22.1二次函数的图像和性质综合练习2(附答案)
- 格式:doc
- 大小:141.00 KB
- 文档页数:4
初中数学二次函数的图象与性质2学习目标一、考点突破1. 理解并掌握系数a、b、c与函数图象的关系。
2. 掌握图象与坐标轴交点坐标、对称轴的计算方法。
二、重难点提示重点:系数a、b、c与函数图象的关系。
难点:应用系数与函数图象的关系解决问题。
考点精讲二次函数图象的开口方向,对称轴,与y轴的交点的决定因素(以为例)1.决定了抛物线开口的大小和方向的正负决定开口方向,的大小决定开口的大小。
2. b与a同时决定对称轴位置同号时,对称轴位置在y轴左侧;异号时,对称轴位置在y轴右侧。
总结:“左同右异”【综合拓展】关于对称轴:①;②当图象过(a,b)(c,b)时,则对称轴为。
3.决定了抛物线与轴交点的位置①当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;②当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;③当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负。
典例精讲例题1(绵阳)二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①2a+b>0;②b>a>c;③若-1<m<n<1,则m+n<-;④3|a|+|c|<2|b|,其中正确的结论(写出你认为正确的所有结论序号)。
思路分析:分别根据二次函数开口方向以及对称轴位置和图象与y轴交点得出a,b,c 的符号,再利用特殊值法分析得出各选项。
答案:解:∵抛物线开口向下,∴a<0,∴2a<0,对称轴x =->1,-b <2a ,∴2a +b >0,故选项①正确;∵-b <2a ,∴b >-2a >0>a ,令抛物线解析式为y =-x 2+bx -,此时a =c ,要使抛物线与x 轴交点的横坐标分别为和2, 则2221+=-)21(2-⨯b ,解得:b =,∴抛物线y =-x 2+x -,符合“开口向下,与x 轴的一个交点的横坐标在0与1之间,对称轴在直线x =1右侧”的特点,而此时a =c ,(其实a >c ,a <c ,a =c 都有可能),故②选项错误;∵-1<m <n <1,-2<m +n <2,∴抛物线对称轴为:x =->1,>2,m +n <,故选项③正确;当x =1时,a +b +c >0,2a +b >0,3a +2b +c >0,∴3a +c >-2b ,∴-3a -c <2b , ∵a <0,b >0,c <0(图象与y 轴交于负半轴),∴3|a|+|c|=-3a -c <2b =2|b|,故④选项正确,故答案为①③④。
第1页,-共6页二次函数的图像和性质 【2 】演习题一.选择题1.下列函数是二次函数的有( )12)5(;)4();3()3(;2)2(;1)1(222+=++=-==-=x y c bx ax y x x y xy x y (6) y=2(x+3)2-2x 2A.1个;B.2个;C.3个;D.4个2.关于213y x =,2y x =,23y x =的图像,下列说法中不准确的是( )A .极点雷同B .对称轴雷同C .图像外形雷同D .最低点雷同3.抛物线()12212++=x y 的极点坐标是( ) A .(2,1) B .(-2,1) C .(2,-1) D .(-2,-1)4.已知二次函数)2(2-++=m m x mx y 的图象经由原点,则m 的值为( )A . 0或2B . 0C . 2D .无法肯定5.已知二次函数213x y -=.2231x y -=.2323x y =,它们的图像启齿由小到大的次序是( )A.321y y y <<B.123y y y <<C.231y y y <<D.132y y y <<6.两条抛物线2y x =与2y x =-在统一坐标系内,下列说法中不准确的是( )A .极点雷同B .对称轴雷同C .启齿偏向相反D .都有最小值7.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①0abc >;②a+b+c>0③a-b+c<0;;A .1个B .2个C .3个D .4个8.已知抛物线的极点为(-1,-2),且经由过程(1,10则这条抛物线的表达式为( ) A .y=32(1)x --2 B .y=32(1)x ++2C .y=32(1)x +-2D .y=-32)1(-x +29.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A .23(1)2y x =-- B.23(1)2y x =+- C.23(1)2y x =++ D.23(1)2y x =-+10.抛物线244y x x =--的极点坐标是( )A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)11.与抛物线y=-12x 2+3x -5的外形.启齿偏向都雷同,只有地位不同的抛物线是( )A. y = x 2+3x -5B. y=-12x 2x C. y =1x 2+3x -5 D. y=1x 2( )A .抛物线的外形雷同B .抛物线的极点雷同C .抛物线对称轴雷同D .抛物线的启齿偏向相反 13.对于抛物线21(5)33y x =--+,下列说法准确的是( ) A .启齿向下,极点坐标(53),B .启齿向上,极点坐标(53), C .启齿向下,极点坐标(53)-,D .启齿向上,极点坐标(53)-,14.抛物线y=222x mx m -++的极点在第三象限,试肯定m 的取值规模是( )A .m <-1或m >2B .m <0或m >-1C .-1<m <0D .m <-1 15.在统一向角坐标系中,函数y mx m =+和222y mx x =-++(m 是常数,且0m ≠)的图象可能..是( )第3页,-共6页16.函数y=12-2x +2x -5的图像的对称轴是( ) A .直线x=2 B .直线a=-2 C .直线y=2 D .直线x=417.二次函数y=221x x --+图像的极点在( )A .第一象限B .第二象限C .第三象限D .第四象限18.假如抛物线y=26x x c ++的极点在x 轴上,那么c 的值为( )A .0B .6C .3D .919.已知二次函数2y ax bx c =++,假如a >0,b <0,c <0,那么这个函数图像的极点必在( )A .第一象限B .第二象限C .第三象限D .第四象限20.已知正比例函数kx y =的图像如右图所示,则二次函数222k x kx y +-= 的图像大致为( )21.如图所示,知足a >0,b <0的函数y=2ax bx +的图像是( )22.若A (-4,y 1),B (-3,y 2),C (1,y 3)为二次函数y=x 2+4x-5的图象上的三点,则y 1,y 2,y 3的大小关系是( )A.y 1<y 2<y 3B.y 2<y 1<y 3C.y 3<y 1<y 2D.y 1<y 3<y 2B .填空题:23.二次函数2()的图像启齿向____,对称轴是____,极点坐标是____,图像有最___点,x ___时,y 随x 的增大而增大,xyO xOxy yO xyOxy O x第4页,-共6页___时,y 随x 的增大而减小. 24.抛物线y=-21(2)2x +-4的启齿向___,极点坐标___,对称轴___,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小. 25.化243y x x =++为y =a 2()x h -k +的情势是____,图像的启齿向____,极点是____,对称轴是____.26.抛物线y=24x x +-1的极点是____,对称轴是____.27.将抛物线y=3x 2向左平移6个单位,再向下平移7个单位所得新抛物线的解析式为.28.已知二次函数2y ax bx c =++的图象如图所示,则点()P a bc ,在第象限.C .解答题29.经由过程配方变形,说出函数2288y x x =-+-的图像的启齿偏向,对称轴,极点坐标,这个函数有最大值照样最小值?这个值是若干?30.(1)已知二次函数的图象以A (-1,4)为极点,且过点B (2,-5)求该函数的关系式;(2)抛物线过(-1,0),(3,0),(1,-5)三点,求二次函数的解析式;31.已知二次函数y =ax 2+bx +c ,当x =1时,y 有最大值为5,且它的图像经由点(2,3),求这个函数的关系式.32.已知二次函数y = -x 2+bx +5,它的图像经由点(2,-3). (1)求这个函数关系式及它的图像的极点坐标.(2)当x 为何值时,函数y 跟着x 的增大而增大?当为x 何值时,函数y 跟着x 的增大而减小?33.二次函数c bx ax y ++=2的图像与(2).求二次函数的图像的极点坐标;参考答案一.选择题1.B2.C3.B 4.C 5.C6.D 7.B 8.C 9 .A10.C11.B 12.B 13.A 14.D 15.C 16.A 17.C 18.D 19.D 20.D21.A 22.C第6页,-共6页4)1(2++-=x y 24. 下 y 轴 (-2,-4) 直线x=-2 x<-2 x>-2; 25. 1)2(2-+=x y 上 (-2,-1) 直线x=-1;26. (-2,-5) 直线x=-2 ; 27.7)6(32-+=x y 28.二 三.解答题29.解法1:设y=a 2(8)x -+9,将x=0,y=1代入上式得a=18-, ∴y=21(8)8x --+9=21218x x -++解法2:设y=2ax bx c ++,由题意得21,8,249,4c b aac ba⎧⎪=⎪⎪-=⎨⎪⎪-=⎪⎩解之1,82,1.a b c ⎧=-⎪⎪=⎨⎪=⎪⎩ ∴y=21218x x -++30.(1) (2)31.5)1(22+--=x y32.(1)b=-2 522+--=x x y (2) (-1,6) x<-1 x>-133.(1) 提醒:依据:OB OA OC ⋅=2,可求出OC=4,则C (0,4)415,25,45-=-==c b a。
