当前位置:文档之家› 电能表现场误差测试使用说明

电能表现场误差测试使用说明

电能表现场误差测试使用说明
电能表现场误差测试使用说明

窃电是一个长期困扰电力部门的难题,每年都会给电力企业造成巨大的经济损失。每年电力企业都投入了很大的人力物力,但是由于窃电者采用比较隐蔽和智能窃电的办法给查处窃电工作造成较大的困难。面对现实,电力企业如果还是按照过去的经验和肉眼观测的办法已经不适应当前的供电发展需要。从来窃电和反窃电的斗争就没有停止过,经验证明凡是线损管理较好的单位,对表计的管理也相对较好。如果供电企业每次查窃电的时候都使用现场校验仪器的话当然精确度较高,但是相对来说它的成本也较高,并且携带不是太方便,无法大规模推广使用。所以现场检查计量装置最快捷简便的方法是利用钳形卡流表和秒表的“两表组合”,在查窃电的实际活动中“两表组合”也显示了它强大的生命力,和立竿见影的效果。但是由于电能表的型号多种多样,各个电表的常数也不一样,单相和三相计算公式也不一样,如果用电户使用互感器的话计算更加复杂,再加上电能的计算公式比较复杂,所以现场检查电能表的时候,检查人员往往较难计算出电能表的准确误差计算结果。从而造成即使实际上用户在窃电,但是检查人员检查不出来的结果。往往是看到电表在转,但是对电能表的误差心中无数。电能表现场误差测试表配合钳形卡流表和秒表使用的话有以下几个特点:

1:操作简便,携带方便,成本低廉,应用范围广泛。

2:计算准确,速度快,对电能表的误差显示一目了然。

3:若推广使用此方法查处窃电和故障电能表的话,将大大的降低电力企业的线损,大大的提高企业的经济效益,同时也降低了工作人员的工作强度,提高了工作效率。

4:若能记录电能表的现场测试数据为今后反窃电和线损管理精细化提供第一手资料,并且为将来使用作业指导卡提供了重要的原始数据。

典型应用举例1:(现场模拟南东坊用电所)

某用户50KV A变压器一台,我公司台帐登记为电流互感器变比为150比5;饶两圈。变比75/5。在不打开电表箱的情况下钳形卡流表现场测试电流为90安,电表的常数为1200

转/ KWH,电能表转一圈的时间为5.40秒/转。将以上数据输入到电能表现场误差测试表结

果显示为-101.96%说明电表慢一半。近一步推断电表箱内有问题。判断是1:电流互感器

为300/5的电流互感器2:电流互感器是直通,饶一圈。后打开电表箱检查是用户私自更

换300/5的电流互感器窃电。在把电流互感器更换为150/5后,第二月该用户电量即增长

了一倍左右。高压线损明显下降。

典型应用举例2:(现场模拟张村用电所)

某用户100KV A变压器一台,我公司台帐登记为电流互感器变比为150比5;饶一圈。

变比150/5。电能表为山东菏泽出产,常数为1440。量程5(20)安培。

钳形卡流表现场测试电流为110安,电能表转一圈的时间为3.65秒/转。将以上数据输入

到电能表现场误差测试表结果显示为-0.11%,经计算电表运转正常。但是线损员把这个村和有同样人口的村子比较发现,此村的用电量长期都比其他的村子少40-50%左右。但是现场测试表计一切正常,铅封和纸封也没有动过的痕迹。后仔细观察该村的电能表,发现它的计数器应该是转14.4圈就翻一个小格,而它的计数器翻25圈才翻一小格。后来经过计量

检定是用户私自从厂家购买2.5安电能表计数器后,更换我电能表计数器从而进行长期隐

蔽窃电。处理后该村用电量翻番,高压线损明显下降。

典型应用举例3:(现场模拟原狄丘用电所)

某用户80KV A变压器一台,我公司台帐登记为电流互感器变比为150比5;饶一圈。变比

150/5。电能表为天津出产,常数为1200。

钳形卡流表现场测试电流为55安,电能表转一圈的时间为11.68秒/转。将以上数据输入到电能表现场误差测试表结果显示为慢33.48%。现场检查表计一切正常,铅封和纸封也没有动过,也没有发现其他的任何窃电痕迹。但是线损员反映该村电工拿着他们村的低压侧开关柜的钥匙,线损员多次找村电工要钥匙,但是每次该电工总是找各种理由不与配合。后来线损员发现电表箱有磁化反应。后打开该村的低压侧开关柜,发现三个电磁铁牢牢的吸附在我电表箱电能表的背面,从而人为造成电能表慢进行窃电。后将该村的机械表更换为电子表,高压线损即恢复正常。

从以上举例中可以看到,卡流表和秒表的组合不是万能的,但是若没有这些第一手的资料,对于上述的几种隐蔽的,长期的,不动表箱铅封和纸封的窃电方法就不易发现。如果不进行实地的观察测量,和事后的统计分析,以上窃电现象仅凭肉眼观察很难发现,从而会造成电能的巨大的流失。因此只要有关纪录完整准确,就会为查窃电提供可靠的第一手资料,从而会极大的减少窃电现象的发生。

使用方法:

1首先确定要检查的是单相电能表还是三相电能表,

2单相表选单相电能表,并在首页设置功率因数为1。三相电能表和单相电能表+互感器

的功率因数调整设置为0.85,分别选择三相电能表和单相+互感器的表格进行计算。

3把现场测试的电流的数据,电能表转一圈所用的时间的数据(单位:秒)和电能表的常数还有电流互感器的变比输入到相应的表格中电能表误差计算结果会在误差一栏显示。为了方便观察,正的误差显示为绿色,负的误差显示为红色。计算结果醒目,并且一目了然。

