内蒙古赤峰市高考数学填空题大全含解析
- 格式:doc
- 大小:1.82 MB
- 文档页数:22
内蒙古2024年高考文科数学真题及参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A.{}1,2,3,4B.{}3,2,1 C.{}4,3D.{}9,2,12.设z =,则z z ⋅=()A.i-B.1C.1-D.23.若实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤-+≤--≥--09620220334y x y x y x ,则5z x y =-的最小值为()A.5B.12C.2-D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=()A.2-B.73C.1D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.236.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为()10,4F 、()20,4F -,且经过点()6,4P -,则双曲线C 的离心率是()A.4B.3C.2D.27.曲线()136-+=x x x f 在()0,1-处的切线与坐标轴围成的面积为()A.61B.2C.12D.23-8.函数()()2e esin xxf x x x -=-+-在区间[]8.2,8.2-的大致图像为()9.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭()A.132+B.1-C.23D.31-10.已知直线02=-++a y ax 与圆01422=-++y y x C :交于B A ,两点,则AB 的最小值为()A.2B.3C.4D.611.已知m 、n 是两条不同的直线,α、β是两个不同的平面,且m =βα .下列四个命题:①若m n ∥,则n α∥或n β∥;②若m n ⊥,则n α⊥,β⊥n ;③若n α∥且n β∥,则m n ∥;④若n 与α和β所成的角相等,则m n ⊥,其中所有真命题的编号是()A.①③B.②③C.①②③D.①③④12.在ABC △中,内角A ,B ,C 所对边分别为a ,b ,c ,若π3B =,294b ac =,则sin sin A C +=()A.13B.13C.2D.13二、填空题:本题共4小题,每小题5分,共20分.13.函数()sin f x x x =-在[]0,π上的最大值是______.14.已知圆台甲、乙的上底面半径均为1r ,下底面半径均为2r ,圆台的母线长分别为()122r r -,()123r r -,则圆台甲与乙的体积之比为.15.已知1a >,8115log log 42a a -=-,则a =______.16.曲线33y x x =-与()21y x a =--+在()0,+∞上有两个不同的交点,则a 的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的前n 项和.18.(12分)某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:(1)填写如下列联表:能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲、乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率5.0=p .设p 为升级改造后抽取的n 件产品的优级品率.如果()np p p p -+>165.1,则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为产品线智能化升级改造后,该工厂产品的优级品率提高了?(247.12150≈)19.(12分)如图,在以F E D C B A ,,,,,为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,4,=AD AD EF AD BC ,∥∥,2===EF BC AB ,且10=ED ,32=FB ,M 为AD 的中点.(1)证明:∥BM 平面CDE ;(2)求点M 到ABF 的距离.20.(12分)已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e x f x -<恒成立.21.(12分)已知椭圆()2222:10x y C a b a b +=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在椭圆C 上,且MF x ⊥轴.(1)求椭圆C 的方程;(2)过点()0,4P 的直线与椭圆C 交于A ,B 两点,N 为FP 的中点,直线NB 与直线MF 交于Q ,证明:AQ y ⊥轴.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)直线x ty t a =⎧⎨=+⎩(t 为参数)与曲线C 交于A 、B 两点,若2AB =,求a 的值.23.[选修4-5:不等式选讲](10分)实数a ,b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.