二次函数的图象与性质1一、选择题:1.把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是()A. ﹣4B. 0C. 2D. 62.如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,则以下四个结论中:① abc>0,② 2a+b=0,③ 4a+b2<4ac,④ 3a+c<0.正确的个数是()A. 1B. 2C. 3D. 43.已知二次函数y=−x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是()A. 图象的开口向上B. 图象的顶点坐标是(1,3)C. 当x<1时,y随x的增大而增大D. 图象与x轴有唯一交点4.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,点A坐标为(−1,0),点C在(0,2)与(0,3)之间(不包括这两点),抛物线的顶点为D,对称轴为直线x=2,有以下结论:① abc>0;②若点M(−12,y1),点N(72,y2)是函数图象上的两点,则y1<y2;③ −35<a<−25;④ ΔADB可以是等腰直角三形.其中正确的有()A. 1个B. 2个C. 3个D. 4个5.点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于()A. 154B. 4 C. ﹣154D. ﹣1746.已知二次函数y=x2−2ax+a2−2a−4(a为常数)的图象与x轴有交点,且当x>3时,y随x的增大而增大,则a的取值范围是()A. a≥−2B. a<3C. −2≤a<3D. −2≤a≤3二、填空题7.抛物线y=(k−1)x2−x+1与x轴有交点,则k的取值范围是________.8.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a>1;④关于x.其中正确结论的序号是________.的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣1a9.下表中y与x的数据满足我们初中学过的某种函数关系,其函数表达式为________.10.如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是________.11.将抛物线y=(x-1)2-5关于y轴对称,再向右平移3个单位长度后顶点的坐标是________.三、解答题12.二次函数y=ax2+bx+c(a≠0)的图象过点A(﹣1,8)、B(2,﹣1),与y轴交于点C(0,3),求二次函数的表达式.13.已知二次函数y=ax2−2ax−3a的图象与x轴交于A、B两点,且经过C(1,-2),求点A、B的坐标和a的值.14.已知二次函数的顶点坐标为(2,−2),且其图象经过点(1,−1),求此二次函数的解析式.15.如图,抛物线y=-x2+bx+c与x轴负半轴交于点A,正半轴交于点B,OA=2OB=4.求抛物线的顶点坐标。
最新人教版数学九年级上册22.1二次函数图像性质 综合练习题(附答案)1、函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 。
2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。
(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位。
3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个)。
4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式。
5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积。
6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6。
求:(1)求出此函数关系式。
(2)说明函数值y 随x 值的变化情况。
7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值。
2、()k h x a y +-=2的图象与性质 1、请写出一个以(2, 3)为顶点,且开口向上的二次函数: 。
2、二次函数 y =(x -1)2+2,当 x = 时,y 有最小值。
3、函数 y =12 (x -1)2+3,当 x 时,函数值 y 随 x 的增大而增大。
4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到。
5、已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y 。
(1)确定下列抛物线的开口方向、对称轴和顶点坐标;(2)当x= 时,抛物线有最 值,是 。
初中数学二次函数的性质图像及应用练习题一、单选题1.设()()()1232,,1,,2,A y B y C y -是抛物线()213y x =-++上的三点,则123,,y y y 的大小关系为( ) A. 123y y y >> B. 132y y y >> C. 321y y y >>D. 312y y y >>2.对于函数()223y x =--,下列说法不正确的是( ) A.开口向下 B.对称轴是直线3x = C.最大值为0D.与y 轴不相交3.下列说法中错误的是( )A.在函数2y x =-中,当0x =时y 有最大值0B.在函数22y x =中,当0x >时y 随x 的增大而增大C.抛物线222,1,22y x y x y x ==-=-中,抛物线22y x =的开口最小,抛物线2y x =-的开口最大 D.不论a 是正数还是负数,抛物线2y ax =的顶点都是坐标原点4.二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列关系式中正确的是( )A.0ac >B.20b a +<C.240b ac >﹣D.0a b c -+<5.抛物线212y x =,2y x =,2y x =-的共同性质是: ①都是开口向上; ②都以点(0,0)为顶点; ③都以y 轴为对称轴; ④都关于x 轴对称. 其中正确的个数有( )A.1个B.2个C.3个D.4个 6.二次函数22(2)1y x =+-的图象是( )A.B. C. D.7.二次函数2y x bx =+的图象如图,对称轴为直线1x =.若关于x 的一元二次方程20x bx t +-=(t 为实数)在14-<的范围内有解,则t 的取值范围是( )A.1t ≥-B.13t -≤<C.18t -≤<D.38t <<A.0B.1C.2D.39.根据下列表格的对应值判断一元二次方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解的范围是( )B.3.3 3.4x <<C.3.4 3.5x <<D.3.5 3.6x <<10.已知抛物线2y ax bx c =++(,,a b c 为常数,0a ≠)经过点(1,0),(0,3)-,其对称轴在y 轴右侧,有下列结论: ①抛物线经过点(1,0);②方程22ax bx c ++=有两个不相等的实数根;③33a b -<+<.其中,正确结论的个数为( )A. 0B. 1C. 2D. 3二、解答题11.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x 米.(1)若苗圃园的面积为72平方米,求x 的值;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x 的取值范围.12.如图,抛物线2y x bx c =-++交x 轴于点(3,0)A -和点B ,交y 轴于点(0,3)C1.求抛物线的函数表达式2.若点P 在抛物线上,且4AOP BOC S S =△△,求点P 的坐标;3.如图b,设点Q 是线段AC 上的一动点,作DQ x ⊥轴,交抛物线于点D ,求线段DQ 长度的最大值 13.已知二次函数2221y x mx m =-+-.(1)当二次函数的图象经过坐标原点(0,0)O 时,求二次函数的解析式;(2)如图,当2m =时,该抛物线与y 轴交于点,C 顶点为,D 求,C D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点,P 使得PC PD +最短?若P 点存在.求出P 点的坐标,若P 点不存在.请说明理由.14.已知二次函数2y x bx c =-++的图象过点(),(30,0),1A C -.(1)求二次函数的解析式;(2)如图,点P 是二次函数图象的对称轴上的一个动点,二次函数的图象与y 轴交于点B ,当PB PC +最小时,求点P 的坐标;(3)在第一象限内的抛物线上有一点Q ,当QAB △的面积最大时,求点Q 的坐标. 三、填空题15.在二次函数23m y mx -=的图象的对称轴左侧,y 随x 的增大而增大,则m 的值为 .16.如图,这是小明在阅读一本关于函数的课外读物时看到的一段文字,则被墨迹污染的二次项系数是__________.17.已知二次函数的图象过点(32)--,,且它的顶点坐标为(23)--,,则此二次函数的解析式为 .18.某抛物线型拱桥如图所示,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加 m.参考答案1.答案:A解析:抛物线()2213y x =-++的开口向下,对称轴是直线1x =-,当1x >-时,y 随x 的增大而减小,∵1232,,1,,()2(,())A y B y C y -是抛物线()2213y x =-++上的三个点, ∴点A 关于对称轴x =−1的对称点是1(0,)y , ∴123y y y >>, 故选:A. 2.答案:D解析:由题意可得,二次函数的图象开口方向向下,对称轴是直线3x =,顶点坐标为(3)0,,函数的最大值为0,故A 、B 、C 说法正确;当0x =时,18y =-,∴函数()223y x =--与y 轴相交,∴D 说法错误 3.答案:C 解析: 4.答案:C 解析:5.答案:B 解析:抛物线221,2y x y x ==的开口向上,抛物线2y x =-的开口向下,①错误; 抛物线221,2y x y x ==,2y x =-的顶点均为(0,0),对称轴为y 轴,故②③正确,④错误.故选B.6.答案:C解析:20a =>,∴抛物线开口方向向上. 二次函数的解析式为22(2)1y x =+-,∴顶点坐标为(2,1)--,对称轴为2x =-.故选C.7.答案:C解析:二次函数2y x bx =+图象的对称轴为直线1x =,20x bx t +-=,22x x t ∴-=方程220x x t --=(t 为实数)在14x -<<的范围内有解,∴令1x =-,可求得()()21213t =--⨯-=,令4x =,可求得24248t =-⨯=. 而函数()22211y x x x =-=--,∴当1x =时,二次函数有最小值1. ∴t 的取值范围是18-≤.故选C8.答案:C与y 轴相交于(0)1,.故抛物线与坐标轴有2个交点. 9.答案:C解析:观察表格中的数据,当 3.4x =时,函数值0y <;当 3.5x =时,函数值0y >,则当3.4 3.5x <<时,存在x ,使得2y ax bx c =++的函数值为0,由此可判断一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的一个解的范围为3.4 3.5x <<.10.答案:C解析:2y ax bx c =++(,,a b c 为常数,0a ≠)经过点(1,0)-,其对称轴在y 轴右侧,故抛物线不能经过点(1,0),因此①错误;抛物线2y ax bx c =++(,,a b c 为常数,0a ≠)经过点(1,0),(0,3)-,其对称轴在y 轴右侧,可知抛物线开口向下,与直线2y =有两个交点,因此方程22ax bx c ++=有两个不相等的实数根,故②正确;对称轴在y 轴右侧,02b a ∴->0,0a b <∴>2y ax bx c =++经过点(1,0)-,0a b c ∴-+= 2y ax bx c =++经过点(0,3),3c ∴=3a b ∴-=-33b a a b ∴=+=-,3003a b ∴-<<<<,33a b ∴-<+<.故③正确.故选C.11.答案:1.根据题意得()30272x x -=,解得3x =12x =,∵30218x -≤,∴6x ≥,∴12x =.2. 依题意,得830218x ≤-≤.解得611x ≤≤. 面积215225(302)2()(611)22S x x x x =-=--+≤≤. ①当152x =时,S 有最大值,2252S =最大;②11x =时,S 有最大值,11(3022)88S =⨯-=最小. 3. 