多功能电能表现场校验仪的使用说明

多功能电能表现场校验仪的使用说明 多功能电能表现场校验仪,是专门为现场校验单、三相有功和无功感应式和电子式电能表以及其它多种电工仪表而设计开发的一款便携式设备。该设备应用高精度采样技术,并结合最新数字信号处理方法,为现场校验电能表和其它多种电工仪表提供了一套方便高效的解决方案。 电力使用多功能电能表现场校验仪时的注意事项: 1、设备通电使用前,应保证可靠接地。 2、设备通电使用前,应确认面板上的Ua/外部供电电源选择开关是处于哪种状态:该开关按下即选择了通过Ua与U0提供设备工作电源,供电范围为AC80V-400V,该状态下,严禁把电源线插入外220V插座。该开关浮起(同时指示灯亮)即选择了通过外220V 插座提供设备工作电源,供电范围为AC220V±10%。 3、严禁在设备通电工作状态下反复按动Ua/外部供电电源选择开关。 4、严禁在设备通电工作状态下用手去触摸面板上的各端子。 5、正确连接测试导线,正确设置电流输入方式,输入相应量限内的电流和电压量。切记电流输入值不得超过所选端子额定值的120%。 6、钳形电流互感器在使用过程中应轻拿轻放,必须保持钳口铁芯端面清洁,不得有任何异物。钳口端面可用干绸布擦拭(严禁沾酒精和水),擦拭过程中应保持铁芯端面光洁度。 7、接线时,必须先加电压,后加电流;拆线时,必须先去电流,再断电压。请切记不要将电子表脉冲采样线接在火线或零线上,以免损坏设备。 8、在夹钳形互感器时,一定要让电流线从钳形互感器的圆孔中穿过,钳口要合严,不要将线夹到钳口上,以免影响测量精度。 9、设备按键采用轻触薄膜按键,应防止用锐器或指甲按压。 10、应注意防水、防潮,存放于干燥处。严禁在潮湿及有腐蚀性气体的环境中使用。 11、仪器在工作不正常(受到干扰或死机)时,可对其复位(按[复位] 键)后再使用。

三相电能表现场校验仪技术规范

0.05级三相电能表现场校验仪技术规范 1、适用范围 本技术规范规定了0.05级三相电能表现场校验仪的功能、性能等技术要求,适用于广东电网公司云浮供电局0.05级三相电能表现场校验仪的评价、检测以及验收等,其他等级的电能表现场校验仪可参照使用。 2、应遵循的主要标准 除本招标书中规定的技术参数和要求外,其余均应遵循最新版本的国家标准、电力行业标准,这是对设备的最低要求。如果供方有自己的标准或规范,应提供标准或规范文本,但原则上采用更高要求的标准。 参照标准: DL/T826-2002 《交流电能表现场测试仪》 JJF1055-1997 《交流电能表现场校准技术规范》 DL/T 585-1995《电子式标准电能表技术条件》 DL/T 645-1997《多功能电能表通信规约》 DL/T 645-2007《多功能电能表通信协议》 广东电网公司负荷管理终端通讯规约 广东电网公司配变监测计量终端通讯规约 电能计量装置现场检验作业指导书 3、技术要求 3.1 标准的电量值 3.1.1 标准参比电压:三相:57.7,100,220,380V,可自动换档。 3.1.2 标准的基本电流: 1,5A。 3.1.3 额定输入电流(I) 端子直接输入:0-5A 电能准确度:0.05% 功率准确度:0.05% 电流准确度:0.05% 钳表标准配置:0-5A 电能准确度:0.2% 功率准确度:0.2% 电流准确度:0.2% 钳表可选配:100A,500A,1000A 3.2 功能要求 比较法校验电能表、终端的误差。可以现场检验三相各类电子式、感应式有功、无功电能表;也可现场检验单相电子式、感应式电能表。 可实现主副电能表误差同时校验。 多功能电能表的有功和无功误差同时校验,可通过485或红外接口抄读电表数据(电能读数、日期、时间等)并保存。 负荷管理终端、配变监测计量终端的有功和无功误差同时校验,可通过485或红外接口抄读终端数据(电能读数、日期、时间等)并保存。 误差校验方式应有手动控制、光电控制、电脉冲控制三种方式。 3.2.2 具有RS485、RS232、远红外、USB等标准通信接口。 ,并支持汉字识别,方便现场录入客户资料。 3.2.4 具备现场读取电表资产编号和铅封扫描功能,方便现场录入。 ,并有足够的测量范围。其测量各种参数的误差应满足表1的规定,测量值显示的位数不于4位。 1页

浅议低压有功电能表计量误差及改正措施

浅议低压有功电能表计量误差及改正措施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

浅议低压有功电能表计量误差及改正措施在电能计量管理中,由于电能表接线错误,断线(失压、断流)所引起的计量误差较大,易被人们所发觉和重视。而由于电能表非常规接线或使用不当引起的计量误差较小,一般误差只在百分之几~十几,不易被人们所发觉与重视。但是,如果它乘以倍率所引起的误差却很大,且作为交易结算的电能计量装置要求公平、准确、合理的原则。因此,电能表常见非正规接线引起的计量误差同样不可忽视。 一、引起误差的现象 (1) 单相电能表: ①1表乘2:即用一个单相(220V)电能表计量二相(380V)用电负载时,将该电能表的累计电量乘以2,作为二相实际用电总电量。这种情况:若电能表接在A相线上,计量A、B二相负载时,将造成多计电量(正误差)。若电能表接在B相线上,计量A、B二相负载时,造成少计量(负误差)。 ②1表乘3:即用一个单相电能表计量三相三线或三相四线负载时,将该电能表的累计用电量乘以3,作为三相负载总电量。这种计量方式:

若在三相不平衡负载电流时造成计量不准确(计量误差),其误差大小视三相负载电流平衡度与负载功率因数情况而定。 (2) 三相三线电能表: ①计量单相电炉:即用一个三相三线电能表计量单相(220V)电炉。因电炉功率因数为1.0,其计量功率P=UabIccos30°=3/2UφIφ,造成多计电量50%。 ②计量单相220V电焊机:用一个三相三线电能表,计量三相四线不平衡配电系统,即当In≠0,此时在A、N线间连接单相(220V)电焊机,表盘出现反转并少计电量。若在B、N线间连接单相(220V)电焊机,表盘不转而不计电量。若在C、N线间连接单相(220V)电焊机,表盘转速加快而多计电量。 ③计量三相四线配电系统:三相三线电能表计量三相四线不平衡负载电流时,N线(中性点)产生零序电流,而三相三线电能表不能计量零序电流所消耗的功率,造成少计电量。 (3) 三相四线电能表:

多功能电能表现场校验使用说明书

一、概述 HTDN-3H多功能电能表现场校验仪,是专门为现场校验单、三相有 功和无功感应式和电子式电能表以及其它多种电工仪表而设计开发的 一款便携式设备。该设备应用高精度采样技术,并结合最新数字信号处理方法,为现场校验电能表和其它多种电工仪表提供了一套方便高效的 解决方案。我们相信您会对使用这款便携式设备感到十分满意的。 在使用该设备之前,请详细阅读本使用说明书。以下是使用该设备时的注意事项: 1、设备通电使用前,应保证可靠接地。 2、设备通电使用前,应确认面板上的Ua/外部供电电源选择开关是处于哪种状态:该开关按下即选择了通过Ua与U0提供设备工作电源,供电范围为AC80V-400V,该状态下,严禁把电源线插入外220V插座。该开关浮起(同时指示灯亮)即选择了通过外220V插座提供设备工作电源,供电范围为AC220V±10%。 3、严禁在设备通电工作状态下反复按动Ua/外部供电电源选择开关。 4、严禁在设备通电工作状态下用手去触摸面板上的各端子。 5、正确连接测试导线,正确设置电流输入方式,输入相应量限内的电流和电压量。切记电流输入值不得超过所选端子额定值的 120%。 6、钳形电流互感器在使用过程中应轻拿轻放,必须保持钳口铁芯 端面清洁,不得有任何异物。钳口端面可用干绸布擦拭(严禁沾酒精和

