华师大版数学七年级下册《第10章 轴对称、平移与旋转 10.3 旋转 10.3.1 图形的旋转》课件
- 格式:ppt
- 大小:2.52 MB
- 文档页数:27
第十章轴对称、平移与旋转一、基本概念(一)轴对称图形的有关概念1.轴对称图形定义:把一个图形沿着某条直线对折,对折的两部分是完全重合的,这样的图形称为轴对称图形,这条直线叫做这个图形的对称轴。
常见的基本轴对称图形:线段、直线、角、等腰三角形、正三角形、长方形、正方形、等腰梯形、菱形、圆等。
注意:轴对称图形是一个图形所具有的特性,不是“两个”图形的位置。
2.轴对称(即关于某条直线成轴对称)的定义:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称,这条直线就是它们的对称轴,两个图形中的对应点(即两图形重合时互相重合的点)叫做对称点。
注意:轴对称是两个图形的空间位置,不是“一个”图形的特性。
3.轴对称(或关于某条直线成对称的两个图形)的性质:(1)轴对称图形(或关于某条直线成对称的两个图形)沿对称轴对折后的两部分完全重合,所以它的对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等。
(2)关于某直线成轴对称的两个图形的大小和形状完全相同。
(3)对称轴垂直平分对称点的连线.4.轴对称图形与两个图形成轴对称的区别与联系:如图(1),如果沿着虚线对折,直线两旁的部分会完全重合,那么这个图形就是轴对称图形。
如图(2),如果沿着虚线折叠,右边的图形会与左边的图形完全重合,那么就说这两个图形关于虚线这条直线成轴对称。
5.如何画图形的对称轴?(1)画轴对称图形的对称轴任意找一对对称点,连接这对对称点,画出所连线段的垂直平分线.这条垂直平分线就是该轴对称图形的对称轴.(2)画成轴对称两个图形的对称轴:任意找一对对称点,连接这对对称点,画出所连线段的垂直平分线。
这条垂直平分线就是该轴对称图形的对称轴。
6.画轴对称图形有一个图形、一条直线,那么如何画出这个图形关于这条直线的对称图形呢?(1)基本思想:如果图形是由直线、线段或射线组成时,那么画出图形的各点的关于这条直线成轴对称的对称点.然后连结对称点,就可以画出关于这条直线的对称图形.(2)基本画法规律:“作垂线”,“顺延长",“取相等”,最后连接对称点。
旋转、平移及轴对称的区别和联系旋转、平移及轴对称都是图形之间的变换,是探索图形关系以及作图中必须了解和掌握的知识点,它们之间既有区别又有联系.为了帮助同学们更好地掌握这局部知识,下面就三个方面对它们进展比拟分析,供同学们参考.一、三者概念之间的区别1.旋转:在平面内,将一个图形饶一个定点旋转一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角.2.平移:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动称为平移.3.轴对称:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形完全重合,那么就说这两个图形关于这条直线成轴对称,这条直线就是对称轴,两个图形中的对应点叫做对称点.由此可以看出,平移只改变图形的位置,不改变形状、方向和大小;而旋转既改变图形的位置,同时又改变了图形的方向;轴对称不改变图形的大小和形状,但改变了图形的方向.二、三者概念和性质之间的一样点对三者概念和性质之间进展比拟发现,它们之间具有这样的三点一样点:1.三者都是在平面内进展的图形变换,不涉及立体图形的变换.2.三种变换都只改变图形的位置,而不改变图形的形状和大小,所以变换前后的两个图形都是全等形,其对应边相等,对应角相等.3.它们在作图中都要应用三角形全等的有关知识.三、三者性质之间的区别旋转、平移及轴对称它们有各自的性质,通过比拟发现它们之间有以下三点的区别:1.旋转、平移及轴对称它们的运动方式不同.旋转的运动方式是将一个图形旋转一定角度;而平移的运动方式是将一个图形沿一定方向移动;对称轴的运动方式那么是将一个图形沿一条直线进展翻折.2.旋转、平移及轴对称的对应线段、对应角之间的关系不同.旋转前后两个图形的任意一对对应点与旋转中心所连线段的夹角都是旋转角;而平移前后两个图形的对应线段平行〔或共线〕,对应点所连线段平行〔或共线〕,对应角的两边分别平行〔或共线〕;如果轴对称的对应线段或其延长线相交,那么交点在对称轴上.成轴对称的两个图形对应点连线被对称轴垂直平分.3.旋转、平移及轴对称作图时所需的条件不同.旋转作图需要确定三个元素,即旋转中心的位置,旋转角的大小及旋转的方向;平移作图需要确定两个元素,即平移的距离和平移的方向;而作一个图形的轴对称图形只要确定一个元素就行,即对称轴.。