由题意得2230100x x -+≥, 30218x -≤, 610x ≤≤.解析:12.答案:1.解:把(3,0)A -,(0,3)C 代入2y x bx c =-++,得093{3b c c =--+=解得:2{3b c =-=故该抛物线的解析式为:223?y x x =--+2.由(1)知,该抛物线的解析式为223?y x x =--+,则易得(1,0)B ∵4AOP BOC S S =△△ ∴21132341322x x ⨯⨯--+=⨯⨯⨯ 整理,得2(1)0x +=或2270x x +-=解得1x =-或1x =-±则符合条件的点P 的坐标为: (1,4)-或()14-±-或()14-- 3.设直线AC 的解析式为y kx t =+,将(3,0),(0,3)A C -代入得30{3k t t -+==解得: 1{3k t ==即直线AC 的解析式为3y x =+设Q 点坐标为(,3)x x +,(30)x -≤≤,则D 点坐标为2(,23)x x x --+()2223923(3)324QD x x x x x x ⎛⎫=--+-+=--=-++ ⎪⎝⎭∴当32x =-时, QD 有最大值94解析:13.答案:(1)将点(0,0)O 代入二次函数2221y x mx m =-+-中,得201m =-.解得1m =±.∴二次函数的解析式为22y x x =+或22y x x =-.(2)当2m =时,二次函数的解析式为2243(2)1y x x x =-+=--.(0,3),(2,1)C D ∴-. (3)存在.连接CD ,根据“两点之间,线段最短”可知,当点P 为CD 与x 轴的交点时,PC PD +最短.设经过,C D 两点的直线解析式为(0)y kx b k =+≠,则将(0,3),(2,1)C D -代入解析式中,得2,3k b =-=.23y x ∴=-+.令0y =,可得230x -+=,解得32x =.∴当P 点坐标为3(,0)2时,PC PD +最短.解析:14.答案:(1)把点(),(30,0),1A C -代入2y x bx c =-++中,得10930b c b c --+=⎧⎨-++=⎩,解得23b c =⎧⎨=⎩,∴抛物线的解析式为223y x x =-++.(2)连接AB .与对称轴交于点P ,此时PB PC +最小.在223y x x =-++中,当0x =时,3y =,则(0,3)B .设直线AB 的解析式为y mx n =+.y mx n =+.303m n n +=⎧∴⎨=⎩,13m n =-⎧∴⎨=⎩,∴直线AB 的解析式为3y x =-+.2223(1)4y x x x =-++=--+,∴对称轴是直线1x =.当1x =时,132y =-+=,(1,2)P ∴.(3)连接,QA QB ,过点Q 作y 轴的平行线交直线AB 于点,E 设2(,23)Q m m m -++,则(,3)E m m -+.1()2QAB A B S QE x x ∴=⋅-△21[(23)(3)](30)2m m m =-++--+⨯-23327()228m =--+.∴当32m =时,QAB S △最大,此时315(,)24Q .解析: 15.答案:5解析:23my mx -=是二次函数,232m ∴-=且0m ≠,解得m =,在对称轴左侧的图象上,y 随x 的增大而增大,∴抛物线开口向下,m ∴=16.答案:-2 解析:17.答案:241y x x =++解析:设二次函数的解析式为()2230()y a x a =+-≠,把点(32)--,代入得()23232a -+-=-,解得1a =,所以二次函数的解析式为()222341y x x x =+-=++18.答案:4解析:以AB 为x 轴,AB 的垂直平分线为y 轴建立如图所示的平面直角坐标系依题意可得2020()()()02A B C -,,,,,,设经过A B C ,,三点的抛物线的解析式为()()22y a x x =-+,2()0C ,在此抛物线上,1∴此抛物线的解析式为水面下降∴下降之后的水面宽为42m。
《二次函数的图象和性质》同步练习题一、选择题(共10小题)1.下列函数中是二次函数的为 ()A .B .C .D .31y x =-231y x =-22(1)y x x =+-323y x x =+-2.二次函数与一次函数,它们在同一直角坐标系中的图象大致是2y ax bx c =++y ax c =+ ()A .B .C .D .3.已知一次函数的图象经过一、二、四象限,则二次函数的顶点y kx b =+2y kx bx k =+-在第 象限.()A .一B .二C .三D .四4.抛物线的顶点坐标是 22(3)2y x =-+()A .B .C .D .(3,2)-(3,2)(3,2)--(3,2)-5.已知,二次函数满足以下三个条件:①,②,③2y ax bx c =++24b c a >0a b c -+<,则它的图象可能是 b c <()A .B .C .D .6.把抛物线向下平移2个单位长度,再向右平移1个单位长度,所得抛物线是2(2)y x =+ ()A .B .C .D .2(2)2y x =++2(1)2y x =+-22y x =+22y x =-7.将抛物线平移得到抛物线,则这个平移过程正确的是 2y x =2(3)y x =+()A .向左平移3个单位B .向右平移3个单位C .向上平移3个单位D .向下平移3个单位8.二次函数的图象可能是 22y x x =-+()A .B .C .D .9.若点,,都在抛物线上,则下1(1,)M y -2(1,)N y 37(,)2P y 2241(0)y mx mx m m =-+++>列结论正确的是 ()A .B .C .D .123y y y <<132y y y <<312y y y <<213y y y <<10.二次函数与轴交点坐标为 23(2)5y x =--y ()A .B .C .D .(0,2)(0,5)-(0,7)(0,3)二、填空题(共4小题)11.请写出一个开口向上且与轴交点坐标为的抛物线的表达式: .y (0,1)12.若二次函数,当时,随的增大而减小,则的取值范围是 22()1y x k =-++2x - y x k .13.抛物线的对称轴是 .22247y x x =+-14.已知抛物线经过,,对于任意,点均不在抛2y ax bx c =++(0,2)A (4,2)B 0a >(,)P m n 物线上.若,则的取值范围是 .2n >m 三、解答题(共6小题)15.已知抛物线.2246y x x =--(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿轴向左平移个单位后经过原点,求的值.x (0)m m >m 16.如图,在中,,,,动点从点开始沿边ABC ∆90B ∠=︒12AB mm =24BC mm =P A向以的速度移动(不与点重合),动点从点开始沿边向以AB B 2/mm s B Q B BC C 的速度移动(不与点重合).如果、分别从、同时出发,那么经过多少4/mm s C P Q A B 秒,四边形的面积最小.APQC17.已知二次函数.243(0)y ax ax b a =-++≠(1)求出二次函数图象的对称轴;(2)若该二次函数的图象经过点,且整数,满足,求二次函数的表(1,3)a b 4||9a b <+<达式;(3)对于该二次函数图象上的两点,,,,设,当时,1(A x 1)y 2(B x 2)y 11t x t + 25x 均有,请结合图象,直接写出的取值范围.12y y t 18.在平面直角坐标系中,抛物线经过点和.xOy 2(0)y ax bx c a =++>(0,3)A -(3,0)B (1)求的值及、满足的关系式;c a b(2)若抛物线在、两点间从左到右上升,求的取值范围;A B a (3)结合函数图象判断,抛物线能否同时经过点、?若能,写出(1,)M m n -+(4,)N m n -一个符合要求的抛物线的表达式和的值,若不能,请说明理由.n 19.小明利用函数与不等式的关系,对形如12()()()0n x x x x x x --⋯->为正整数)的不等式的解法进行了探究.(n (1)下面是小明的探究过程,请补充完整:①对于不等式,观察函数的图象可以得到如表格:30x ->3y x =-的范围x 3x >3x <的符号y +-由表格可知不等式的解集为.30x ->3x >②对于不等式,观察函数的图象可以得到如表表格:(3)(1)0x x -->(3)(1)y x x =--的范围x 3x >13x <<1x <的符号y +-+由表格可知不等式的解集为 .(3)(1)0x x -->③对于不等式,请根据已描出的点画出函数的(3)(1)(1)0x x x --+>(3)(1)(1)y x x x =--+图象;观察函数的图象补全下面的表格:(3)(1)(1)y x x x =--+的范围x 3x >13x <<11x -<<1x <-的符号y +- 由表格可知不等式的解集为 .(3)(1)(1)0x x x --+>⋯⋯小明将上述探究过程总结如下:对于解形如为正整数)的12()()()0(n x x x x x x n --⋯⋯->不等式,先将,,按从大到小的顺序排列,再划分的范围,然后通过列表格的1x 2x ⋯n x x 办法,可以发现表格中的符号呈现一定的规律,利用这个规律可以求这样的不等式的解y 集.(2)请你参考小明的方法,解决下列问题:①不等式的解集为 .(6)(4)(2)(2)0x x x x ---+>②不等式的解集为 .2(9)(8)(7)0x x x --->20.函数是二次函数.223y mx mx m =--(1)如果该二次函数的图象与轴的交点为,那么 ;y(0,3)m(2)在给定的坐标系中画出(1)中二次函数的图象.答案一、选择题(共10小题)1.解:、是一次函数,故错误;A 31y x =-A 、是二次函数,故正确;B 231y x =-B 、不含二次项,故错误;C 22(1)y x x =+-C 、是三次函数,故错误;D 323y x x =+-D 故选:.B 2.解:一次函数和二次函数都经过轴上的,y (0,)c 两个函数图象交于轴上的同一点,排除、;∴y B C 当时,二次函数开口向上,一次函数经过一、三象限,排除;0a >D 当时,二次函数开口向下,一次函数经过二、四象限,正确;0a <A 故选:.A 3.解:一次函数的图象经过一、二、四象限,y kx b =+,,0k ∴<0b >△,2224()40b k k b k =--=+>抛物线与轴有两个交点,∴x、异号,k b 抛物线的对称轴在轴右侧,∴y 二次函数的顶点在第一象限.∴2y kx bx k =+-故选:.A 4.解:抛物线的顶点坐标是,22(3)2y x =-+(3,2)故选:.B 5.解:二次函数满足以下三个条件:①,②,③, 2y ax bx c =++24b c a >0a b c -+<b c <由①可知当时,则抛物线与轴有两个交点,当时,∴0a >240b ac ->x 0a <240b ac -<则抛物线与轴无交点;x 由②可知:当时,,1x =-0y <由③可知:,0b c -+>,必须,0a b c -+< ∴0a <符合条件的有、,∴C D 由的图象可知,对称轴直线,,,抛物线交的负半轴,C 02b x a=->0a <0b ∴>y ,则,0c <b c >由的图象可知,对称轴直线,,,抛物线交的负半轴,D 02b x a=-<0a <0b ∴<y ,则有可能,0c <b c <故满足条件的图象可能是,D 故选:.D 6.