水),擦拭过程中应保持铁芯端面光洁度。 7、接线时,必须先加电压,后加电流;拆线时,必须先去电流, 再断电压。请切记不要将电子表脉冲采样线接在火线或零线上,以免损坏设备。 8、在夹钳形互感器时,一定要让电流线从钳形互感器的圆孔中穿 过,钳口要合严,不要将线夹到钳口上,以免影响测量精度。 9、设备按键采用轻触薄膜按键,应防止用锐器或指甲按压。 10、应注意防水、防潮,存放于干燥处。严禁在潮湿及有腐蚀性气 体的环境中使用。 11、仪器在工作不正常(受到干扰或死机)时,可对其复位(按 [复位] 键)后再使用。 二、主要功能和特点 1、三相电流、电压、有功功率、无功功率、功率因数、角度、频率 等电参数的高精度测量。 2、三相有功和无功感应式、电子式电能表以及其它多种电工仪表 的现场校验。 3、计量装置综合误差的现场校验。 4、电压输入0-400V自动切换量程,确保测量精度。 5、电流输入有端子和钳表两种方式可选,最大可测电流500A。 6、六角图实时显示,接线错误瞬间识别,窃电行为尽在掌握。 7、CT变比高精度测量。 8、存贮200块被校表的测量数据轻松完成。

短期风电功率预测误差综合评价方法

短期风电功率预测误差综合评价方法 徐 曼,乔 颖,鲁宗相 (电力系统国家重点实验室,清华大学电机系,北京市100084 )摘要:对短期风电功率预测误差进行综合评价是改进预测精度、指导预测结果合理应用的前提。当前风电功率预测误差评价主要采用均值类指标,无法全面、准确反映预测系统的运行情况。文中总结了风电功率预测误差的主要存在形式,提出了一套包含纵向误差、横向误差、相关因子与极端误差等在内的综合评价方法。基于内蒙古某风电场实际数据,采用该方法对不同预测方法、预测系统的不同误差环节进行了较为全面的评价,验证了评价指标的指导价值。关键词:短期风电功率预测;误差评价;误差指标;数值天气预报 收稿日期:2011-01-08;修回日期:2011-03-25。国家自然科学基金资助项目(51077078 )。0 引言 有效利用短期风电功率预测技术可以减轻风能 波动对电力系统调度的不利影响, 是实现风电常规化、规模化并网的关键。对短期风电功率预测误差进行综合评价是风电功率预测理论研究的一项重要 内容。根据评价指标,可以从各方面了解预测系统的运行情况,深入挖掘有价值的信息,对不同预测方 法、 预测系统进行对比评价,从而提高预测精度和算法效率,更好地利用预测结果服务生产实际。目前各类短期风电功率预测方法,如时间序列 法[1]、神经网络法[2]、小波分析法[3]等,所使用的误差评价指标多直接采用常规统计学指标,结合预测 曲线的图像对比,便构成了预测结果的分析评价依据。已有研究中常用的误差评价指标主要有绝对误差均值(mean  error,ME)、绝对值平均误差(meanabsolute error,MAE)、均方根误差(root meansq uared error,RMSE)、平均相对误差(meanrelative  error,MRE)、误差频率分布指标等,其中RMSE,MAE,MRE是现行企业标准[4] 和推荐的行 业标准[5],也为多数文献采用[3,6- 7]。文献[8- 9]兼用多个上述指标来对比预测结果,每种指标数值排序 相同,得出的最优方案结论也一致。文献[10]除了采用指标MAE和RMSE外,还利用误差频率分布指标给出了误差小于20%装机容量的概率。ANEMOS预测系统的一项分析报告肯定了制定预 测误差综合评价方法的重要性[11] ,但所给指标也是预测领域的通用指标,没有体现风电功率预测自身 特点。总的来讲,目前全面评价风电功率预测误差 的研究还很少,缺乏长期大量的数据分析,难以用来 研究风电功率预测系统的误差产生机理。 在欧美商业化风电功率预测应用中,电网使用 综合预测或多个预测产品已经成为一种趋势[12- 13]。上述指标虽然统计方法有所不同,但都是对预测结 果偏差的平均化, 指标所隐含的信息是类似且单一的,指标相近的风电功率预测模型之间个体差异可 能很大,对工程应用或者算法改进的指导意义也较小。此外,与负荷预测相比,风电功率预测结果波动性更强、误差带更宽,与实际结果具有时间相关性,很多在负荷预测中广泛应用的指标并不能充分体现风电功率预测的特性。 本文的目的在于结合风速波动性特点及相应的 输出风电功率变化特点, 提出一套针对短期风电功率预测系统的误差综合评价指标。该指标由横向误 差、纵向误差与极端误差3类评价指标构成,可以对预测误差的平均化水平、分布情况、相关因子和极端案例作出较为全面的评判,有利于预测系统用户和预测算法研究人员合理判别和使用预测结果。为了 贴近实际工程应用, 本文选取内蒙古某风电场2010年上半年的实测数据和数值天气预报 (numerical weather prediction,NWP)数据进行详细误差分析,并在此基础上给出了若干借助误差评价指标提高预测水平的案例。 1 预测误差的综合评价体系 1.1 预测误差的存在形式 风电功率预测的误差可以划分为纵向误差和横向误差[ 14] ,如图1所示,其中纵向误差主要描述了某一时段的预测结果在竖直方向与实际结果的差 别,往往可以用偏大或偏小概括;而横向误差则主要描述预测结果在水平的时间轴上与实际结果的差 — 02—第35卷 第12期2011年6月25日