参考答案一、选择题1.A 解析:由题意可得{}843210,,,,,=B ,∴{}4,3,2,1=B A .2.D解析:∵i z 2=,∴i z 2-=,∴222=-=⋅i z z .3.D 解析:实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤-+≤--≥--09620220334y x y x y x ,作出可行域如图:由y x z 5-=可得z x y 5151-=,即z 的几何意义为z x y 5151-=的截距的51-,则该直线截距取最大值时,z 有最小值,此时直线z x y 5151-=过点A,联立⎩⎨⎧=-+=--09620334y x y x ,解得⎪⎩⎪⎨⎧==123y x ,即⎪⎭⎫ ⎝⎛1,23A ,则271523min -=⨯-=z .4.D解析:法一:利用等差数列的基本量由19=S ,根据等差数列的求和公式1289919=⨯+=d a S ,整理得13691=+d a ,又()92369928262111173=+=+=+++=+d a d a d a d a a a .法二:特殊值法不妨取等差数列公差0=d ,则有1991a S ==,∴911=a ,故有922173==+a a a .5.B解析:当甲排在排尾,乙排在第一位,丙有2种排法,丁有1种排法,共2种;当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁有1种排法,共2种;于是甲排在排尾共4种方法,同理,乙排在排尾共4种排法,于是共8种排法,基本事件总数显然是2444=A ,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为31248=.6.C解析:由题意,()4,01F ,()402-,F ,()4,6-P,则()()6446,10446,8222222121=-+==++===PF PF c F F ,则4610221=-=-=PF PF a ,24822===a c e .7.A解析:()365+='x x f ,则()30='f ,∴该切线方程为x y 31=-,即13+=x y ,令0=x ,则1=y ,令0=y ,则31-=x ,故该切线与两坐标轴所围成的三角形面积6131121=-⨯⨯=S .8.B解析:()()()()()x f x e e x x e ex x f x x x x=-+-=--+-=---sin sin 22,又函数定义域为[]8.2,8.2-,故函数为偶函数,可排除A,C,又()021*******sin 111sin 111>->--=⎪⎭⎫ ⎝⎛-+->⎪⎭⎫ ⎝⎛-+-=e e e e e e e f π,故排除D.9.B 解析:∵cos cos sin ααα=-,∴3tan 11=-α,解得331tan -=α,∴132tan 11tan 4tan -=-+=⎪⎭⎫ ⎝⎛+ααπα.10.C 解析:由题意可得圆的标准方程为:()5222=++y x ,∴圆心()20-,C ,半径为5,直线02=-++a y ax 可化为()()021=++-y x a ,∴直线过定点()21-,D ,当AB CD ⊥时,AB 最小,易得1=CD ,故()415222=-⨯=AB .11.A 解析:对①,当α⊂n ,∵n m ∥,β⊂n ,则β∥n ,当β⊂n ,∵n m ∥,α⊂m ,则α∥n ,当n 既不在α也不在β内,∵n m ∥,βα⊂⊂m m ,,则α∥n 且β∥n ,故①正确;对②,若n m ⊥,则n 与βα,不一定垂直,故②错误;对③,过直线n 分别作两平面与βα,分别相交于直线s 和直线t ,∵α∥n ,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知s n ∥,同理可得t n ∥,则t s ∥,∵⊄s 平面β,⊂t 平面β,则∥s 平面β,∵⊂s 平面α,m =βα ,则m s ∥,又∵s n ∥,则n m ∥,故③正确;对④,若m =βα ,n 与βα,所成的角相等,如果βα∥,∥n n ,则n m ∥,故④错误;综上,①③正确.12.C 解析:∵3π=B ,294b ac =,则由正弦定理得31sin 94sin sin 2==B C A .由余弦定理可得:ac ac c a b 49222=-+=,即ac c a 41322=+,根据正弦定理得1213sin sin 413sin sin 22==+C A C A ,∴()47sin sin 2sin sin sin sin 222=++=+C A C A C A ,∵A,C 为三角形内角,则0sin sin >+C A ,则27sin sin =+C A .二、填空题13.2解析:()⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-=-=3sin 2cos 23sin 212cos 3sin πx x x x x x f ,当[]π,0∈x 时,⎥⎦⎤⎢⎣⎡-∈-32,33πππx ,当23ππ=-x 时,即65π=x 时()2max =x f .14.46解析:由题可得两个圆台的高分别为:()[]()()1221221232r r r r r r h -=---=甲,()[]())12212212223r r r r r r h -=---=乙∴()()()()462233131121212121212=--==++++=r r r r h h h S S S S h S S S S V V 乙甲乙甲乙甲.15.64解析:由25log 21log 34log 1log 1228-=-=-a a a a ,整理得()06log 5log 222=--a a ,可得1log 2-=a 或6log 2=a ,又1>a ,∴6log 2=a ,∴6426==a .16.