解:抛物线的顶点坐标是,向下平移2个单位长度,再向右平移1个单2(2)y x =+(2,0)-位长度后抛物线的顶点坐标是,(1,2)--所以平移后抛物线的解析式为:2(1)2y x =+-故选:.B 7.解:抛物线的顶点坐标为,抛物线的顶点坐标为,2y x =(0,0)2(3)y x =+(3,0)-点向左平移3个单位可得到,(0,0)(3,0)-将抛物线向左平移3个单位得到抛物线.∴2y x =2(3)y x =+故选:.A 8.解:,,22y x x =-+ 0a <抛物线开口向下,、不正确,∴A C 又对称轴,而的对称轴是直线, 212x =-=-D 0x =只有符合要求.∴B 故选:.B 9.解:观察二次函数的图象可知:.132y y y <<故选:.B 10.解:23(2)5y x =-- 当时,,∴0x =7y =即二次函数与轴交点坐标为,23(2)5y x =--y (0,7)故选:.C 二、填空题(共4小题)11.解:抛物线开口方向向上,且与轴的交点坐标为,y (0,1)抛物线的解析式为.∴21y x =+故答案为.21y x =+12.解:,22()1y x k =-++对称轴为,∴x k =-,20a =-< 抛物线开口向下,∴在对称轴右侧随的增大而减小,∴y x 当时,随的增大而减小,2x - y x ,解得,2k ∴-- 2k 故.2k 13.解:抛物线的对称轴是:,22247y x x =+-24622x =-=-⨯故.6x =-14.解:依照题意,画出图形,如图所示.当时,或,2n >0m <4m >当时,若点均不在抛物线上,则.∴2n >(,)P m n 04m 故.04m三、解答题(共6小题)15.解:(1)2246y x x =--22(2)6x x =--,22(1)8x =--故该函数的顶点坐标为:;(1,8)-(2)当时,,0y =202(1)8x =--解得:,,11x =-23x =即图象与轴的交点坐标为:,,x (1,0)-(3,0)故该抛物线沿轴向左平移3个单位后经过原点,x 即.3m =16.解:设经过秒,四边形的面积最小x APQC 由题意得,,,2AP x =4BQ x =则,122PB x =-的面积PBQ ∆12BQ PB =⨯⨯1(122)42x x =⨯-⨯,24(3)36x =--+当时,的面积的最大值是,3x s =PBQ ∆236mm此时四边形的面积最小.APQC 17.解:(1)二次函数图象的对称轴是;422a x a-=-=(2)该二次函数的图象经过点,(1,3),433a a b ∴-++=,3b a ∴=把代入,3b a =4||9a b <+<得.43||9a a <+<当时,,则.0a >449a <<914a <<而为整数,a ,则,2a ∴=6b =二次函数的表达式为;∴2289y x x =-+当时,,则.0a <429a <-<922a -<<-而为整数,a 或,3a ∴=-4-则对应的或,9b =-12-二次函数的表达式为或;∴23126y x x =-+-24169y x x =-+-(3)当时,均有,25x 12y y 二次函数的对称轴是直线,243(0)y ax ax b a =-++≠2x =,12y y ①当时,有,即∴0a >12|2||2|x x -- 12|2|2x x -- ,212222x x x ∴--- ,2124x x x ∴- ,25x ,241x ∴-- 该二次函数图象上的两点,,,,1(A x 1)y 2(B x 2)y 设,当时,均有,11t x t + 25x 12y y ∴115t t -⎧⎨+⎩ .14t ∴- ②当时,,即0a <12|2||2|x x -- 12|2|2x x -- ,或,1222x x ∴-- 1222x x -- ,或12x x ∴ 124x x - ,25x ,241x ∴--该二次函数图象上的两点,,,,1(A x 1)y 2(B x 2)y 设,当时,均有,11t x t + 25x 12y y 比的最大值还大,或比的最小值还小,这是不存在的,t ∴2x 1t + 24x -故时,的值不存在,0a <t 综上,当时,.0a >14t - 18.解:(1)抛物线经过点和. 2(0)y ax bx c a =++>(0,3)A -(3,0)B ,∴3093c a b c-=⎧⎨=++⎩,.3c ∴=-310a b +-=(2)由1可得:,2(13)3y ax a x =+--对称轴为直线,132a x a -=-抛物线在、两点间从左到右上升,当时,对称轴在点左侧,如图: A B 0a >A即:,解得:,1302a a -- 13a.、两点间从左到右上升,103a ∴< A B 当时,抛物线在、两点间从左到右上升,∴103a < A B (3)抛物线不能同时经过点、.(1,)M m n -+(4,)N m n -理由如下:若抛物线同时经过点、.则对称轴为:,(1,)M m n -+(4,)N m n -(1)(4)322m m x -++-==由抛物线经过点可知抛物线经过,与抛物线经过相矛盾,A (3,3)-(3,0)B 故:抛物线不能同时经过点、(1,)M m n -+(4,)N m n -19.解:(1)②由表格可知不等式的解集为或,(3)(1)0x x -->3x >1x <故或;3x >1x <③图象如右图所示,当时,,当时,,11x -<<(3)(1)(1)0x x x --+>1x <-(3)(1)(1)0x x x --+<由表格可知不等式的解集为或,(3)(1)(1)0x x x --+>3x >11x -<<故,,或;+-3x >11x -<<(2)①不等式的解集为或或,(6)(4)(2)(2)0x x x x ---+>6x >24x <<2x <-故或或;6x >24x <<2x <-②不等式的解集为或且,2(9)(8)(7)0x x x --->9x >8x <7x ≠故或且9x >8x <7x ≠20.解:(1)该函数的图象与轴交于点, y (0,3)把,代入解析式得:,∴0x =3y =33m -=解得,1m =-故答案为;1-(2)由(1)可知函数的解析式为,223y x x =-++,2223(1)4y x x x =-++=--+ 顶点坐标为;∴(1,4)列表如下:x 2-1-01234y5-034305-描点;画图如下:。
练习一21.二次函数的图像开口向____,对称轴是____,顶点坐标是___yax_,图像有最___点,x___时,y随x的增大而增大,x___时,y随x的增大而减小。
12222.关于,yx,y3x的图像,下列说法中不正确的是()yx3A.顶点相同B.对称轴相同C.图像形状相同D.最低点相同223.两条抛物线yx与在同一坐标系内,下列说法中不正确的是()yxA.顶点相同B.对称轴相同C.开口方向相反D.都有最小值24.在抛物线上,当y<0时,x的取值范围应为()yxA.x>0B.x<0C.x≠0D.x≥0225.对于抛物线yx与yx下列命题中错误的是()xA.两条抛物线关于轴对称B.两条抛物线关于原点对称C.两条抛物线各自关于y轴对称D.两条抛物线没有公共点26.抛物线y=-bx+3的对称轴是___,顶点是___。
127.抛物线y=-(x2)-4的开口向___,顶点坐标___,对称轴___,x_2__时,y随x的增大而增大,x___时,y随x的增大而减小。
28.抛物线y2(x1)3的顶点坐标是()A.(1,3)B.(1,3)C.(1,3)D.(1,3)为()9.已知抛物线的顶点为(1,2),且通过达式(1,10),则这条抛物线的表22A.y=3(x1)-2B.y=3(x1)+222C.y=3-2D.y=-3-2(x1)(x1)210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达yax式为()22A.y=a+3B.y=a-3(x2)(x2)22C.y=a(x2)+3D.y=a(x2)-324411.抛物线的顶点坐标是()yxxA.(2,0)B.(2,-2)C.(2,-8)D.(-2,-8)2212.对抛物线y=2(x2)-3与y=-2(x2)+4的说法不正确的是()A.抛物线的形状相同B.抛物线的顶点相同C.抛物线对称轴相同D.抛物线的开口方向相反213.函数y=a+c与y=ax+c(a≠0)在同一坐标系内的图像是图中的()x243243214.化yxx为y=xx为ya(x h)k的形式是____,图像的开口向____,顶点是____,对称轴是____。
2020年人教版九年级上册同步练习22.1 二次函数的图象和性质一.选择题(共10小题)1.下列函数属于二次函数的是()A.y=x﹣B.y=(x﹣3)2﹣x2C.y=﹣x D.y=2(x+1)2﹣12.当函数y=(a﹣1)x2+bx+c是二次函数时,a的取值为()A.a=1B.a=﹣1C.a≠﹣1D.a≠13.下列抛物线的图象,开口最大的是()A.y=x2B.y=4x2C.y=﹣2x2D.无法确定4.抛物线y=(x﹣3)2﹣5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)5.抛物线y=x2+4x+7的对称轴是()A.直线x=4B.直线x=﹣4C.直线x=2D.直线x=﹣2 6.对于二次函数y=2(x﹣1)2﹣8,下列说法正确的是()A.图象开口向下B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小D.图象的对称轴是直线x=﹣17.下列对二次函数y=x2﹣2x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.对称轴右侧部分下降8.一次函数y=acx+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是()A.B.C.D.9.二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.abc>0B.a+b+c=0C.4a﹣2b+c<0D.b2﹣4ac<0 10.二次函数y=﹣x2+ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4B.当x>2.5时,y随x的增大而减小C.当x=﹣1时,b>5D.当b=8时,函数最大值为10二.填空题(共8小题)11.若y=(a+2)x|a|+1是以x为自变量的二次函数,则a=.12.抛物线y=3(x﹣1)2+8的顶点坐标为.13.二次函数y=x2﹣16x﹣8的最小值是.14.当二次函数y=﹣x2+4x﹣6有最大值时,x=.15.二次函数y=x2﹣4x+5﹣m2的图象过点(0,4),则m的值为.16.将抛物线y=2(x+3)2+4先向右平移1个单位长度,再向下平移5个单位长度,得到的抛物线的解析式为.17.已知点P1(﹣2,y1),P2(2,y2)在二次函数y=(x+1)2﹣2的图象上,则y1y2.(填“>”,“<”或“=”)18.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x =2,下列结论:①4a+b=0;②9a+c>3b;③,3a+c>0;④当x>﹣1时,y的值随x 值的增大而增大;⑤4a+2b≥am2﹣bm(m为任意实数).其中正确的结论有.(填序号)三.解答题(共6小题)19.已知平面直角坐标系xOy中,抛物线y═x2﹣mx+m2+m.(1)若该抛物线经过原点,求m的值;(2)求证该抛物线的顶点在直线y=x上;(3)若点A(﹣4,0),B(0,2),当该抛物线与线段AB只有一个公共点时,结合函数图象,直接写出m的取值范围.20.