探析电能表计量误差及计量损耗

探析电能表计量误差及计量损耗 发表时间:2018-11-27T15:16:47.383Z 来源:《防护工程》2018年第22期作者:杨跃先 [导读] 电气企业在对用户在一定时期内使用的电能量进行计量时,往往需要使用电能表 国网黑龙江省电力有限公司佳木斯供电公司 摘要:电气企业在对用户在一定时期内使用的电能量进行计量时,往往需要使用电能表。为了确保计量精准度,工作人员需要应用全新的电能表,如果电能表出现计量失准的情况,电力企业将需要承担主要损失,而在对城市电能使用情况进行调查时,工作人员同样也需要应用电能表来对具体的用电信息加以收集,尽管现代的电能表已呈现出应用优势,但是计量误差仍旧会出现,过多的计量损耗也影响了电力计量工作质量,现探讨电能表使用问题。 关键词:电能表;计量误差;计量损耗 电能表是电能计量环节中的必用工具,电能表可以清晰地呈现出用户的用电情况以及具体数值,电力企业可以根据电能表呈现出的实际数值来确定需要收取电费。尽管电能表发挥着关键作用,同时也会影响到电力企业的具体生产效益,但是很多电力企业与用户并没有重视电能表的管理工作,导致电能表在外部影响下出现使用问题,一旦电能表的内部部件出现受损或者老化的情况,电能表就会出现严重的计量损耗与计量误差问题,影响电力企业发展。 1 电能表常见误差情况分析 1.1 单相电能表 单相电能表就是利用一个电能表测量多个电器设备,主要有以下几种情况: 1表乘2:也就是说,使用一个电能表实现两个用电器的用电计量工作,通常在这种情况下,将电能表的指针系数乘上二,作为最终的计量总数。但是我们发现,这种电能表的使用情况必然伴随着一定的计量误差,一方面,当该电能表与其中的A线连接,测量的实际结果数据要高于实际用电量,而当该电能表与B线连接时,测量的最终数据将会较之实际数据略小,因此两者都存在必然误差。1表乘3:即用一个电能表,测量三个用电设备,以电能表的最终数值乘以三,作为三相设备的用电量总和。由于实际安装情况不一样,具体的三相设备也存在差异,所以在实际的运行中误差的现象也不统一,但无论何种情况,最终都会出现误差数值。 1.2 三项四线电能表 两个互感器v形接线:即用两个电流互感器v形接线,计量三相四线配电系统。三个互感器Y形接法;即三个电流互感器Y形与三相四线电能表连接,其电流以互感器二次一端公用连接。未接N线:三相四线电能表其N线未接或N线接触不良。反相序接线:三相四线电能表反相序接线存在一定的计量误差。 1.3 三相三线电能表 计量单相220V电焊机:用一个三相三线电能表,计量三相四线不平衡配电系统,即当In≠O,此时在A、N线问连接单相(220V)电焊机,表盘出现反转并少计电量。计量三相四线配电系统:三相三线电能表计量三相四线不平衡负载电流时,N线(中性点)产生零序电流,而三相三线电能表不能计量零序电流所消耗的功率,造成少计电量。计量单相电炉:即用一个三相三线电能表计量单相(220V)电炉。 2 电能表计量系统应用 了解电能计量表的内部系统构造与应用情况后,可以对电能表的使用情况有更加深入认知,从城市用电统计数据中可以清晰地发现,电能消耗量始终呈现上涨趋势,电力系统必须有效承担更多的运作负荷,电能消耗得过快,城市电网与供配电系统均需被有效改造。在对公用电压进行切换时,计量损耗量将会大幅上涨,计量工作过程中还会出现一些安全问题,电能计量表在使用过程中形成的误差问题带来的经济损耗将由电力企业独立承担,电力系统并不会提供相应的经济补偿。电厂在开展建设工作时需要注重控制经济损失,很多电厂会对原来使用的电力装置加以改造,将出口部位的补偿装置拆除后,计量工作将会受到影响,继电保护装置的作用也无法有效发挥。 3 电能表使用问题分析 现综合电能表的具体应用情况,着重探索电能表的存在的计量应用问题,标表计误差问题是现代电能表的常见使用问题之一,出现这种问题的电能表的实际计量功能将会变差,其给出的指示数据的可信度将会被降低。一般被长时间使用的电能表比较容易出现这种情况,其内部构建由于相互磨损的情况比较严重,会出现老化问题,现代电力企业已经重视电能计量表等核心装置的养护工作,但是养护处理工作并不能消除老化问题,必须购置全新的电能计量表,用以替换老化的计量表。 另外现代电力企业大量使用电子型的计量表,该种类型的计量表自身需要消耗的电能量就比较大,其运行消耗的电能并未被精准计量,计量误差影响了实际应用效果。 二次降压问题也给电能表使用带去了影响,在输电环节中,工作人员为了确保输电工作的合理性会选择对输电系统进行二次降压处理,在调整电压时,电能损耗问题也会因此而形成,计量误差数值过大,计量电能的可靠性被削减,因此可知电能表管理工作的价值。 4 控制的电能表的可靠方法 4.1 改造回路系统 电力系统在运作过程中,为了更好的适应外部环境,提高整体服务质量,需要进行相应的回路改造。回路改造工作中,电力工作者需要严格按照操作程序安装回路线路,尤其是电压回路线路和电流回路线路,需要严格按照计划安装,切忌过多安装或者安装不足。工作中应认真仔细区分清楚计量用电压回路和保护用电压回路,严防两个电压回路因二次接地方式不同混淆而发生短路异常,拆除费旧电缆时,应摸清电缆走向,确认电缆无用且无电时,从电缆两端拆除,拆除电缆后应用对线灯核对无误。 4.2 合理选用电能表 不同的计量要求安装不同数量和规格的电能表,通常来说有以下几种具体分类:供电计量方式:两相或者三相的供电现实,需要采用与其数据相互匹配的电能表;而四相以上可以选用一个三相表或者三个单项表。计量电炉、电焊机:单相220V电炉或电焊机宜采用单相电能表或三相四线电能表。单相380V电炉或电焊机宜采用两个单相电能表或三相三线电能表。单相380/220V电焊机应采用两个单相电能表或

三相电能表现场校验仪的使用方法

一、接线原理 ⑴三相三线和三相四线测量原理简介: 三相三线制测量是指使用两个功率元件实现对三相线路的测量,相当于在电路中分别接入两只电流表(串联在A、C两相)、两只电压表(分别并联在AB之间和CB之间)和两只功率表(电流线圈串联在A、C相,电压线圈并联在AB和CB之间),其测量原理如图十六所示 图十九、三相三线计量原理图 三相四线制测量是指使用三个功率元件实现对三相线路的测量,相当于在电路中分别接入三只电流表(分别串联在A、B、C三相)、三只电压表(分别并联在A、B、C各相对N相之间)和三只功率表(电流线圈分别串联在A、B、C相,电压线圈分别并联在A、B、C对N之间),其测量原理如图十七所示 图二十、三相四线计量原理图