()1,2-解析:令()a x x x +--=-2313,即1523+-+=x x x a ,令()()01523>+-+=x x x x x g ,则()()()1535232-+=-+='x x x x x g ,令()()00>='x x g 得1=x ,当()1,0∈x 时,()0<'x g ,()x g 单调递减;当()+∞∈,1x 时,()0>'x g ,()x g 单调递增,()()21,10-==g g ,∵曲线x x y 33-=与()a x y +--=21在()∞+,0上有两个不同的交点,∴等价于a y =与()x g 有两个交点,∴()1,2-∈a .三、解答题17.解:(1)∵3321-=+n n a S ,∴33221-=++n n a S ,两式相减可得121332+++-=n n n a a a ,即1253++=n n a a ,∴等比数列{}n a 的公比35=q ,当1=n 时有35332121-=-=a a S ,∴11=a ,∴135-⎪⎭⎫⎝⎛=n n a .(2)由等比数列求和公式得2335233513511-⎪⎭⎫ ⎝⎛=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯=nn n S ,∴数列{}n S 的前n 项和nS S S S T nn n 23353535352332321-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⨯=++++= 4152335415233513513523--⎪⎭⎫ ⎝⎛⋅=--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅⋅=n n n n.18.解:(1)根据题意可得列联表:可得()6875.416755496100507024302615022==⨯⨯⨯⨯-⨯⨯=K ,∵635.66875.4841.3<<,∴有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲、乙两车间产品的优级品率存在差异.(2)由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为64.015096=,用频率估计概率可得64.0=p ,又因为升级改造前该工厂产品的优级品率5.0=p ,则()()568.0247.125.065.15.01505.015.065.15.0165.1≈⨯+≈-⨯⨯+=-+n p p p ,可知()np p p p -+>165.1,∴可以认为产品线智能化升级改造后,该工厂产品的优级品率提高了.19.解:(1)∵AD BC ∥,2=EF ,4=AD ,M 为AD 的中点,∴MD BC MD BC =,∥,则四边形BCDM 为平行四边形,∴CD BM ∥,又∵⊄BM 平面CDE ,⊂CD 平面CDE ,∴∥BM 平面CDE .(2)如图所示,作AD BO ⊥交AD 于点O ,连接OF .∵四边形ABCD 为等腰梯形,4,=AD AD BC ∥,2==BC AB ,∴2=CD ,结合(1)可知四边形BCDM 为平行四边形,可得2==CD BM ,又2=AM ,∴ABM ∆为等边三角形,O 为AM 的中点,∴3=OB .又∵四边形ADEF 为等腰梯形,M 为AD 中点,∴MD EF MD EF ∥,=,四边形EFMD 为平行四边形,AF ED FM ==,∴AFM ∆为等腰三角形,ABM ∆与AFM ∆底边上中点O 重合,3,22=-=⊥AO AF OF AM OF ,∵222BF OFOB =+,∴OF OB ⊥,∴OF OD OB ,,互相垂直,由等体积法可得ABM F ABF M V V --=,233243213121312=⋅⋅⋅⋅=⋅⋅⋅=∆-FO S V ABM ABM F ,由余弦定理,()()10212102322102cos 222222=⋅⋅-+=⋅-+=∠ABF A FB AB F A F AB ,∴10239cos 1sin 2=∠-=∠F AB F AB .则2391023921021sin 21=⋅⋅⋅=∠⋅⋅=∆F AB AB F A S F AB ,设点M 到面ABF 的距离为d ,则有232393131=⋅⋅=⋅⋅==∆--d d S V V F AB ABM F ABF M ,解得13133=d ,即点M 到面ABF 的距离为13133.20.解:(1)由题意可得()x f 定义域为()∞+,0,()xax x a x f 11-=-=',当0≤a 时,()0<'x f ,故()x f 在()∞+,0上单调递减;当0>a 时,令()0='x f ,解得ax 1=,当⎪⎭⎫⎝⎛+∞∈,1a x 时,()0>'x f ,()x f 单调递增;当⎪⎭⎫⎝⎛∈a x 1,0时,()0<'x f ,()x f 单调递减;综上所述:当0≤a 时,()x f 在()∞+,0上单调递减;当0>a 时,()x f 在⎪⎭⎫⎝⎛+∞,1a 上单调递增,在⎪⎭⎫⎝⎛a 1,0上单调递减.(2)当2≤a 且1>x 时,()()x x e x x a e x f ex x x ln 121ln 1111+++≥-+--=----,令()()1ln 121>++-=-x x x ex g x ,则()()1121>+-='-x xe x g x ,令()()x g x h '=,则()()1121>-='-x xex h x ,显然()x h '在()∞+,1上单调递增,则()()0110=-='>'e h x h ,因()()x h x g =',则()x g '在()∞+,1上单调递增,故()()01210=+-='>'e g x g ,即()x g 在()∞+,1上单调递增,故()()01ln 1210=++-=>e g x g ,即()()()01ln 111>≥-+--=---x g x x a e x f ex x ,∴当1>x 时,()1-<x ex f 恒成立.21.