在平面直角坐标系xOy中,抛物线y=﹣x2+2bx+b2+1的对称轴与x轴交于点A,将点A 向左平移b个单位,再向上平移3﹣b2个单位,得到点B.(1)求点B的坐标(用含b的式子表示);(2)当抛物线经过点(0,2),且b>0时,求抛物线的表达式;(3)若抛物线与线段AB恰有一个公共点,结合图象,直接写出b的取值范围.21.把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.22.已知抛物线y=ax2﹣2ax﹣3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范围.23.已知二次函数y=﹣x2+bx+c的图象与直线y=﹣x+3相交于x轴上的点A,y轴上的点B.顶点为P.(1)求这个二次函数的解析式;(2)现将抛物线向左平移m个单位,当抛物线与△PBA有且只有一个公共点时,求m 的值.24.已知:如图,抛物线y=ax2+4x+c经过原点O(0,0)和点A(3,3),P为抛物线上的一个动点,过点P作x轴的垂线,垂足为B(m,0),并与直线OA交于点C.(1)求抛物线的解析式;(2)当点P在直线OA上方时,求线段PC的最大值.参考答案一.选择题(共10小题)1.解:A.自变量x的次数不是2,故A错误;B.y=(x﹣3)2﹣x2整理后得到y=﹣6x+9,是一次函数,故B错误C.由可知,自变量x的次数不是2,故C错误;D.y=2(x+1)2﹣1是二次函数的顶点式解析式,故D正确.故选:D.2.解:由题意得:a﹣1≠0,解得:a≠1,故选:D.3.解:∵二次函数中|a|的值越小,函数图象的开口越大,又∵||<|﹣2|<|4|,∴抛物线y=x2的图象开口最大,故选:A.4.解:抛物线y=(x﹣3)2﹣5的顶点坐标是(3,﹣5),故选:C.5.解:因为a=1,b=4,c=7,所以对称轴是直线x=﹣=﹣=﹣2,故选:D.6.解:A、y=2(x﹣1)2﹣8,∵a=2>0,∴图象的开口向上,故本选项错误;B、当x>1时,y随x的增大而增大;故本选项错误;C、当x<1时,y随x的增大而减小,故本选项正确;D、图象的对称轴是直线x=1,故本选项错误.故选:C.7.解:y=x2﹣2x=(x﹣1)2﹣1,A.由a=1>0知抛物线开口向上,此选项错误;B.此抛物线的对称轴为直线x=1,此选项错误;C.当x=0时,y=0,此抛物线经过原点,此选项正确;D.由a>0且对称轴为直线x=1知,当x>1,即对称轴右侧时,y随x的增大而增大,此选项错误;故选:C.8.解:A、由抛物线可知,a>0,b<0,c>0,则ac>0,由直线可知,ac>0,b>0,故本选项错误;B、由抛物线可知,a>0,b>0,c>0,则ac>0,由直线可知,ac>0,b>0,故本选项正确;C、由抛物线可知,a<0,b>0,c>0,则ac<0,由直线可知,ac<0,b<0,故本选项错误;D、由抛物线可知,a<0,b<0,c>0,则ac<0,由直线可知,ac>0,b>0,故本选项错误.故选:B.9.解:由图象可得,a>0,b<0,c<0,∴abc>0,故选项A正确;当x=1时,y=a+b+c<0,故选项B错误;当x=﹣2时,y=4a﹣2b+c>0,故选项C错误;该函数图象与x轴两个交点,则b2﹣4ac>0,故选项D错误;故选:A.10.解:∵二次函数y=﹣x2+ax+b∴对称轴为直线x=﹣=2∴a=4,故结论A正确;∵对称轴为直线x=2且图象开口向下,∴当x>2.5时,y随x的增大而减小,故结论B正确;当x=﹣1时,由图象知此时y>0即﹣1﹣4+b>0∴b>5,故结论C正确;当b=8时,y=﹣x2+4x+8=﹣(x﹣2)2+12∴函数有最大值12,故结论D不正确;故选:D.二.填空题(共8小题)11.解:由题意得:|a|=2,且a+2≠0,解得:a=2,故答案为:2.12.解:∵抛物线y=3(x﹣1)2+8是顶点式,∴顶点坐标是(1,8).故答案为:(1,8).13.解:y=x2﹣16x﹣8=(x﹣8)2﹣72,由于函数开口向上,因此函数有最小值,且最小值为﹣72,故答案为:﹣72.14.解:∵y=﹣x2+4x﹣6,=﹣(x2﹣4x+4)+4﹣6,=﹣(x﹣2)2﹣2,∴当x=2时,二次函数取得最大值.故答案为:2.15.解:∵根二次函数y=x2﹣4x+5﹣m2的图象过点(0,4),∴5﹣m2=4,解得m=±1.故答案为±1.16.解:将抛物线y=2(x+3)2+4先向右平移1个单位长度,再向下平移5个单位长度可得:y=2(x+3﹣1)2+4﹣5,即y=2(x+2)2﹣1,故答案为y=2(x+2)2﹣1.17.解:当x=﹣2时,y1=(﹣2+1)2﹣2=﹣1;当x=2时,y2=(2+1)2﹣2=7.∵﹣1<7,∴y1<y2.故答案为<.18.解:抛物线过点(﹣1,0),对称轴为直线x=2,因此可得,抛物线与x轴的另一个交点为(5,0),a﹣b+c=0,x=﹣=2,即4a+b =0,因此①正确;当x=﹣3时,y=9a﹣3b+c<0,即9a+c<3b,因此②不正确;当x=5时,y=25a+5b+c=0,又b=﹣4a,所以5a+c=0,而a<0,因此有3a+c>0,故③正确;在对称轴的左侧,即当x<2时,y随x的增大而增大,因此④不正确;当x=2时,y最大=4a+2b+c,当x=m时,y=am2+bm+c,因此有4a+2b≥am2+bm,故⑤正确;综上所述,正确的结论有:①③⑤,故答案为:①③⑤.三.解答题(共6小题)19.解:(1)∵抛物线经过原点,∴m2+m=0,解得m1=0,m2=﹣2;(2)∵y═x2﹣mx+m2+m=(x﹣m)2+m,∴该抛物线的顶点坐标为(m,m),∴抛物线的顶点直线直线y=x上;(3)设直线AB的解析式为y=kx+b,把点A(﹣4,0),B(0,2)代入得,解得,∴直线AB的解析式为y=+2,令x+2=x2﹣mx+m2+m,整理得x2﹣(m+)x+m2+m﹣2=0,△=(m+)2﹣4×(m2+m﹣2)=0,解得m=,∵此时对称轴为x=﹣=>0,故舍去;把A(﹣4,0)代入y=x2﹣mx+m2+m得,m2+5m+8=0,解得m=﹣2或﹣8;把B(0,2)代入y=x2﹣mx+m2+m得,m2+m+﹣2=0,解得m=﹣1,由图象可知,该抛物线与线段AB只有一个公共点时,﹣8≤m≤﹣1﹣或﹣2≤m≤﹣1+.20.解:(1)由题意得抛物线y=﹣x2+2bx+b2+1的对称轴为,∴点A坐标为(b,0),∴点B坐标为(0,3﹣b2)(2)把(0,2)代入y=﹣x2+2bx+b2+1中,解得b=±1.∵b>0,∴b=1.∴抛物线的表达式为y=﹣x2+2x+2;(3)当抛物线过点B时,抛物线AB有一个公共点,∴b2+1=3﹣b2∴b=±1,如图:当b>1时,抛物线与线段AB无交点;当b=1时,抛物线与线段AB有一个交点;当﹣1<b<1时,抛物线与线段AB有一个交点;当b=﹣1时,抛物线与线段AB有一个交点;当b<﹣1时,抛物线与线段AB无交点.∴若抛物线与线段AB恰有一个公共点,则﹣1≤b≤1.21.解:(1)∵y=x2+2x+3=(x+1)2+2,∴把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2:y=(x+1﹣4)2+2﹣5,即y=(x﹣3)2﹣3,∴抛物线C2的函数关系式为:y=(x﹣3)2﹣3.(2)动点P(a,﹣6)不在抛物线C2上,理由如下:∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴函数的最小值为﹣3,∵﹣6<﹣3,∴动点P(a,﹣6)不在抛物线C2上;(3)∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴抛物线的开口向上,对称轴为x=3,∴当x<3时,y随x的增大而减小,∵点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0<3,22.解:(1)∵抛物线y=ax2﹣2ax﹣3+2a2=a(x﹣1)2+2a2﹣a﹣3.∴抛物线的对称轴为直线x=1;(2)∵抛物线的顶点在x轴上,∴2a2﹣a﹣3=0,解得a=或a=﹣1,∴抛物线为y=x2﹣3x+或y=﹣x2+2x﹣1;(3)∵抛物线的对称轴为x=1,则Q(3,y2)关于x=1对称点的坐标为(﹣1,y2),∴当a>0,﹣1<m<3时,y1<y2;当a<0,m<﹣1或m>3时,y1<y2.23.解:(1)∵直线y=﹣x+3交于x轴上的点A,y轴上的点B,∴A(3,0),B(0,3),把A、B的坐标代入y=﹣x2+bx+c得,解得,∴二次函数的解析式为y=﹣x2+2x+3;(2)当抛物线经过点B时,抛物线与△PBA有且只有一个公共点,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴P(1,4),将抛物线向左平移m个单位,P对应点为(1﹣m,4),∴平移后的抛物线解析式为y=﹣(x﹣1+m)2+4,把B(0,3)代入得,3═﹣(﹣1+m)2+4,解得m1=2,m2=0(舍去),故m的值为2.24.解:(1)把O(0,0),A(3,3)代入得:,解得:,则抛物线解析式为y=﹣x2+4x;(2)设直线OA解析式为y=kx,把A(3,3)代入得:k=1,即直线OA解析式为y=x,∴P,C,B三点纵坐标相等,∵B(m,0),∴把x=m代入y=x中得:y=m,即C(m,m),把x=m代入y=﹣x2+4x中得:y=﹣m2+4m,即P(m,﹣m2+4m),∵P在直线OA上方,∴PC=﹣m2+4m﹣m=﹣m2+3m(0<m<3),当m=﹣=时,PC取得最大值,最大值为=.。
22.1. 2 二次函数y=ax²的图像和性质1.抛物线y=2x2,y=-2x2,y=21x2的共同性质是( )A.开口向上B.对称轴是y轴C.都有最高点D.y随x的增大而增大2.关于函数y=3x2的性质表述正确的一项是( )A.无论x为任何实数,y的值总为正B.当x值增大时,y的值也增大C.它的图象关于y轴对称D.它的图象在第一、三象限内3.已知点(-1,y1),(2,y2),(-3,y3)都在函数y=x2的图象上,则( )A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y1<y34.已知二次函数y=(m-2)x2的图象开口向下,则m的取值范围是____.5.下列四个二次函数:①y=x2,②y=-2x2,③y=21x2,④y=3x2,其中抛物线开口从大到小的排列顺序是____.6. 已知是二次函数,且当x>0时,y随x增大而增大,则k= .7.分别求出符合下列条件的抛物线y=ax2的解析式:(1)经过点(-3,2);(2)与y=31x2开口大小相同,方向相反.8.二次函数y=ax2与直线y=2x-1的图象交于点P(1,m).(1)求a,m的值;(2)写出二次函数的表达式,并指出x取何值时,该表达式的y随x的增大而增大?(3)指出抛物线的顶点坐标和对称轴.9.已知 y =(m+1)是二次函数,且其图象开口向上,求m的值和函数解析式10.已知二次函数y= .(1)判断点A(2,4)在二次函数图象上吗?(2)请分别写出点A关于x轴的对称点B的坐标,关于y轴的对称点C的坐标,关于原点O的对称点D的坐标;(3)点B、C、D在二次函数y=x2的图象上吗?在二次函数y=-x2的图象上吗?11.已知二次函数y=2x2.(1)若点(-2,y1)与(3,y2)在此二次函数的图象上,则 y1_____ y2;(填“>”“=”或“<”);(2)如图,此二次函数的图象经过点(0,0),长方形ABCD的顶点A、B在x轴上,C、D 恰好在二次函数的图象上,B点的横坐标为2,求图中阴影部分的面积之和.参考答案1.B2.C3.A4.m<25.③①②④6. k=27.解:(1)∵y=ax2过点(-3,2),∴2=a×(-3)2,则a=92.∴解析式为y=92x2.(2)∵y=ax2与抛物线y=31x2开口大小相同,方向相反,∴a=-31. ∴解析式为y=-31x2.8.解:(1)将(1,m)代入y=2x-1,得m=2×1-1=1.所以P点坐标为(1,1).将P点坐标(1,1)代入y=ax2,得1=a×12,得a=1.即a=1,m=1.(2)二次函数的表达式:y=x2,当x>0时,y随x的增大而增大.(3)顶点坐标为(0,0),对称轴为y轴.9.解: 依题意有:解②得:m1=-2, m2=1由①得:m>-1∴ m=1此时,二次函数为: y=2.10.解:(1)当x=2时,y==4,所以A(2,4)在二次函数图象上;(2)点A关于x轴的对称点B的坐标为(2,-4),点A关于y轴的对称点C的坐标为(-2,4),点A关于原点O的对称点D的坐标为(-2,-4);(3)当x=-2时,y==4,所以C点在二次函数y=的图象上;当x=2时,y=-=-4,所以B点在二次函数y=-的图象上;当x=-2时,y=-=-4,所以D点在二次函数y=-的图象上11. (1)<(2)解:∵二次函数y=2x2的图象经过点B,∴当x=2时,y=2×22=8.∵抛物线和长方形都是轴对称图形,且y轴为它们的对称轴,∴OA=OB,∴在长方形ABCD内,左边阴影部分面积等于右边空白部分面积,∴S阴影部分面积之和=2×8=16.。