二、三相四线低压电能表经钳表接入接线 三相四线制低压电能表经钳形互感器接线校验如下图十八 图二十一 先将电压线首端的插棒按颜色分别接到仪器面板相应的A、B、C、N电压端子上,电压线末端的鳄鱼夹分别接到被测表表尾的A、B、C、N相电压线上;再将各相的钳形互感器插到有相应标号的接口上,然后用钳形互感器卡住对应相的电流线即可。(注意:极性一定要接正确,钳形电流互感器标有A、B、C 的一面为电流流入端,N的一面为流出端)。 打开仪器开关,先按照被测表参数将“参数设置”屏中相应的参数设置正确,然后,即可进入相应的界面进行测试。

三、三相四线低压电能表经内部CT接入测试 三相四线低压电能表经内部CT接入接线校验如图十九所示: 图二十二 先将电压线首端的插棒按颜色分别接到仪器面板相应的A、B、C、N电压端子上,电压线末端的鳄鱼夹分别接到被测表表尾的A、B、C、N相电压线上;将电流线的首端插棒按颜色接到仪器面板相应的电流端子上,有标记的接电流正端,无标记的接电流负端,电流线末端的鳄鱼夹(或插片)接到端子排两侧(I+接到远离表计侧,I-接到靠近表计侧),然后将端子排的连 片打开。 打开仪器开关,先按照被测表参数将“参数设置”屏中相应的参数设置正确,然后,即可进入相应的界面进行测试。 目前有这种端子排的接线方式已经很少见,对于没有端子排的只能采取 钳表接入法。

风电功率预测系统功能规范

风电功率预测系统功能规范(试行) 前言 为了规范风电调度技术支持系统的研发、建设及应用,特制订风电功率预测系统功能规范。本规范制订时参考了调度自动化系统相关国家标准、行业标准和国家电网公司企业标准。制订过程中多次召集国家电网公司科研和生产单位的专家共同讨论,广泛征求意见。本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、信息要求、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。本规范由国家电网公司国家电力调度通信中心提出并负责解释;本规范主要起草单位:中国电力科学研究院、吉林省电力有限公司。本规范主要起草人:刘纯、裴哲义、王勃、董存、石永刚、范国英、郭雷。 1范围 1.1本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、数据准备、数据采集与处理、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 1.2本规范用于指导电网调度机构和风电场的风电功率预测系统的研发、建设和应用管理。本规定的适用于国家电网公司经营区域内的各级电网调度机构和风电场。 2术语和定义 2.1风电场Wind Farm由一批风电机组或风电机组群组成的发电站。 2.2数值天气预报Numerical Weather Prediction根据大气实际情况,

在一定的初值和边值条件下,通过大型计算机作数值计算,求解描写天气演变过程的流体力学和热力学的方程组,预测未来一定时段的大气运动状态和天气现象的方法。 2.3风电功率预测Wind Power Forecasting以风电场的历史功率、历史风速、地形地貌、数值天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型,以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的设备状态及运行工况,得到风电场未来的输出功率;预测时间尺度包括短期预测和超短期预测。 2.4短期风电功率预测Short term Wind Power Forecasting未来3天内的风电输出功率预测,时间分辨率不小于15min。 2.5超短期风电功率预测ultra-short term Wind Power Forecasting 0h~4h的风电输出功率预测,时间分辨率不小于15min。 3数据准备 风电功率预测系统建模使用的数据应包括风电场历史功率数据、历史测风塔数据、历史数值天气预报、风电机组信息、风电机组及风电场运行状态、地形地貌等数据。 3.1风电场历史功率数据风电场的历史功率数据应不少于1a,时间分辨率应不小于5min。 3.2历史测风塔数据a)测风塔位置应在风电场5km范围内;b)应至少包括10m、70m及以上高程的风速和风向以及气温、气压等信息;c)数据的时间分辨率应不小于10min。 3.3历史数值天气预报历史数值天气预报数据应与历史功率数据相

感应式电度表知识汇总

感应式电度表知识汇总 一、电能表的分类1、电能表按其相线可分为单相电能表、三相三线电能表、三相四线电能表。2、电能表按其工作原理可分为机械式电能表和电子式电能表。3、电能表按其用途可分为有功电能表、无功电能表、最大需量表、标准电能表、复费率电能表、预付 费电能表、损耗电能表和多功能电能表等。4、在一定时间内累积(A)的方式来测得电能的仪表称为有功电能表。A)有功功率B)瞬间功率C)平均功率D)电量6、最大需量是指用户一 个月中每一固定时段的(B)指示值。A)最大功率B)平均功率的最大C)最大平均功率D)最大负荷7、15min最大需量表指示的是(A)。A)计量期内最大的一个15min的平均功率B)计量期内最大的一个15min间隔内功率瞬时值C)计量期内日最大15min平均功率的平均值8、复费率电能表为电力部门实行(C)提供计量手段。A)两部制电价B)各种电价C)不同时段的分时电价D)先付费后用电9、多功能电能表除具有计量有功(无功)电能量外,至少还具有(B)种以上的计量功能,并能显示、储存多种数据,可输出脉冲,具有通信接口和编程预置等各 种功能。A)一种B)两种C)三种D)四种10、(A)可测量变压器功率损耗中与负荷无关的铁 芯损耗。A)铁损电能表B)铜损电能表C)普通电能表D)伏安小时计11、(B)可测量变压器绕组的电能损耗,该损耗是随负荷而变化的。A)铁损电能表B)铜损电能表C)普通电能表D)伏安小时计12、如果一只电能表的型号为DSD9型,这只表应该是一只(A)。A)三相三线多功能电能表B)三相预付费电能表C)三相最大需量表D)三相三线复费率电能表※DSSD表示三相三线全电子式多功能电能表。13、铭牌标志中5(20)A的5表示(A)。A)基本电流B)负载电流C)最大额定电流D)最大电流14、有功电能表的计量单位是(A) ,无功电能表的计量单位是(C) 。A)kWh B) kW?h C)kvarh D)kvar?h二、感应式电能表的结构1、感应式电能表主要由哪几部分组成?答:感应式电能表一般由测量机构、辅助部件和补偿调整装置

最新多功能电能表现场校验仪说明书

多功能电能表现场校验仪说明书

目录 一、概述 1 二、主要功能和特点2 三、技术指标 2 四、面板说明 3 五、操作使用方法 4 1、开机 4 2、接线方法4 3、设置常数及方式5 4、电参数测量 5 5、CT变比的测量6 6、查线(错误接线识别) 6 7、电能表校验8 8、存贮和查询11 9、液晶屏对比度的调节12 六、电能基本误差的校准12 七、常见故障及处理方法12 八、附件13 九、附录14 1、钳形电流互感器的使用方法14 2、光电采样器的使用方法14 3、电子表脉冲采样线的使用方法14