解:(1)设()0,c F ,由题设有1=c ,且232=a b ,故2312=-a a ,解得2=a ,故3=b ,故椭圆方程为:13422=+y x .(2)由题意知,直线AB 额斜率一定存在,设为k ,设()()()2211,,,,4:y x B y x A x k y AB -=,由()⎪⎩⎪⎨⎧-==+413422x k y y x 可得()0126432432222=-+-+k x k x k ,∵()()012644341024224>-+-=∆kkk ,∴2121<<-k ,由韦达定理可得22212221431264,4332kk x x k k x x +-=+=+,∵⎪⎭⎫ ⎝⎛0,25N ,∴直线⎪⎭⎫ ⎝⎛--=252522x x y y BN :,故52325232222--=--=x y x y y Q,∴()()()()524352452352523222122212211--+-⋅-=-+-=-+=-x x k x x k x y x y x y y y y Q()0528433254312642528522222222121=-++⨯-+-⨯=-++-=x k k k k k x x x x x k 故Q y y =1,即AQ y ⊥轴.22.解:(1)由1cos +=θρρ,将⎪⎩⎪⎨⎧=+=xy x θρρcos 22代入1cos +=θρρ,可得122+=+x y x ,两边平方后可得曲线的直角坐标方程为122+=x y .(2)对于直线l 的参数方程消去参数t ,得直线的普通方程为a x y +=.法一:直线l 的斜率为1,故倾斜角为4π,故直线的参数方程可设为⎪⎪⎩⎪⎪⎨⎧+==s a y s x 2222,R s ∈.将其代入122+=x y 中得)()01212222=-+-+a s a s .设B A ,两点对应的参数分别为21,s s ,则()()12,12222121-=--=+a s s a s s ,且()()01616181822>-=---=∆a a a ,故1<a ,∴()()()218184222122121=---=-+=-=a a s s s s s s AB ,解得43=a .法二:联立⎩⎨⎧+=+=122x y ax y ,得()012222=-+-+a x a x ,()()088142222>+-=---=∆a a a ,解得1<a ,设()()2211,,,y x B y x A ,∴1,2222121-=-=+a x x a x x ,则()()()21422241122212212=---⋅=-+⋅+=a a x x x x AB ,解得43=a .23.解:(1)∵()()0222222222≥-=+-=+-+b a b ab a b a b a ,当b a =时等号成立,则()22222b a b a +≥+,∵3≥+b a ,∴()b a b a b a +>+≥+22222.(2)()b a b a a b b a ab b a +-+=-+-≥-+-222222222222()()()()()623122222=⨯≥-++=+-+≥+-+=b a b a b a b a b a b a .。
内蒙古赤峰市、呼和浩特市2025届高考数学必刷试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知实数,x y 满足不等式组10240440x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩,则34x y +的最小值为( )A .2B .3C .4D .52.《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤;斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠, 长五尺在粗的一端截下一尺,重4斤;在细的一端截下一尺,重2斤,问各尺依次重多少?”按这一问题的颗设,假设金箠由粗到细各尺重量依次成等差数列,则从粗端开始的第二尺的重量是( ) A .73斤 B .72 斤 C .52斤 D .3斤3.已知函数1,0()ln ,0x x f x x x x⎧<⎪⎪=⎨⎪>⎪⎩,若函数()()F x f x kx =-在R 上有3个零点,则实数k 的取值范围为( ) A .1(0,)e B .1(0,)2e C .1(,)2e -∞ D .11(,)2e e4.设函数1,2()21,2,1a x f x log x x a =⎧=⎨-+≠>⎩,若函数2()()()g x f x bf x c =++有三个零点123,,x x x ,则122313x x x x x x ++=( )A .12B .11C .6D .35.2021年某省将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为 A .18 B .14 C .16D .12 6.在ABC 中,已知9AB AC ⋅=,sin cos sin B A C =,6ABC S =,P 为线段AB 上的一点,且CA CB CP x y CA CB =⋅+⋅,则11x y+的最小值为( ) A .73123+ B .12 C .43 D .53124+ 7.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是 A .[-5,0) B .(-5,0) C .[-3,0) D .(-3,0)8.已知集合U =R ,{}0A y y =≥,{}1B y y x ==+,则U A B =( ) A .[)0,1 B .()0,∞+ C .()1,+∞ D .[)1,+∞ 9.