初中数学二次函数的图象与性质基础练习题2(附答案详解) 1.二次函数y=(x-2)2+1的对称轴表达式是 A .x=2B .x=-2C .x=1D .x=-12.设A(-4,y 1),B(-3,y 2),C(0,y 3)是抛物线y =(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( ) A .y 1>y 2>y 3 B .y 1>y 3>y 2 C .y 3>y 2>y 1D .y 3>y 1>y 23.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论:①abc<0;②2a +b=0;③当x=﹣1或x=3时,函数y 的值都等于0;④4a +2b +c >0,其中正确结论的个数是( )A .1个B .2个C .3个D .4个4.将抛物线y=﹣(x+1)2+3向右平移2个单位后得到的新抛物线的表达式为( ) A .y=﹣(x+1)2+1B .y=﹣(x ﹣1)2+3C .y=﹣(x+1)2+5D .y=﹣(x+3)2+35.已知点()11,y -、213,2y ⎛⎫- ⎪⎝⎭、31,2y ⎛⎫⎪⎝⎭在函数23612y x x =++的图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>6.如图,在平面直角坐标系中,A (1,2),B (1,﹣1),C (2,2),抛物线y=ax 2(a≠0)经过△ABC 区域(包括边界),则a 的取值范围是( )A .a≤﹣1或a≥2B .12≤a≤2 C .﹣1≤a <0或1<a≤2D .﹣1≤a <0或0<a≤27.如图,抛物线的顶点坐标为P (2,5),则函数y 随x 的增大而减小时x 的取值范围为( )A .x >2B .x <2C .x >6D .x <68.函数2122y x x =-++有最值为( ) A .最大值32B .最小值32C .最大值12-D .最小值12-9.在同一直角坐标系中,函数y=2x +3与y=mx(0)m ≠的图象可能是( ) A . B . C . D .10.二次函数y =ax 2+bx +c (a ≠0)的图象所示,对称轴为x =1,给出下列结论:①abc >0;②当x >2时,y >0;③3a +c >0;④3a+b>0.其中正确的结论有( )A .①②B .①④C .①③④D .②③④11.将二次函数y =x 2的图象向右平移1个单位,再向上平移3个单位,得到的新图象的函数表达式是____.12.将抛物线y=(x+m )2向右平移2个单位后,对称轴是y 轴,那么m 的值是_____. 13.二次函数2y 2x 4x 1=--的图象是由2y 2x bx c =++的图象向左平移1个单位,再向下平移2个单位得到的,则b =________,c =________. 14.抛物线2(1)y x =-的顶点坐标是__________.15.一条抛物线的顶点是A (2,1),且经过点B (1,0),则该抛物线的函数表达式是_____.16.二次函数222y x x -=-,当x ________时,y 有________值,这个值为________;当x ________时,y 随x 的增大而增大;当x ________时,y 随x 的增大而减小. 17.已知函数y=﹣2x 2+x ﹣4,当x________时,y 随x 增大而减少.18.抛物线y=﹣x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是_____.19.如图,二次函数()20y ax bx c a =++≠的图象经过点()1,2-且与x 轴交点的横坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①0b <;②0a b c ++<;③420a b c -+<;④20a b -<,其中正确的有________.(填代号)20.将抛物线y =﹣5x 2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:_____21.观察表格:根据表格解答下列问题:(l) a =______,b =_____,c =_____;(2) 在下图的直角坐标系中画出函数y =ax 2+bx +c 的图象,并根据图象,直接写出当x 取什么实数时,不等式ax 2+bx +c > -3成立;(3)该图象与x 轴两交点从左到右依次分别为A 、B ,与y 轴交点为C ,求过这三个点的外接圆的半径.22.如图,顶点为C 的抛物线y=ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,连接OC 、OA 、AB ,已知OA=OB=2,∠AOB=120°. (1)求这条抛物线的表达式;(2)过点C作CE⊥OB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与△AOE相似,求点P的坐标;(3)若将(2)的线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A、E′B,求E′A+12E′B的最小值.23.当行驶中的汽车撞到物体时,汽车的损坏程度通常用“撞击影响”来衡量.汽车的撞击影响I可以用汽车行驶速度v(km/min)来表示,下表是某种型号汽车的行驶速度与撞击影响的试验数据:v(km/min) 0 1 2 3 4I 0 2 8 18 32(1)请根据上表中的数据,在直角坐标系中描出坐标(v,I)所对应的点,并用光滑曲线将各点连接起来;(2)填写下表,并根据表中数据的呈现规律,猜想用v表示I的二次函数表达式;v(km/min) 1 2 3 42 v I 12121212(3)当汽车的速度分别是1.5 km/min,2.5 km/min,4.5 km/min时,利用你得到的撞击影响公式,计算撞击影响分别是多少?24.二次函数2y ax bx c =++的图象过()3,0A -,()1,0B ,()0,3C ,点D 在函数图象上,点C ,D 是二次函数图象上的一对对称点,一次函数图象过点B ,D ,求:()1一次函数和二次函数的解析式;() 2写出使一次函数值大于二次函数值的x 的取值范围.25.已知抛物线2y ax bx c =++与y 轴交于点()0,3a ,对称轴为1x =.()1试用含a 的代数式表示b 、c .()2当抛物线与直线1y x =-交于点()2,1时,求此抛物线的解析式. ()3求当()6b c +取得最大值时的抛物线的顶点坐标.26.如图,已知抛物线y=ax 2+32x+4的对称轴是直线x=3,且与轴相交于A 、B 两点(B 点在A 点的右侧),与轴交于C 点.(1)A 点的坐标是 ;B 点坐标是 ; (2)直线BC 的解析式是: ;(3)点P 是直线BC 上方的抛物线上的一动点(不与B 、C 重合),是否存在点P ,使△PBC 的面积最大.若存在,请求出△PBC 的最大面积,若不存在,试说明理由; (4)若点M 在x 轴上,点N 在抛物线上,以A 、C 、M 、N 为顶点的四边形是平行四边形时,请直接写出点M 点坐标.27.如图,抛物线y=ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上,其中A (﹣2,0),B (﹣1,﹣3). (1)求抛物线的解析式;(2)点M 为y 轴上任意一点,当点M 到A 、B 两点的距离之和为最小时,求此时点M 的坐标.28.己知二次函数221y x x =--.(1)写出其顶点坐标为 ,对称轴为 ; (2)在右边平面直角坐标系内画出该函数图像; (3)根据图像写出满足2y >的x 的取值范围 .参考答案1.A 【解析】 【分析】根据二次函数2()y a x b c =-+的对称轴是直线x=b,顶点坐标分别为 (b, c) 判断即可. 【详解】解:二次函数y=(x-2)2+1的对称轴为直线x=2, 故选:A. 【点睛】本题主要考查二次函数的性质. 2.A 【解析】 【分析】根据二次函数的对称性,可利用对称性,找出点A 的对称点A′,再利用二次函数的增减性可判断y 值的大小. 【详解】∵函数的解析式是y=-(x+1)2+a , ∴对称轴是x=-1,∴点A 关于对称轴的点A′是(-2,y 1),那么点A′、B 、C 都在对称轴的左边,而对称轴左边y 随x 的增大而减小, 于是y 1>y 2>y 3. 故选A . 【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断. 3.D 【解析】根据函数图象,我们可以得到以下信息:a <0,c >0,对称轴x=1,b >0,与x 轴交于(﹣1,0)(3,0)两点.①abc <0,正确; ②∵对称轴x=﹣2ba=1时, ∴2a+b=0,正确;③当x=﹣1或x=3时,函数y 的值都等于0,正确; ④当x=2时,y=4a+2b+c >0,正确; 故选D . 4.B 【解析】解:∵将抛物线y =﹣(x +1)2+3向右平移2个单位,∴新抛物线的表达式为y =﹣(x +1﹣2)2+3=﹣(x ﹣1)2+3.故选B . 5.C 【解析】 【分析】)把点()11,y -、213,2y ⎛⎫- ⎪⎝⎭、31,2y ⎛⎫⎪⎝⎭代入2361y x x =++,求出1y ,2y ,3y 的值,比较即可得到大小关系. 【详解】把点()11,y -、213,2y ⎛⎫- ⎪⎝⎭、31,2y ⎛⎫⎪⎝⎭代入23612y x x =++得, y 1=9,y 2=3274,y 3=3154, ∴1y ,2y ,3y 的大小关系为23y y >>1y . 故选C. 【点睛】本题考查了二次函数的性质,二次函数图像上的点的坐标满足二次函数解析式. 6.D 【解析】 【分析】分a<0和a>0两种情况,确定开口最小经过的点,代入解析式求出a 的取值范围即可. 【详解】解:若a<0,则抛物线开口向下,开口最小过点B(1,-1)∴-1=a×12∴a=-1∴-1≤a<0若a>0,则抛物线开口向上,开口最小过点A(1,2)∴2=a×12∴a=2∴0<a≤2∴a的取值范围是-1≤a<0或0<a≤2故选D【点睛】本题考查了二次函数的图象,有一定难度,进行分类讨论是解题的关键.7.A【解析】【分析】根据抛物线的顶点坐标是P(2,5),可得抛物线的对称轴为x=2;依据图象分析对称轴的左,右两侧是上升还是下降,即可确定x的取值范围. 