一、概述 尊敬的用户,非常欢迎您选购我们为您生产的JYM-3型多功能电能表现场校验仪,该现场校验仪是专门为现场校验单、三相有功和无功感应式和电子式电能表以及其它多种电工仪表而设计开发的一款便携式设备。该设备应用高精度采样技术,并结合最新数字信号处理方法,为现场校验电能表和其它多种电工仪表提供了一套方便高效的解决方案。我们相信您会对使用这款便携式设备感到十分满意的。 在使用该设备之前,请详细阅读本使用说明书。以下是使用该设备时的注意事项: 1、设备通电使用前,应保证可靠接地。 2、设备通电使用前,应确认面板上的Ua/外部供电电源选择开关是处于哪种状态:该开关按下即选择了通过Ua与U0提供设备工作电源,供电范围为AC80V-400V,该状态下,严禁把电源线插入外220V插座。该开关浮起(同时指示灯亮)即选择了通过外220V 插座提供设备工作电源,供电范围为AC220V±10%。 3、严禁在设备通电工作状态下反复按动Ua/外部供电电源选择

开关。 4、严禁在设备通电工作状态下用手去触摸面板上的各端子。 5、正确连接测试导线,正确设置电流输入方式,输入相应量限内的电流和电压量。切记电流输入值不得超过所选端子额定值的120%。 6、钳形电流互感器在使用过程中应轻拿轻放,必须保持钳口铁芯端面清洁,不得有任何异物。钳口端面可用干绸布擦拭(严禁沾酒精和水),擦拭过程中应保持铁芯端面光洁度。 7、接线时,必须先加电压,后加电流;拆线时,必须先去电流,再断电压。请切记不要将电子表脉冲采样线接在火线或零线上,以免损坏设备。 8、在夹钳形互感器时,一定要让电流线从钳形互感器的圆孔中穿过,钳口要合严,不要将线夹到钳口上,以免影响测量精度。 9、设备按键采用轻触薄膜按键,应防止用锐器或指甲按压。 10、应注意防水、防潮,存放于干燥处。严禁在潮湿及有腐蚀性气体的环境中使用。 11、仪器在工作不正常(受到干扰或死机)时,可对其复位(按 [复位] 键)后再使用。 二、主要功能和特点 1、三相电流、电压、有功功率、无功功率、功率因数、角度、频率等电参数的高精度测量。 2、三相有功和无功感应式、电子式电能表以及其它多种电工仪表的现场校验。 3、计量装置综合误差的现场校验。 4、电压输入0-400V自动切换量程,确保测量精度。 5、电流输入有端子和钳表两种方式可选,最大可测电流500A。

电能表现场校验装置通用技术规范

电能表现场校验装置通用技术规范

本规范对应的专用技术规范目录 电能表现场校验装置采购标准技术规范使用说明 1、本标准技术规范分为通用部分、专用部分。 2、项目单位根据需求选择所需设备的技术规范,技术规范通用部分条款及专用部分固化的参数原则上不能更改。 3、项目单位应按实际要求填写“项目需求部分”。如确实需要改动以下部分,项目单位应填写技术规范专用部分中表4“项目单位技术差异表”并加盖该网、省公司物资部(招投标管理中心)公章,与辅助说明文件随招标计划一起提交至招标文件审查会: ①改动通用部分条款及专用部分固化的参数; ②项目单位要求值超出标准技术参数值; ③需要修正污秽、温度、海拔等条件。 经标书审查会同意后,对专用部分的修改形成表4“项目单位技术差异表”,放入专用部分中,随招标文件同时发出并视为有效,否则将视为无差异。 4、技术规范的页面、标题、标准参数值等均为统一格式,不得随意更改。 5、技术规范专用部分由项目单位根据工程情况编写,其中带“××”的文字和技术参数及“项目单位填写”的部分由各项目单位根据工程实际情况和需要必须全面认真填写;空白部分的参数根据需要选择填写;表格中带下划线的技术参数由项目单位和设计院根据工程具体情况更改,不带下划线的技术参数为固化技术参数,技术规范专用部分技术参数表中项目单位与投标人均不需要填写的部分栏目,项目单位应以“—”表示。 6、投标人应逐项响应技术规范专用部分中相应内容。填写投标人响应部分,应严格按技术规范专用部分的“招标人要求值”一栏填写相应的投标人响应部分的表格。投标人填写技术参数和性能要求响应表时,如有偏差除填写“表5 投标人技术偏差表”外,必要时应提供相应试验报告。 7、货物需求一览表中货物数量各项目单位和设计院必须填写,如不能确定准确数量,可以填写估算数量。

风电功率预测问题

第一页 答卷编号:论文题目: 指导教师: 参赛学校: 报名序号: 证书邮寄地址: (学校统一组织的请填写负责人) 第二页 答卷编号:

风功率预测问题设计 摘要 未来风力发电可能成为和太阳能比肩的新能源行业。随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力。一方面煤炭、石油和天然气等化石燃料的储量由于大量开采而日益减少:另一方面是大量使用化石燃料对自然环境产生了严重的污染和破坏。这两方面的问题已经引起世界各国政府和人民的高度重视,并在积极寻求一条可持续发展的能源道路,以风能首当其冲。风速的随机性,给,和风电场的功率输Hj带来很大的困难。本文旨在研究分电功率在一段时间的变化规律,本文组建三个模型来解决风电功率的预测问题通过对历史数据的分析,挖掘5月31号到6月6日风电功率的变化趋势,以便直观的检验模型与实际数据是否相吻合。 在问题一中考虑天气变化的随机性,分析不同时间点的数据,将Pa,Pb,Pc,Pd,P58表中5月30日第81时间点到96时间点的数据提取出来运用灰色理论作为预测2006年5月31日开始前四个小时内的16个时间点的数据预。同理以表中已给出的5月31日1-16时间点的数据预测出17-32时间的数据,然后运用此模型得出时间范围a,b内各时间点的风电功率。然后可与题目中以给的数据相比较得出误差。第二种预测方法运用指数平滑模型得出时间范围a,b内各时间点的风电功率。第三种预测方法运用移动平均模型,预测出时间范围a,b内各时间点的风电功率。通过三种预测方法的误差分析我们推荐指数平滑预测法。 在问题二中,通过比较分析问题一的预测结果,比较单台风电机组功率(P A ,P B ,P C , P D )的相对预测误差与多机总功率(P 4 ,P 58 )预测的相对误差,得出风电机组的汇聚程 度越高,对于预测风电功率结果误差影响越小。 在问题三中,选用了BP神经网络的预测方法,加入了更多的自变量,使得预测结果更精确。 (关键词:风速的随机性,风速的预测,风电功率数值,灰色理论,指数平滑模型,移动平均模)