已知函数2,()5,x x x a f x x x a⎧-≤=⎨->⎩(0a >),若函数()()4g x f x x =-有三个零点,则a 的取值范围是( )A .(0,1)[5,)+∞ B .6(0,)[5,)5+∞ C .(1,5] D .6(,5]510.设命题:p 函数()x x f x e e -=+在R 上递增,命题:q 在ABC ∆中,cos cos A B A B >⇔<,下列为真命题的是( )A .p q ∧B .()p q ∨⌝C .()p q ⌝∧D .()()p q ⌝∧⌝11.已知52i 12ia =+-(a ∈R ),i 为虚数单位,则a =( ) A .3B .3C .1D .5 12.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X 的期望为( )A .B .C .1D .2二、填空题:本题共4小题,每小题5分,共20分。
内蒙古赤峰市(新版)2024高考数学人教版考试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知集合,则A.B.C.D.第(2)题已知展开式中所有项的系数的和为243,则含项的系数为()A.-160B.160C.-640D.640第(3)题已知集合,,则()A.B.C.D.第(4)题已知集合,,则()A.B.C.D.第(5)题过坐标原点O作圆的两条切线OA,OB,切点分别为A,B,则()A.B.2C.D.4第(6)题若不等式对任意的恒成立,则的最小值为()A.B.C.D.第(7)题已知集合则()A.B.C.D.第(8)题按从小到大顺序排列的两组数据:甲组:7,11,14,m,22;乙组:5,10,n,18,20,若这两组数据的第50百分位数、第80百分位数分别对应相等,则=()A.28B.29C.30D.32二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题“心形线”体现了数学之美,某研究小组用函数图象:,和抛物线的部分图象围成了一个封闭的“心形线”,过焦点的直线交(包含边界点)于,两点,是或上的动点,下列说法正确的是()A.抛物线的方程为B.的最小值为5C.的最大值为7D.若在上,则的最小值为第(2)题已知a,b为正数,当时,,则()A.B.C.D.第(3)题某市为了更好的支持小微企业的发展,对全市小微企业的年税收进行适当的减免,为了解该地小微企业年收入的变化情况,对该地小微企业减免前和减免后的年收入进行了抽样调查,将调查数据整理,得到如下所示的频率分布直方图,则下列结论正确的是()A.推行减免政策后,某市小微企业的年收入都有了明显的提高B.推行减免政策后,某市小微企业的平均年收入有了明显的提高C.推行减免政策后,某市小微企业的年收入更加均衡D.推行减免政策后,某市小微企业的年收入没有变化三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知椭圆的左、右焦点分别为、,点P、Q均在椭圆上,且,,,则椭圆的离心率为______.第(2)题设M是函数图像上任意一点,过点向直线和轴作垂线,垂足分别为A、B,则___________.第(3)题已知向量,的夹角为,且, ,则___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数,为自然对数的底数.(1)求函数的极值点;(2)若对任意,都有,求常数的取值范围.第(2)题已知数列的前n项和为,且.(1)求数列的通项公式;(2)设数列的前n项和为,且,若对于恒成立,求的取值范围.第(3)题已知函数,(1)求不等式的解集N;(2)设N的最小数为n,正数a,b满足,求的最小值.第(4)题在中,内角A,B,C所对的边长分别为a,b,c,且满足.(1)求证:;(2)求的最大值.第(5)题已知函数.(Ⅰ)若是的极值点,确定的值;(Ⅱ)当时,,求实数的取值范围.。
内蒙古赤峰市(新版)2024高考数学部编版考试(拓展卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知球是棱长为2的正方体的内切球,是棱的中点,是球的球面上的任意一点,,则动点的轨迹长度为()A.B.C.D.第(2)题已知命题,则为()A.B.C.D.第(3)题已知的外接圆圆心为O,且,,则()A.0B.C.1D.第(4)题将函数图象上的所有点向右平移个单位长度.得到的图象,将图象上的所有点的横坐标伸长至原来的2倍(纵坐标不变),得到函数的图象.则()A.的最小正周期为B.的图象关于点对称C.在上单调递增D.在内有2个极值点第(5)题已知定义在上的偶函数在上递减,若不等式对恒成立,则实数的取值范围为A.B.C.D.第(6)题某读书会有6名成员,寒假期间他们每个人阅读的书本数分别如下:3,2,5,4,3,1,则这组数据的75%分位数为()A.3B.4C.3.5D.4.5第(7)题已知某地最近10天每天的最高气温(单位:℃)分别为23,17,17,21,22,20,16,14,21,19,则10天最高气温的第75百分位数是()A.15B.21C.21.5D.22第(8)题在复平面内,复数,则对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题设为坐标原点,是双曲线的左、右焦点.在双曲线的右支上存在点满足,且线段的中点在轴上,则()A.双曲线的离心率为B.双曲线的方程可以是C.D.的面积为第(2)题如图1,在矩形与菱形中,,,,分别是,的中点.现沿将菱形折起,连接,,构成三棱柱,如图2所示,若,记平面平面,则()A.平面平面B.C.直线与平面所成的角为60°D.四面体的外接球的表面积为第(3)题已知偶函数满足,则下列说法正确的是()A.函数是以2为周期的周期函数B.函数是以4为周期的周期函数C.函数为偶函数D.