【详解】∵抛物线的顶点坐标是P(2,5),∴对称轴为x=2.∵图象在对称轴x=2的右侧,是下降的,即函数y随自变量x的增大而减小,∴x的取值范围是x>2.【点睛】本题考查了二次函数的图象与性质,解题的关键是掌握二次函数的性质. 8.A【解析】【分析】把二次函数解析式整理成顶点式形式,然后根据二次函数的最值问题解答.【详解】∵y=-x 2+2x+12=-(x-1)2+32, ∴二次函数有最大值32.故选A . 【点睛】本题考查了二次函数的最值问题,把函数解析式整理成顶点式形式是解题的关键. 9.A 【解析】试题解析:因为23y x =+的图象经过第一、二、三象限, 故选A . 10.C 【解析】 【分析】由二次函数图象开口方向、对称轴的位置、图象与y 轴交点的位置得到a 、b 、c 的符号,即可判①;由图象可知,当x=0时,y <0,根据对称轴为x=1可得当x=2时,y <0,观察图象即可判定②;由图象可知,x=-1时,y >0,即可得a-b+c=0,根据对称轴-2ba=1,可得b=-2a ,代入即可判定③;由-2ba=1可得2a+b=0,所以3a+b=2a+b+a=a >0,即可判定④. 【详解】由二次函数图象开口向上,得到a>0;与y 轴交于负半轴,得到c<0,对称轴在y 轴右侧,a 、b 异号,则b<0,所以abc>0,①正确;②由图象可知,当x=0时,y <0,根据对称轴为x=1可得当x=2时,y <0,当x >2时,y 值得符号不确定,∴②不正确;③∵当x=-1时,y >0, ∴a-b+c=0,∵-2b a=1, ∴b=-2a ,∴a+2a+c >0,∴3a+c >0,∴③正确;④∵-2b a=1, ∴2a+b=0,∴3a+b=2a+b+a=a >0,∴④正确.综上,正确的结论为①③④.故选C .【点睛】本题考查了抛物线图象与系数的关系,熟练运用抛物线的图象与系数的关系是解决问题的关键.11.y =(x -1) 2+3.【解析】根据二次函数图象平移规律,左加右减,上加下减的平移规律,所以将二次函数y =x 2的图像向右平移1个单位,再向上平移3个单位,得到的新图像的函数表达式是y =(x -1) 2+3,故答案为: y =(x -1) 2+3.12.2【解析】【分析】根据平移规律“左加右减,上加下减”填空.【详解】解:将抛物线y=(x+m )2向右平移2个单位后,得到抛物线解析式为y=(x+m-2)2.其对称轴为:x=2-m=0,解得m=2.故答案是:2.【点睛】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.13.-8, 7【解析】【分析】把y=2x 2-4x-1化为顶点坐标式,按照“左加右减,上加下减”的规律,右平移1个单位,再向上平移2个单位得抛物线跟y=2x 2+bx+c 的系数对比则可.【详解】把y=2x 2-4x-1=2(x-1)2-3,向右平移1个单位,再向上平移2个单位,得y=2(x-2)2-1=2x 2-8x+7,所以b=-8,c=7.故答案为-8;7.【点睛】此题不仅考查了对平移的理解,同时考查了学生将一般式转化顶点式的能力.14.(1,0)【解析】试题解析:抛物线2(1)y x =-的顶点坐标是()1,0. 故答案为: ()1,0.点睛:根据抛物线()2y a x h k =-+的顶点坐标是(),h k 直接写出即可. 15.2(2)1y x =--+(或243y x x =-+-)【解析】设抛物线解析式为y=a (x-2)2+1,把B (1,0)代入得a+1=0,解得a=-1,所以抛物线解析式为y=-(x-2)2+1,即y=-x 2+4x-3故答案为:()221y x =--+(或y=-x 2+4x-3).【点睛】本题考查了待定系数法求二次函数的解析式,关键是在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.16.1= 最小 3- 1> 1<【解析】【分析】先把解析式配成顶点式得到y=(x-1)2-3,根据二次函数的性质得到当x=1时,y 有最小值,最小值为-3;当x >1时,y 随x 的增大而增大;当x <1时,y 随x 的增大而减小.【详解】解:y=x 2-2x-2=(x-1)2-3,∵a=1>0,∴当x=1时,y 有最小值,最小值为-3;当x >1时,y 随x 的增大而增大;当x <1时,y 随x 的增大而减小.故答案为=1,最小,-3,>1,<1.【点评】本题考查了二次函数的最值:二次函数y=ax 2+bx+c (a≠0),当a >0时,抛物线在对称轴左侧,y 随x 的增大而减少;在对称轴右侧,y 随x 的增大而增大,因为图象有最低点,所以函数有最小值,当x=−2b a时,y=244ac b a -;当a <0时,抛物线在对称轴左侧,y 随x 的增大而增大;在对称轴右侧,y 随x 的增大而减少,因为图象有最高点,所以函数有最大值,当x=−2b a时,y=244ac b a -. 17.> 14【解析】【分析】把抛物线解析式化为顶点式,可求得其对称轴,再利用二次函数的增减性可求得答案.【详解】∵y=-2x 2+x-4=-2(x-14)2-318, ∴抛物线开口向下,对称轴为x=14,∴当x>14时,y随x的增大而减小,故答案是:>14.【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,其顶点坐标为(h,k),对称轴为x=h.18.-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为﹣3<x<1.考点:二次函数的图象.19.①②③④【解析】【分析】观察图象,通过抛物线的开口方向,对称轴x=−b2a>−1,以及与x轴交于两点这些条件,即可解答出该题.【详解】①∵抛物线的开口方向向下,∴a<0,由图象可看出抛物线的对称轴x=b2a<0,∴b<0,故①正确.②由图象看出当x=1时,y=a+b+c<0,故②正确.③由图象看出当x=−2时,y=4a−2b+c<0,故③正确.④∵抛物线的对称轴大于−1,即x=b2a>−1,得出2a−b<0,故④正确.故答案为:①②③④.【点睛】本题综合考查了抛物线的性质,体现了数形结合的思想,同学们要熟练掌握.20.25(5)3y x =-+-【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】∵抛物线y=-5x 2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-5,-3),∴所得到的新的抛物线的解析式为y=-5(x+5)2-3,故答案为y=-5(x+5)2-3.【点睛】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,利用顶点的变化求解更简便.21.(1)1,-2,-3;(2)图象见解析,0x <或2x >;(3【解析】【分析】(1)直接将()11,代入求出a 即可,进而将2x =代入求出y ,再分别将()()03,23--,,代入求出b c ,的值;(2)再利用函数解析式进而得出函数图象,进而得出不等式的解集.(3)根据题意求得外接圆的圆心的坐标为()1,1-,进而求得圆的半径.【详解】(1)2y ax =过(1,1),∴1=a ,∴当x =2时,224y ==, 2y ax bx c =++过(0,−3),(2,−3),a =1,23,3223c b ∴=--=+-,解得:b =−2,223y x x ∴=--,当x =1时,y =−4, 故答案为1,−2,−3;(2)如图所示:当0x <或2x >时,不等式2 3.ax bx c ++>-(3)由(2)可知A (−1,0),B (3,0),C (0,−3), 则作BC 、AB 的垂直平分线的交点Q (1,−1),∴外接圆的半径()()223101 5.QB =-++= 22.(1)3223x ;(2)点P 坐标为(03043);(321. 【解析】 【分析】(1)根据AO=OB=2,∠AOB=120°,求出A 点坐标,以及B 点坐标,进而利用待定系数法求二次函数解析式;(2)∠EOC=30°,由OA=2OE ,23,推出当OP=12OC 或OP′=2OC 时,△POC 与△AOE 相似; (3)如图,取Q (12,0).连接AQ ,QE ′.由△OE′Q ∽△OBE ′,推出12E Q OE BE OB ''==',推出E′Q=12BE ′,推出AE′+12BE′=AE′+QE ′,由AE′+E′Q≥AQ ,推出E′A+12E′B 的最小值就是线段AQ 的长.【详解】(1)过点A作AH⊥x轴于点H,∵AO=OB=2,∠AOB=120°,∴∠AOH=60°,∴OH=1,AH=3,∴A点坐标为:(-1,3),B点坐标为:(2,0),将两点代入y=ax2+bx得:3420a ba b⎧-⎪⎨+⎪⎩==,解得:3323ab⎧⎪⎪⎨⎪-⎪⎩==,∴抛物线的表达式为:y=33x2-23x;(2)如图,∵C(1,-33),∴tan∠EOC=33ECOE=,∴∠EOC=30°,∴∠POC=90°+30°=120°,∵∠AOE=120°,∴∠AOE=∠POC=120°,∵OA=2OE,OC=233,∴当OP=12OC或OP′=2OC时,△POC与△AOE相似,∴OP=3,OP′=433,∴点P坐标为(0,3)或(0,43).(3)如图,取Q(12,0).连接AQ,QE′.∵12 OE OQ OB OE'==',∠QOE′=∠BOE′,∴△OE′Q∽△OBE′,∴12E Q OEBE OB''==',∴E′Q=12 BE′,∴AE′+12BE′=AE′+QE′,∵AE′+E′Q≥AQ,∴E′A+12E′B的最小值就是线段AQ22321()(3)22+=.【点睛】本题考查二次函数综合题、解直角三角形、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会由分类讨论的思想思考问题,学会构造相似三角形解决最短问题,属于中考压轴题.23.解:(1)如图所示;(2)2v2;(3)4.5,12.5,40.5.【解析】试题分析:将表(1)里各个数据在直角坐标系里描出,连接各点,形成的光滑曲线就是速度与撞击影响之间的函数图象.从表格里可看出速度与撞击影响的函数表达式为I=2v2;当V=1.5,2.5,4.5时,代入函数表达式中可求得撞击影响.解:(1)如图所示.(2)由表格得I=2v2.(3)当V=1.5,2.5,4.5时,I=4.5,12.5,40.5.所以撞击影响分别是4.5,12.5,40.5.24.()12123y x x=--+,21y x=-+;()22x<-或1x>【解析】【分析】(1)将A、B、C的坐标代入抛物线的解析式中即可求得二次函数的解析式,进而可根据抛物线的对称轴求出D点的坐标,再用待定系数法求出一次函数解析式;(2)根据(1)画出函数图象,即可写出一次函数值大于二次函数值的x的取值范围.【详解】()1二次函数21y ax bx c=++的图象经过点()A3,0-,()B1,0,()C0,3,则9303a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得123abc=-⎧⎪=-⎨⎪=⎩.