电能表计量误差及计量损耗问题分析

电能表计量误差及计量损耗问题分析 在电力企业中,电能表不仅可以确保供电量统计的准确性,而且还可以提高电力企业的市场竞争力。但是由于受到多方面因素的影响,导致电能表出现计量误差及计量损耗问题,本文将会对其进行分析,并提出有效的解决措施。标签:电能表;计量误差;计量损耗问题;原因;措施 1电能表计量误差及计量损耗类型 目前,在电能表工作阶段,经常会由于各种因素的影响而诱发计量误差及计量损耗,但是不同的因素所诱发的计量误差及计量损耗存在一定的差异,因此为了实现对计量误差及计量损耗原因的分析,将会对常见的计量误差及计量损耗类型进行介绍。 1.1单相电能表 通常情况下,单相电能表计量误差及计量损耗主要表现为下述几个方面:(1)表乘2。如果选择单相(即220V电能表)直接对二相(即380V用电负载)进行计量时,所测得的实际用电总量通常是以电能表上累计电量乘以2所得。在这种条件下,如果在A相线路上配置电能表,用电能表计量A、B两相的用电负载时,将会产生计量正误差,即使电量偏多。反之如果在B相的线路上配置电能表,用电能表计量A、B两相的用电负载时,将会产生计量负误差,即使电量偏少。(2)表乘3。如果直接用单相(即220V电能表)对三相四线或三相三线用电负载进行计量时,所测得的实际用电总量通常是以电能表上累计电量乘以3所得。在这种条件下,如果三相线路负载存在不平衡现象时,将会引发电量计量不准确问题,从而诱发计量误差及计量损耗。 1.2三相三线电能表 在电能表运行过程中,三相三线计量误差及计量损耗表现为下述几个方面:(1)在用电能表计量三相四线不平衡配电系统中所使用电量时,只选择一个三相三线电能表来进行计量工作时,当In不等于0时,此时将单相电焊机直接与A,N线连接,将会引发电能表的反转,即少计电量;(2)用三相三线电能表直接计量三相四线电力系统中所出现的不平衡用电负载电流时,此时的N线会产生零序电流,但是三相三线电能表无法对零序电流的功率消耗进行准确的计量,从而诱发少计电量现象;(3)借助三相三线电能表来对单相电炉电量进行计量过程中,将会受到电炉自身功率因素的影响,诱发多计电量的现象。 1.3三相四线电能表 在电能表运行过程中,三相四线电能表计量误差及计量损耗表现为下述几个方面:(1)两个互感器V形接线:对三相四线配电系统选择两个电流互感器V 形接线进行计量;(2)三个互感器Y形接法。其一般是在三相四线电能表上把

三相电能表现场校验仪说明书

三相电能表现场校验仪说明书 由于输入输出端子、测试柱等均有可能带电压,在插拔测试线、电源插座时,会产生电火花,小心电 击,避免触电危险,注意人身安全! 安全要求 请阅读下列安全注意事项,以免人身伤害,为了避免可能发生的危险,只可在规定的范围内使用。 只有合格的技术人员才可执行维修。 —防止火灾或人身伤害 使用适当的电源线。只可使用专用并且符合规格的电源线。 正确地连接和断开。当测试导线与带电端子连接时,请勿随意连接或断开测试导线。 注意所有终端的额定值。为了防止火灾或电击危险,请注意所有额定值和标记。在进行连接之前,请阅读使用说明书,以便进一步了解有关额定值的信息。

目录 一、概述 1 二、主要功能和特点 2 三、技术指标 2 四、面板说明 3 五、操作使用方法 4 4

一、概述 在使用该设备之前,请详细阅读本使用说明书。以下是使用该设备时的注意事项: 1、设备通电使用前,应保证可靠接地。 2、设备通电使用前,应确认面板上的Ua/外部供电电源选择开关是处于哪种状态:该开关按下即选择了通过Ua与U0提供设备工作电源,供电范围为AC80V-400V,该状态下,严禁把电源线插入外220V插座。该开关浮起(同时指示灯亮)即选择了通过外220V插座提供设备工作电源,供电范围为AC220V±10%。 3、严禁在设备通电工作状态下反复按动Ua/外部供电电源选择开关。 4、严禁在设备通电工作状态下用手去触摸面板上的各端子。 5、正确连接测试导线,正确设置电流输入方式,输入相应量限内的电流和电压量。切记电流输入值不得超过所选端子额定值的120%。 6、钳形电流互感器在使用过程中应轻拿轻放,必须保持钳口铁芯端面清洁,不得有任何异物。钳口端面可用干绸布擦拭(严禁沾酒精和水),擦拭过程中应保持铁芯端面光洁度。 7、接线时,必须先加电压,后加电流;拆线时,必须先去电流,再断电压。请切记不要将电子表脉冲采样线接在火线或零线上,以免损坏设备。 8、在夹钳形互感器时,一定要让电流线从钳形互感器的圆孔中穿过,钳口要合严,不要将线夹到钳口上,以免影响测量精度。 9、设备按键采用轻触薄膜按键,应防止用锐器或指甲按压。 10、应注意防水、防潮,存放于干燥处。严禁在潮湿及有腐蚀性气体的环境中使用。 11、仪器在工作不正常(受到干扰或死机)时,可对其复位(按 [复位] 键)后再使用。 二、主要功能和特点 1、三相电流、电压、有功功率、无功功率、功率因数、角度、频率等电参数的高精度测量。