函数为奇函数三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知偶函数f(x)在[0,+∞)上单调递增,且f(2)=1,若f(2x+1)<1,则x的取值范围是____________.第(2)题双曲线的离心率是__________________.第(3)题一种春节吉祥物为分布均匀的正十二面体模型(如图),某兴趣小组在十二个面分别雕刻了十二生肖的图案.若其中的2个成员将该模型各随机抛出一次,则恰好出现一次龙的图案朝上(即龙的图案在最上面)的概率为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数,.(1)求函数的最小值;(2)设,求证:.第(2)题如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA=PD,AB=AD,PA⊥PD,AD⊥CD,∠BAD=60°,M,N分别为AD,PA的中点.(1)证明:平面BMN∥平面PCD;(2)若,求平面BMN与平面BCP所成锐二面角的余弦值.第(3)题如图,在三棱柱中,侧面底面,,,分别是棱,的中点.求证:(1)∥平面;(2).第(4)题“互联网”是“智慧城市”的重要内容,市在智慧城市的建设中,为方便市民使用互联网,在主城区覆盖了免费.为了解免费在市的使用情况,调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了人进行抽样分析,得到如下列联表(单位:人):经常使用免费WiFi 偶尔或不用免费WiFi合计45岁及以下703010045岁以上6040100合计13070200(1)根据以上数据,判断是否有的把握认为市使用免费的情况与年龄有关;(2)将频率视为概率,现从该市岁以上的市民中用随机抽样的方法每次抽取人,共抽取次.记被抽取的人中“偶尔或不用免费”的人数为,若每次抽取的结果是相互独立的,求的分布列,数学期望和方差.附:,其中.0.150.100.050.0252.072 2.7063.841 5.024第(5)题已知椭圆的一个顶点为,且离心率为.(1)求椭圆的方程;(2)直线椭圆交于、两点,且,求的值.。
内蒙古赤峰市(新版)2024高考数学部编版真题(巩固卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知定点与椭圆上的两个动点,,若,则的最小值为()A.B.13C.D.第(2)题已知集合,,则()A.B.C.D.第(3)题若,则()A.B.C.D.第(4)题复数的虚部是()A.B.C.D.第(5)题“车走直、马走日、炮打隔子、象飞田、小卒过河赛大车”,这是中国象棋中的部分下棋规则.其中“马走日”是指马走“日”字的对角线,如棋盘中,马从点A处走出一步,只能到点B或点C或点D或点E.设马从点A出发,必须经过点M,N(点M,N不考虑先后顺序)到达点P,则至少需走的步数为()A.4B.5C.6D.7第(6)题若,则()A.B.C.D.第(7)题若复数,复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限第(8)题第9届亚冬会即将在冰城哈尔滨召开,为了办好这一届盛会,组委会决定进行赛会志愿者招募.现有4名志愿者,通过培训后,拟安排在冰壶、短道速滑、高山滑雪三个项目进行志愿者服务,假设每个项目至少安排一名志愿者,且每位志愿者只能参与其中一个项目,在甲被安排到冰壶项目的条件下,乙被安排到短道速滑项目的概率为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知10个数据的第75百分位数是31,则下列说法正确的是()A.这10个数据中至少有8个数小于或等于31B.把这10个数据从小到大排列后,第8个数据是31C.把这10个数据从小到大排列后,第7个与第8个数据的平均数是31D.把这10个数据从小到大排列后,第6个与第7个数据的平均数是31第(2)题设R,用表示不超过的最大整数,则函数被称为高斯函数;例如,,已知,,则下列说法正确的是()A.函数是偶函数B.函数是周期函数C .函数的图像关于直线对称D .方程只有1个实数根第(3)题数列定义如下:,,若对于任意,数列的前项已定义,则对于,定义,为其前n项和,则下列结论正确的是()A.数列的第项为B.数列的第2023项为C.数列的前项和为D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题如图所示,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=,E,F分别是平面A1B1C1D1,平面BCC1B1的中心,则E,F两点间的距离为________.第(2)题若实数,满足,则________.第(3)题已知在直角三角形中,,点是斜边的中点.则__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)试讨论函数的单调性;(2)设实数使得对恒成立,求实数的最大值.第(2)题2022年北京冬奥会标志性场馆——国家速滑馆的设计理念来源于一个冰和速度结合的创意,沿着外墙面由低到高盘旋而成的“冰丝带”,就像速度滑冰运动员高速滑动时留下的一圈圈风驰电掣的轨迹,冰上划痕成丝带,22条“冰丝带”又象征北京2022年冬奥会.其中“冰丝带”呈现出圆形平面、椭圆形平面、马鞍形双曲面三种造型,这种造型富有动感,体现了冰上运动的速度和激情这三种造型取自于球、椭球、椭圆柱等空间几何体,其设计参数包括曲率、挠率、面积体积等对几何图形的面积、体积计算方法的研究在中国数学史上有过辉煌的成就,如《九章算术》中记录了数学家刘徽提出利用牟合方盖的体积来推导球的体积公式,但由于不能计算牟合方盖的体积并没有得出球的体积计算公式直到200年以后数学家祖冲之、祖暅父子在《缀术》提出祖暅原理:“幂势既同,则积不容异”,才利用牟合方盖的体积推导出球的体积公式原理的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.