 正态分布的性质:(1)正态分布是对称的,其均值、中位数和众数都相等,即μ=中位数=众数。
(2)正态分布的图像呈现出典型的钟形曲线。
(3)正态分布的曲线在均值两侧呈现出逐渐减小的趋势,但是永远不会到达横轴。
(4)正态分布的曲线关于均值μ对称。
(5)正态分布的标准差σ越大,曲线越矮胖;标准差σ越小,曲线越瘦高。
(6)约68%的数据落在均值±1个标准差范围内;约95%的数据落在均值±2个标准差范围内;约99.7%的数据落在均值±3个标准差范围内。
二、正态分布的概率计算1. 标准正态分布:标准正态分布是指均值为0,标准差为1的正态分布。
记为Z~N(0, 1)。
对于标准正态分布,我们可以通过计算标准正态分布表来得到对应的概率值。
2. 普通正态分布:当随机变量X服从正态分布N(μ, σ²)时,可以进行标准化处理,将X转化为一个服从标准正态分布的随机变量Z。
即Z=(X-μ)/σ,这样就得到了一个标准正态分布。
对于普通正态分布,可以通过标准正态分布表和标准化公式来计算相应的概率值。
3. 概率计算:对于正态分布,我们常常需要计算在某个区间范围内的概率值。
对于标准正态分布,可以利用标准正态分布表查找对应的概率值。
对于普通正态分布,可以将其转化为标准正态分布进行计算。
三、正态分布的参数估计1. 样本均值的抽样分布:在统计学中,我们经常需要对总体的均值进行估计。
对于正态分布,样本均值的抽样分布也是一个正态分布,并且其均值等于总体均值,方差等于总体方差除以样本容量的平方根。
正态分布知识点总结正态分布(Normal distribution)是统计学中最为重要和常见的概率分布之一、其分布特点为钟形曲线,对称分布,均值为中心点,标准差决定了曲线的分散程度。
正态分布在实际应用中非常广泛,特别适用于描述大量独立随机变量之和的分布情况。
一、正态分布的定义和性质1.定义:若随机变量X服从一个均值为μ,标准差为σ的正态分布(记作X∼N(μ,σ)),则其概率密度函数为f(x)=1/(σ√(2π))*e^(-(x-μ)²/(2σ²))2.性质:a.对称性:正态分布是关于均值对称的,即平均值左右两侧的曲线是对称的。
b.中心极限定理:大量独立随机变量的和趋向于正态分布,即使原始数据并不服从正态分布,样本量足够大时,样本均值的分布也会接近正态分布。
c.峰度与偏度:正态分布的峰度为3,即其曲线边际趋于水平而不陡。
偏度为0,即左右两侧的概率密度完全对称。
d.累积分布函数:正态分布的累积分布函数可以用标准正态分布表查找,标准正态分布表给出了标准正态分布的累积概率,从而可以计算出任意正态分布的累积概率。
二、正态分布的参数1.均值(μ):正态分布的均值决定了分布曲线的中心位置。
在标准正态分布中,均值为0。
2.标准差(σ):正态分布的标准差决定了分布曲线的宽度和分散程度。
标准差越小,曲线越尖锐;标准差越大,曲线越平缓。
三、标准正态分布1. 定义:均值为0,标准差为1的正态分布称为标准正态分布(Standard Normal Distribution),记作Z∼N(0,1)。
2.标准化:通过标准化转换,将任意正态分布转化为标准正态分布。
转换公式为Z=(X-μ)/σ,其中X为原正态分布的随机变量,μ为原正态分布的均值,σ为原正态分布的标准差。
3.标准正态分布表:存储了标准正态分布的累积概率值,可用于求解任意正态分布的累积概率。
4.逆标准化:通过标准正态分布表,可以将给定累积概率对应的Z值逆向计算,得到对应的原始分布值。
正态分布知识点1.正态分布密度函数的理解. 其中:π是圆周率;e 是自然对数的底;x 是随机变量的取值;μ为正态分布的均值;σ是正态分布的标准差正态分布一般记为N(μ,σ2).2.正态分布N(μ,σ2)是由均值μ和标准差σ唯一决定的分布.通过固定其中一个值,讨论均值与标准差对于正态曲线的影响.通过几何画板,作出正态曲线,固定其中一个值,突破拖动值,另一个利用几何画板的功能比较直观的观察正态曲线受到均值μ或标准差σ的影响。
3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称.应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质.4.结合正态曲线,归纳其以下性质:(1)曲线在x 轴的上方,与x 轴不相交.(2)曲线关于直线x =μ对称.(3)当x =μ时,曲线位于最高点.()222)(,21σμσμσπϕ--=x e x(4)当x <μ时,曲线上升(增函数);当x >μ时,曲线下降(减函数).并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近.(5)μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,总体分布越分散;σ越小,曲线越“高”,总体分布越集中;5.3σ原则:对于正态总体),(2σμN 取值的概率:下面给出三个正态总体的函数表示式,请找出其均值μ和标准差σ. (1)22()x f x -= (2)2(1)8()x f x --= (3)22(1)()x f x -+= 1.正态曲线下、横轴上,从均数到∞+的面积为( )。
A .95%B .50%C .97.5%D .不能确定(与标准差的大小有关)2.标准正态分布的均数与标准差分别为( )。
A .0与1B .1与0C .0与0D .1与13.正态分布有两个参数μ与σ,( )相应的正态曲线的形状越扁平。
A .μ越大B .μ越小C .σ越大D .σ越小4.下列函数是正态分布密度函数的是A .()σσπ2221)(r x e x f -= B .2222)(x e x f -=ππ C .()412221)(-=x e x f π D .2221)(x e x f π= 5.正态总体为1,0-==σμ概率密度函数)(x f 是A .奇函数B .偶函数C .非奇百偶函数D .既是奇函数又是偶函数6.若())(,21)(21,2R x e x x ∈=--πϕσμ,下列判断正确的是A .有最大值,也有最小值B .有最大值,但没最小值C .有最大值,但没最大值D .无最大值和最小值3σ原则考题:1.在一次英语考试中,考试的成绩服从正态分布)36,100(,那么考试成绩在区间(]112,88内的概率是A .0.6826B .0.3174C .0.9544D .0.99742.求标准正态总体在(-1,2)内取值的概率.3.若x ~N (0,1), 求P (x >2). P (x <-1).4.利用标准正态分布表,求标准正态总体在下面区间取值的概率 (1)(0,1); (2)(1,3)。