2017-2018学年七年级数学下册第10章轴对称、平移与旋转10.3 旋转10.3.2 旋转的特征教案(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年七年级数学下册第10章轴对称、平移与旋转10.3 旋转10.3.2 旋转的特征教案(新版)华东师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年七年级数学下册第10章轴对称、平移与旋转10.3 旋转10.3.2 旋转的特征教案(新版)华东师大版的全部内容。
2。
旋转的特征教学目标【知识与技能】通过具体实例认识旋转,理解旋转前后两个图形的对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质,能够按照要求作出简单平面图形旋转后的图形.【过程与方法】通过对日常生活中与旋转现象有关的图形探索过程,掌握相关画图的操作能力,发展审美观.【情感态度】培养识图能力,体会旋转现象在现实生活中的价值.【教学重点】图形的旋转的基本性质及其应用。
【教学难点】图形的旋转的基本性质及其应用.教学过程一、情境导入,初步认识1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?【教学说明】复习上节课的内容,为本节课的学习做铺垫.二、思考探究,获取新知1。
如图,若旋转中心在△ABC的外面点O处,逆时针转动60°,将整个△ABC旋转到△A′B′C′的位置.观察上图,探索图中线段之间与角之间的关系,填空。
旋转中心是点O,点A、B、C都是绕着点O旋转60°角到对应点A′、B′、C′,则OA= ,OB= ,OC= ,AB= ,BC= ,CA= ,∠CAB= ,∠ABC= ,∠BCA= 。
七年级数学下册第10章轴对称、平移与旋转10.3旋转10.3.1图形的旋转教案(新版)华东师大版教学目标 1.通过具体事例认识图形的旋转变换,探索它的基本性质。
2.能按要求画出简单的平面图形旋转后的图形。
3.通过观察、操作等探索过程,发展学生的合情推理能力。
教学重难点重点:认识图形的旋转变换,探索它的基本性质。
难点:能按要求画出简单的平面图形旋转后的图形。
教学过程程序教师活动学生活动备注创设问题情景1.课件演示,旋转而动产生的奇妙画面。
2.你能自己举出日常生活中的一些事例吗?学生对每一种画面谈谈自己的看法。
让学生扩展思维,列举生活中还有哪些旋转图形。
探究新知1 1.观察图形找出这些图形的共同特征:2.概念:旋转、旋转中心1.观察、分析、讨论出共同特征。
它们绕上面的悬挂点转动。
2.理解概念:旋转中心在旋转过程中保持不动,图形的旋转由旋转中心和旋转的角度所决定。
探究新知1.做一做用一张半透明的薄纸,覆盖在画有任意△AOB的纸上,在薄纸上画出与△AOB重合的一个三角形。
然后用一枚图钉在点O处固定,将薄纸绕着图钉(即点O)转动一个角度45 ,薄纸上的三角形就旋转到了新的位置,标上A′、O′、B′,我们可以认为△AOB旋转45 后到了上做一做后,讨论回答:图中,可以看到点A旋转到点A′,OA旋转到OA′, ∠AOB旋转到∠A′OB′,这些都是互相对应的点、线段与角。
那么点B的对应点是___________;线段OB的对应线段是线段______;2 △A′O′B′。
在这样的旋转过程中,你发现了什么?线段AB的对应线段是线段______;∠A的对应角是___________;∠B的对应角是___________;旋转中心是点____________;旋转的角度是____________。
探究新知3 做一做如图11.2.5,如果旋转中心在△ABC的外面点O处,转动60 ,将整个△ABC旋转到△A′B′C′的位置。