(Ⅰ)利用祖暅原理推导半径为的球的体积公式时,可以构造如图②所示的几何体,几何体的底面半径和高都为,其底面和半球体的底面同在平面内.设与平面平行且距离为的平面截两个几何体得到两个截面,请在图②中用阴影画出与图①中阴影截面面积相等的图形并给出证明;(Ⅱ)现将椭圆所围成的椭圆面分别绕其长轴、短轴旋转一周后得两个不同的椭球,(如图),类比(Ⅰ)中的方法,探究椭球的体积公式,并写出椭球,的体积之比.第(3)题已知中内角A、B、C所对的边分别为a、b、c,且,.(1)求角A的大小;(2)求的取值范围.第(4)题已知函数.(1)当时,求的单调区间;(2)若函数有两个极值点,,且,为的导函数,设,求的取值范围,并求取到最小值时所对应的的值.第(5)题加班,系指除法定或者国家规定的工作时间外,即正常工作日延长工作时间或者双休日以及国家法定假期期间延长工作时间.有的工作人员在正常工作日不能积极主动工作,致使有的工作任务要到正常工作日延长工作时间完成,这不能称为“加班”,只有建立合理的考核方案,才能调动广大工作人员的积极性.某劳动组织对“工作时间”的评价标准如下表:每天的工作时间(单位:小时)评价级别良好普通加班严重加班超重加班2019年5月1日,该劳动组织从某单位某个月中随机抽取10天“工作时间”的统计数据绘制出的频率分布直方图如下:(1)若严重加班的天数是普通加班天数的2倍,求,的值;(2)在(1)条件下,若从这10天中评价级别是“良好”或“普通加班”的天数里随机抽取2天,求“这2天的‘工作时间’属于同一评价级别”的概率.。
内蒙古赤峰市(新版)2024高考数学部编版考试(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题如图,在棱长为1的正方体中,分别为棱上的动点(点不与点重合).若,则下列说法正确的个数是()①存在点,使得点到平面的距离为;②直线与所成角为;③平面;④用平行于平面的平面去截正方体,得到的截面为六边形时,该六边形周长一定为.A.1个B.2个C.3个D.4个第(2)题将函数的图象向左平移个单位长度后得到函数的图象,若函数在上单调递增,则实数的取值范围是()A.B.C.D.第(3)题在学习完“错位相减法”后,善于观察的同学发现对于“等差等比数列”此类数列求和,也可以使用“裂项相消法”求解.例如,故数列的前n项和.记数列的前n项和为,利用上述方法求()A.B.C.D.第(4)题已知函数f(x)=(a∈R),若,则a=()A.B.C.1D.2第(5)题已知等差数列中,,,则等于()A.15B.30C.31D.64第(6)题已知函数f(x)=x3+ax2﹣9x+1(a∈R),当x≠1时,曲线y=f(x)在点(x0,f(x0)和点(2﹣x0,f(2﹣x0))处的切线总是平行,现过点(﹣2a,a﹣2)作曲线y=f(x)的切线,则可作切线的条数为( )A..3B..2C.1D..0第(7)题设是定义在上的周期为5的奇函数,,则在内的零点个数最少是()A.4B.6C.7D.9第(8)题已知函数f(x)满足f(x)=f(3x),当x∈[1,3),f(x)=lnx,若在区间[1,9)内,函数g(x)=f(x)﹣ax有三个不同零点,则实数a的取值范围是()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知曲线C:,则下列结论正确的是()A.若,则C是圆,半径为B.若,,且,则C是双曲线,其渐近线方程为C.若,,且,则C是椭圆,若,是曲线C的左、右顶点,P是曲线C上除,以外的任意一点,则D.若,,则C是双曲线,若P是曲线C上的任意点,则P到两条渐近线的距离之积为第(2)题已知,分别是椭圆:的左、右焦点,在上,为坐标原点,若,的面积为1,则()A.椭圆的离心率为B.点在椭圆上C.的内切圆半径为D.椭圆上的点到直线的距离小于2第(3)题分别是正方体的棱的中点,则()A.平面B.C.直线与直线相交D.与平面所成的角大小是三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知“”表示小于的最大整数,例如.若恰好有四个解,那么的范围是__________.第(2)题若直线被圆截得的弦长为,则的值为_____.第(3)题表示不小于x的最小整数,例如,.已知等差数列的前n项和为,且,.记,则数列的前10项的和______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知,函数的最大值为4,(1)求实数m的值;(2)设正数x,y,z满足,求的最大值.第(2)题已知函数.(1)求不等式的解集;(2)若直线与的图象所围成的三角形的面积为,求实数的值.第(3)题已知函数.(1)当时,证明不等式;(2)若不等式恒成立,求实数的取值范围.第(4)题已知各项均为正数的数列的前项和为,且.(1)求的通项公式;(2)若,求数列的前项和.第(5)题已知椭圆的离心率为,且过点.圆的切线l与椭圆E相交于A,B两点.(1)求椭圆E的方程;(2)直线OA,OB的斜率存在为,,直线l的斜率存在为k,若,求直线l的方程;(3)直线OA,OB与圆的另一个交点分别为C,D,求与的面积之和的取值范围.。