故二次函数图象的解析式为21y x 2x 3=--+,∵对称轴x 1=-,∴点D 的坐标为()2,3-,设2y kx b =+,∵2y kx b =+过B 、D 两点,∴023k b k b +=⎧⎨-+=⎩,解得11k b =-⎧⎨=⎩. ∴2y x 1=-+;()2函数的图象如图所示,∴当21y y >时,x 的取值范围是x 2<-或x 1>.【点睛】此题主要考查了一次函数和二次函数解析式的确定以及根据函数图象比较函数值大小,画出函数图象熟练运用数形结合是解决第2问的关键.25.(1)2b a =-;(2)抛物线为212133y x x =-+;(3)抛物线的顶点坐标为()1,2-. 【解析】【分析】(1)根据抛物线与y 轴的交点可以得到c 与a 的关系,根据对称轴可以得到b 与a 的关系; (2)间已知点的坐标代入函数关系式并结合上题求得的系数的关系得到a 、b 、c 的值即可求得其解析式;(3)b (c+6)=-2a (3a+6)=-6a 2-12a=-6(a+1)2+6,从而确定a 的值,确定二次函数的解析式后即可确定其顶点坐标.【详解】解:()1∵抛物线与y 轴交于点()0,3a∴3c a =∵对称轴为1=, ∴12b x a=-= ∴2b a =-;()2∵抛物线与直线1y x =-交于点()2,1,∴()2,1在抛物线上,∴()212223a a a =⨯+-+ ∴13a = ∴223b a =-=-31c a == ∴抛物线为212133y x x =-+;()3∵()()2262366126(1)6b c a a a a a +=-+=--=-++ 当1a =-时,()6b c +的最大值为6;∴抛物线2223(1)2y x x x =-+-=---故抛物线的顶点坐标为()1,2-.【点睛】考查了二次函数的性质,二次函数最值以及待定系数法求二次函数解析式,正确的利用三个系数之间的关系是解题的关键.26.(1)A (2-,0) B (8,0);(2)142y x =-+ ; (3)存在点P ,使△PBC 的面积最大,最大面积是16 ;(4)(8-,0),(4,0),(5+0),(50).【解析】【分析】可得a 的值,求出解析式.由解析式可得出C 和B 的坐标,从而得出直线的解析式.运用假设法,连接辅助线可以设出P,D 的坐标,表达出相应△PBC 的面积解析式,分析可得出结果.由平行四边形的定义可求出答案.【详解】(1)A (2-,0) B (8,0);(2)142y x =-+ ; (3)假设存在点P ,连结PB 、PC ,过点P 作PD ∥y 轴交直线BC 于点D ,设点P (m ,213442m m -++) 则点D (m ,142m -+) 所以PD =213442m m -++- 142m ⎛⎫-+ ⎪⎝⎭ =2124m m -+ ∴211128224PBC S PD OB m m ⎛⎫=⨯⨯=⨯-+⨯ ⎪⎝⎭()228416m m m =-+=--+∵点P 是直线BC 上方的抛物线上的一动点(不与B 、C 重合)∴08m <<∴当4m =时,△PBC 的面积最大,最大面积是16∴存在点P ,使△PBC 的面积最大,最大面积是16(4)(8-,0),(4, 0),(541+0),(541,0) .【点睛】本题考查了一元二次方程的解析式的结构,和直线解析式的求解,以及品行四边形的定义,熟练掌握这些是解决本题的关键.27.(1)y=x 2﹣4;(2)M (0,﹣2)【解析】(1)将A 、B 点的坐标代入抛物线的解析式中即可求出待定系数的值;(2)由于A 、D 关于抛物线对称轴即y 轴对称,那么连接BD ,BD 与y 轴的交点即为所求的M 点,可先求出直线BD 的解析式,即可得到M 点的坐标;解:(1)由题意可得:403a c a c +=⎧⎨+=-⎩,解得14a c =⎧⎨=-⎩; ∴抛物线的解析式为:y =x 2﹣4;(2)由于A 、D 关于抛物线的对称轴(即y 轴)对称,连接BD .则BD 与y 轴的交点即为M 点;设直线BD 的解析式为:y =kx +b (k ≠0),则有:320k b k b -+=-⎧⎨+=⎩, 解得12k b =⎧⎨=-⎩; ∴直线BD 的解析式为y =x ﹣2,∴点M (0,﹣2).点睛:本题主要考查待定系数法及二次函数的性质.利用二次函数的对称性是解题的关键. 28.(1,-2),直线x=1, x <-1或x >3.【解析】试题分析:(1)利用配方法将二次函数的解析式由一般式该写为顶点式,由此即可得出该函数的顶点坐标以及对称轴;(2)利用五点法画出函数图象即可;(3)观察函数图象,根据二次函数图象与2y =的上下位置关系即可得出不等式的解集.试题解析:()22121(1)2y x x x =--=--,∴该二次函数的顶点坐标为(1,−2),对称轴为x =1.故答案为(1,−2);x =1.(2)找出函数图象上部分点的坐标,如图所示:x… −1 0 1 2 3 … y… 2 −1 −2 −1 2 …描点、连线,画出函数图象如图所示.(3)观察函数图象可知:当x <−1或x >3时,函数图象在y =2的上方, ∴满足y >2的x 的取值范围为x <−1或x >3.故答案为x <−1或x >3.。
22.1二次函数图像性质 综合练习题(附答案)
1、函数()2h x a y -=的图象与性质
1、抛物线()2321
--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 。
2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。
(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位。
3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个)。
4、二次函数()2h x a y -=的图象如图:已知21
=a ,OA=OC ,试求该抛物线的解析式。
5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积。
6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6。
求:(1)求出此函数关系式。
(2)说明函数值y 随x 值的变化情况。
7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值。
1、请写出一个以(2, 3)为顶点,且开口向上的二次函数: 。
2、二次函数 y =(x -1)2+2,当 x = 时,y 有最小值。
3、函数 y =1
2 (x -1)2+3,当 x 时,函数值 y 随 x 的增大而增大。
4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到。
5、已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是
6、如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )
A 、x>3
B 、x<3
C 、x>1
D 、x<1
7、已知函数()9232+--=x y 。
(1)确定下列抛物线的开口方向、对称轴和顶点坐标;
(2)当x= 时,抛物线有最 值,是 。
(3)当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小。
(4)求出该抛物线与x 轴的交点坐标及两交点间距离;
(5)求出该抛物线与y 轴的交点坐标;
(6)该函数图象可由23x y -=的图象经过怎样的平移得到的?
8、已知函数()412-+=x y 。
(1)指出函数图象的开口方向、对称轴和顶点坐标;
(2)若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积;
(3)指出该函数的最值和增减性;
(4)若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;
(5)该抛物线经过怎样的平移能经过原点。
(6)画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0。
1、抛物线
942++=x x y 的对称轴是 。
2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 。
3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 。
4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y = 。
5、把二次函数215322
y x x =-
--的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是 6、抛物线1662--=x x y 与x 轴交点的坐标为_______ __;
7、函数x x y +-=22有最__ __值,最值为______ _;
8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )
A 、6,4
B 、-8,14
C 、-6,6
D 、-8,-14
9、二次函数122--=x x y 的图象在x 轴上截得的线段长为( )
A 、22
B 、23
C 、32
D 、33
10、通过配方,写出下列函数的开口方向、对称轴和顶点坐标:
(1)
12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y
11、把抛物线
1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由。
12、求二次函数
62+--=x x y 的图象与x 轴和y 轴的交点坐标。
13、已知一次函数的图象过抛物线223y
x x =++的顶点和坐标原点,回答:(1)求一次函数的关系式;(2)判断点()2,5-是否在这个一次函数的图象上
1、(3,0),>3,大,y=0;
2、2)2(3-=x y ,2)32(3-=x y ,2)3(3-=x y ;
3、略;
4、2)2(21-=x y ;
5、(3,0),(0,27),40.5;
6、2)4(2
1--=x y ,当x<4时,y 随x 的增大而增大,当x>4时,y 随x 的增大而减小;7、-8,-2,4.
2、()k h x a y +-=2的图象与性质 1、略;2、1;
3、>1;
4、左、下;
5、342-+-=x x y ;
6、C ;
7、
(1)下,x=2,(2,9),(2)2、大、9,(3)<2、>2,(4)( 32-,0)、( 32+,0)、 32,(5)(0,-3);(6)向右平移2个单位,再向上平移9个单位;8、(1)上、x=-1、(-1,-4);(2)(-3,0)、(1,0)、(0,-3)、6,(3)-4,当x>-1 时,y 随x 的增大而增大;
当x<-1 时,y 随x 的增大而减小,(4)
2)1(-=x y ;
(5)向右平移1个单位,再向上平移4个单位或向上平移3个单位或向左平移1个单位;(6)x>1或x<-3、-3<x<1 3、c bx ax y ++=2的图象和性质
1、x=-2;
2、上、(3,7);
3、略;
4、2)1(2+-x ;
5、5)1(212+--=x y ;
6、(-2,0)(8,0);
7、大、8
1;8、C ;9、A ;10、(1)、上、x=2、(2,-1),(2)310)34(32+--=x y 、下、34=x 、(310,34),(3)3)2(412---=x y 、下、x=2、(2,-3);11、有、y=6;12、(2,0)(-3,0)(0,6);13、y=-2x 、否。