感应式电能表现场校验误差分析

感应式电能表现场校验误差分析 电能表计量准确与否直接关系着电力系统各项经济技术指标的实现,但运行中的电能表由于各种原因时常出现误差超过正常范围的现象,成为电能计量不可忽视的一个重要问题。本文对感应式电能表各种负载下的误差进行分析,并提出一些处理措施。 标签:电能表现场校验误差分析 0 引言 电能是我国经济建设和人民生活的一种重要能源,电能表作为电能计量与经济结算的主要工具,其计量的准确性直接关系着电力系统各项经济技术指标的实现,直接关系着国家与人民的利益,因此必须保证电能表计量的准确。但运行中的电能表由于各种原因时常出现误差超过正常范围的现象,对电能表进行校验显得十分重要。现场校验不需要拆卸电能表,不需要中断电能表的计量,能在不中断用电的情况下完成校验,可以真实地记录电能表实际工况下的故障情况,近年来成为测试电能表计量误差的常用方法。 下面,本文以感应式电能表为例,针对电能表现场校验方法,就电能表计量误差进行分析,并提出一些有效的处理措施。 1 感应式电能表工作原理及误差特性 1.1 感应式电能表工作原理 对于感应式电能表来说,其转盘是一个导体,在交变磁通的作用下产生感应电流,此时转盘成为载流导体,载流导体在磁场中受到电磁力的作用,因电磁力力矩作用而使得转盘发生转动。穿过电能表转盘的磁通,包括电压磁通和电流磁通,而在电能表工作过程中,实际上在其转盘的不同位置一共有三个磁通穿过。磁通最大值在一个周期内移动,经过三个磁极时,磁场不断重复移动形成旋转磁场,最终由感应电流与电压工作磁通相互作用产生电磁力,形成驱动力矩,使转盘根据负载大小转动。但要使转盘在恒定的负载下做等速旋转,则必须对转盘施加一个同驱动力矩大小相等方向相反的反作用力矩,也就是制动力矩,制动力矩与转盘的转速成正比变化,以阻止转盘加速转动,在感应式电能表中,制动力矩由永磁铁来实现。 1.2 感应式电能表误差特性 感应式电能表依靠驱动力矩来驱使转盘转动,依靠制动力矩来阻止转盘加速转动,最终实现对负载的计量。但在实际工作中,电能表除了受到驱动力矩和制动力矩两个基本力矩的作用外,还会受到抑制力矩、摩擦力矩、补偿力矩等附加力矩的作用,这些附加力矩会破坏转盘的转速和负载功率,造成电能表计量误差。

电能表计量误差产生的原因分析及调整方法

电能表计量误差产生的原因分析及调整方法 【摘要】现在国家城市化进程加快的同时,也大力扶植农村的发展,给予了农村相对宽松的政策,所以国家经济高速发展的同时,越来越多的家庭和个体生活质量和水平都有很大程度的提高。这也就伴随着我国各个领域和人们生产生活中的用电量增大,虽然发电手段和发电量都在不断的进步,但是在用电高峰的时期也是很难充分满足用电需求,为了严格控制和计算用电量电能表就成为必不可少的工具。电能表计量用户的电量使用情况,是电力企业与用户之间利益关系的媒介和主要凭证,所以电能表计量过程需要被严格的控制和调整。现在我国电能表并不能够非常精确的计量用户电量的使用情况,我国人口十四亿之多,很小的用电误差会给电力企业带来很大的利益损失。所以文章对电能表计量误差产生的原因进行分析,并且阐述电能表误差调整的具体措施。 【关键词】电能表;计量;误差;用电量;控制;调整 前言 一个国家的发展,人民的生产生活,在当今时代都离不开电能,电能是一种清洁、高效、使用便捷、便于调控和管理的可再生能源,目前世界范围内发电方式有很多种如,火力发电、水力发电、风力发电、太阳能发电、核能发电和地热能发电等。电能的应用已经有几百年的历史,电能的应用和发展使许多的电器出现,方便着人们的生产和生活,提高了生活的节奏和生产效率。电能由电力企业通过电力系统通过城市电网,按照用户的不同需求将不同电压、电流的电能配送到每一个用户,电力企业为电力用户提供电能,并且把电压和电流都会进行相应的调节以符合人们的使用标准。电力企业要为人们提供稳定安全、经济合理、优质的电能,电力系统在经济和科技发展的基础之上也在不断的改革和完善,向着自动化和智能化发展。为了维护用户和电力企业双方的利益,就要对用户用电量进行严格测量和计算,这就需要电能表进行计量。无论是农村还是城市都会用电能表对用户用电量进行实时计量,通过电能表能够显示出用户的用电量,然后通过数据进行缴费或者是充值。 电能表的应用能够节省很多的人力和物力,并且相对精确和稳定的计量和控制用户用电情况,在某种程度上能够使电能充分利用,并且使用户本能够相对的节约电能。现在受到用户和电力企业关注的就是电能表计量过程中的精确度问题,许多电能表会在计量的时候产生一定的误差,这就会或多或少的给电力企业或者用户带来损失。 1 电能表及电能表计量误差产生原因 电能表是计量某一时电能用量累计值的设备,电能表的种类很多,按照使用性质分类可分为有功电能表、无功电能表、最大需量表、标准电能表、复费率分时电能表、预付费电能表(分投币式、磁卡式、电卡式)、损耗电能表、多功能电能表和智能电能表。

单相多功能电能表现场校验仪

单相多功能电能表现场校验仪 多功能电能表现场校验仪是专门为现场校验单、三相有功和无功感应式和电子式电能表以及其它多种电工仪表而设计开发的一款便携式设备。广泛应用于电力、冶金、化工、烟草、纺织、铁路、船舶、物业等行业。为电力计量部门在不拆电表、不停电的情况下现场进行电度表误差校验以及电力稽查部门对偷窃电违法行为的查证提供了方便的解决方案。

一、技术条件 1. 一般使用条件 1.1 环境条件 使用环境温度:23℃±1℃;使用环境湿度:40%~60%R.H.; 1.2 电源 单相:AC220V±33V;频率:50±2.5Hz 2. 技术指标 2.1 装置准确度等级:0.05级/0.1级 2.2 输出电压: 量程:220V 调节范围:0~120% 调节细度:优于 0.01% 输出稳定度:≤0.03%/3分钟 输出失真度:≤0.5% 输出容量:15VA/表位 负载特性:阻性、感性和容性 容性负载:小于0.47uF/表位 谐波输出:2~21次谐波,含量≤40%; 2.3 输出电流:

量程:1mA、10mA、0.1A、0.25A、1A、2.5A、5A、10A、25A、50A、100A 调节范围:0~120%,最大输出电流:120A 调节细度:优于 0.01% 输出稳定度:≤0.05%/3分钟 输出失真度:≤0.5% 最大输出容量:电压回路600VA,电流回路1000VA 负载特性:阻性、感性 启动电流输出:0.1mA(最小),准确度:≤5% 谐波输出: 2~21次谐波,含量≤40%; 偶次谐波(波群控制); 奇次谐波(可控硅波形); 2.4 输出功率: 稳定度:≤0.05%/2分钟,起动功率:准确度≤5%; 2. 5 输出相位: 调节范围:0~359.99°,调节细度:0.01° 2. 6输出频率: 调节范围:45~65Hz,调节细度:优于0.01 Hz

相关主题
文本预览
相关文档 最新文档