内蒙古赤峰市(新版)2024高考数学部编版真题(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题设全集,集合,,则()A.B.C.D.第(2)题在正方体中,点在线段上,若直线与平面内的动直线所成角的最小值为,则A.B.C.D.第(3)题椭圆与双曲线共焦点、,它们的交点对两公共焦点、的张角为,椭圆与双曲线的离心率分别为、,则A.B.C.D.第(4)题比较,,的大小关系为()A.B.C.D.第(5)题6名同学参加数学和物理两项竞赛,每项竞赛至少有1名同学参加,每名同学限报其中一项,则两项竞赛参加人数相等的概率为()A.B.C.D.第(6)题若函数在上单调递增,则实数a的最大值是()A.B.C.D.第(7)题已知函数,若关于的方程有4个不同的实数解,则的取值范围为A.B.C.D.第(8)题已知方程有且仅有四个解,则实数A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题如图,在正方体中,E为的中点,则下列条件中,能使直线平面的有()A.F为的中点B.F为的中点C.F为的中点D.F为的中点第(2)题已知抛物线,焦点为F,直线l与抛物线交于A,B两点,则下列选项正确的是()A.当直线l过焦点F时,以AF为直径的圆与y轴相切B.若线段AB中点的纵坐标为2,则直线AB的斜率为1C.若,则弦长AB最小值为8D.当直线l过焦点F且斜率为2时,,,成等差数列第(3)题已知中,,,为边上的高,且,沿将折起至的位置,使得,则()A.平面平面B.三棱锥的体积为8C.D.三棱锥外接球的表面积为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题甲、乙两名同学进行篮球投篮练习,甲同学一次投篮命中的概率为,乙同学一次投篮命中的概率为,假设两人投篮命中与否互不影响,则甲、乙两人各投篮一次,至少有一人命中的概率是___________.第(2)题在平面直角坐标系中,已知点,若为平面区域上的一个动点,则的取值范围是___________.第(3)题在平面直角坐标系中,已知直线与圆交于A,B两点,若钝角的面积为,则实数a的值是______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数,.(1)求的单调区间;(2)证明:;(3)若关于x的方程有唯一解,求k的值.第(2)题在四棱锥中,平面平面,∥,,,.(1)证明:;(2)若为等边三角形,求直线PC与平面PBD所成角的正弦值.第(3)题在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为,且在极坐标下点P.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)若曲线C1与曲线C2交于A,B两点,求的值.第(4)题直角坐标系中,锐角的终边与单位圆的交点为,将绕逆时针旋转到,使,其中是与单位圆的交点,设的坐标为.(Ⅰ)若的横坐标为,求;(Ⅱ)求的取值范围.第(5)题已知椭圆的左、右焦点分别为,过的直线与交于两点,的周长为8.(1)求的方程;(2)若直线与交于两点,且原点到直线的距离为定值1,求的最大值.。
内蒙古赤峰市(新版)2024高考数学苏教版真题(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题“幂势既同,则积不容异”,这是“祖暅原理”,可以描述为,夹在两个平行平面之间的两个几何体,总被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.已知圆锥的轴截面是边长为2的等边三角形,在圆锥内部放置一个平行六面体,则该平行六面体的体积的最大值为()A.B.C.D.第(2)题已知,均为正实数,且满足,则的最小值为()A.2B.C.D.第(3)题已知抛物线:的焦点为,准线与轴的交点为,点在上且,则的面积为()A.4B.8C.16D.32第(4)题已知函数是定义域为R的奇函数,当时,,若,则().A.B.2C.D.1第(5)题设为虚数单位,复数满足,则的虚部是( )A.-1B.i C.-2D.-2i第(6)题“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第(7)题已知集合,集合,则()A.B.C.D.第(8)题已知复数,则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题若,则()A.B.C.D.第(2)题下列不等式中正确的是()A.B.C.D.第(3)题已知函数,则()A.有两个零点B.过坐标原点可作曲线的切线C.有唯一极值点D.曲线上存在三条互相平行的切线三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在的二项式展开式中的系数为160,则_______________.第(2)题在等比数列中,若,,则当取得最大值时, _______________.第(3)题在中,已知,则角的大小为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题设函数,曲线在点处的切线方程为.(1)求的值;(2)证明:.第(2)题设函数(I)求函数的极值;(Ⅱ)若不等式,对任意实数恒成立,求实数a的取值范围.第(3)题已知函数.(1)当时,求曲线在处的切线方程;(2)若存在最小值m,且,求a的取值范围.第(4)题若正整数数列满足:①为有穷数列:;②;③当时,满足的正整数对有且仅有个.称该数列为的减数列.(1)写出5的2减数列的所有情况;(2)若存在100的减数列,求正整数的最大值.第(5)题在直角坐标系xOy中,曲线E的参数方程为(为参数),以O为极点,x轴非负半轴为极轴建立极坐标系,直线,的极坐标方程分别为,,交曲线E于点A,B,交曲线E于点C,D.(1)求曲线E的普通方程及极坐标方程;(2)求的值.。