初中七年级数学绝对值和相反数(3)
- 格式:doc
- 大小:44.17 KB
- 文档页数:2
绝对值与相反数【知识扫描】1、 _____________________________________________ ____叫做绝对值2、_________________的绝对值是它本身,_________________的绝对值是它的相反数。
3、______________、_____________相等的两个数叫做互为相反数3、-a的相反数是_________【基础演练】1、判断正误:(1)任何一个数的相反数都是负数。
()(2)a一定是正数。
()(3)-a一定是负数。
()(4)|n|一定是正数。
()(5)∵|a|=|b|,∴a=b或a= b。
()(6)∵|-m|=4, ∴m=-4。
()(7)若|a|=2,则a=±2。
()(8)只有两个数相等,它们的绝对值才能相等。
()(9)互为相反数的两个数的绝对值相等。
()2、化简下列各数:①(+23) ②+(8)] ③(5) ④[(7)] ⑤-[-(+6)] ⑥+[ -(9)] ⑦7______⑧–(8)=________3、计算:① |0|+|27| ② |313|+|423| ③|9||414 2.25|+ |5|4、填空: (1)-3.8相反数是____________,213的相反数是___________. (2)13和+13互为_____,|13|=_____,|13|=_____,它们的绝对值______。
(3)24是______的相反数,是_____的倒数,是_______的绝对值。
(4)任何一个有理数的绝对值都是________数。
(5)任何一个_______数的相反数都是正数,_____的相反数是0,任何一个______数的相反数都是负数。
(6)_______的相反数是它本身;_______数的绝对值是它本身;______的倒数是它的本身(7)______的相反数大于它本身;________的相反数小于它本身;________的绝对值大于它本身。
七年级上册数学期中易混淆要点:绝对值与相反数知识点总
结
对于初中的复习,在背诵一些课本知识点的同时还需要做一些练习题,一起来看一下这篇七年级上册数学期中易混淆要点吧!
1、相反数的概念关键要理解“只有符号不同”的含义,规定零的相反数是零;
2、互为相反数指的是一对数,甲、乙两数互为相反数包括甲是乙的相反数,乙也是甲的相反数;
3、相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O的两边,并且到原点的距离相等。
4、多重符号化简的依据就是相反数的意义,化简的结果是由“-”号的个数来决定的,简称:奇负偶正。
5、什么是一个数的绝对值呢?从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离。
注意,这里的距离,是以单位长度为度量单位的,是一个非负的量。
6、一个正数的绝对值是它本身,一个负数的绝对值是它的相反数;零的绝对值是零。
7、两个负数,绝对值大的反而小。
小编为大家提供的七年级上册数学期中易混淆要点就到这里了,愿大家都能在学期努力,丰富自己,锻炼自己。
3 绝对值1.相反数(1)相反数的定义像4和-4,3和-3,2.5和-2.5等这样只有符号不同的两个数,我们称其中一个数是另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0. 辨误区 相反数的理解 ①相反数“只有符号不同”,即符号相反,数字相同,不能误理解为“只要符号不同”就行,例如:-1与2符号不同,但不是互为相反数.②相反数是成对出现的,不能单独存在.例如,5是-5的相反数,-5也是5的相反数.③0的相反数为0是相反数定义的重要组成部分.【例1-1】 关于相反数下列说法正确的是( ).A .-14和0.25不互为相反数 B .-3是相反数 C .任何一个数都有相反数 D .正数与负数互为相反数解析:A × 只有符号不同,互为相反数B × 相反数是成对出现的C √ 正数、0、负数都有相反数D × 正数与负数中的数字不一定相同,不一定是互为相反数答案:C(2)相反数的求法求一个数的相反数,只要在这个数的前面添上“-”号,就表示这个数的相反数. 一个有理数a ,它的相反数是多少呢?有理数a 的相反数是-a .这里a 可以表示任意一个数,可以是正数,可以是0,可以是负数,还可以是一个式子.比如:当a =2时,-a =-2,2与-2是互为相反数;当a =-1时,-a =-(-1),因为-1的相反数是1,所以-(-1)=1;当a =m +n 时,-a =-(m +n ),所以m +n 的相反数是-(m +n ).【例1-2】 填空:(1)-8的相反数是__________;-(-2.8)的相反数是__________;__________的相反数是14;100和__________是互为相反数. (2)如果m =-9,则-m =__________.解析:(1)根据相反数的定义和求法直接写出相反数即可.其中应注意-(-2.8)表示-2.8的相反数,等于2.8,所以-(-2.8)的相反数也就是2.8的相反数,应该填-2.8.(2)-m 表示m 的相反数,也就是求-9的相反数.答案:(1)8 -2.8 -14-100 (2)9 (3)相反数的几何意义一对相反数在数轴上对应的点,位于原点的两侧,并且到原点的距离相等.【例1-3】 如图,数轴上的点A ,B ,C ,D ,E 表示的数中哪些互为相反数?分析:解:(方法1)由图可知A ,B ,C ,D ,E 各点分别表示-4,-2.5,0.5,2.5,4.因为-4与4互为相反数,-2.5与2.5互为相反数,所以A 与E ,B 与D 表示的数互为相反数.(方法2)由图可知,点A ,B 在原点的左侧,且到原点的距离分别是4个单位长度和2.5个单位长度.C ,D ,E 在原点的右侧,且到原点的距离分别是0.5个单位长度,2.5个单位长度和4个单位长度.根据互为相反数的几何意义可得A 与E ,B 与D 表示的数互为相反数.2.绝对值(1)绝对值的几何定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.①绝对值是一个数在数轴上的对应点离开原点的长度,如图中,点-4距离原点4个单位长度,则-4的绝对值就是4.②绝对值是一个距离.(2)绝对值的表示方法一个数a 的绝对值记作|a |,读作a 的绝对值.如,+4的绝对值记作|+4|,-8的绝对值记作|-8|.(3)绝对值的代数意义①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0.用式子表示为:|a |=⎩⎪⎨⎪⎧ a ,a >0,0,a =0,-a ,a <0.【例2】 下列说法正确的是( ).A .|-5|表示-5的绝对值,等于-5B .负数的绝对值等于它本身C .-10距离原点10个单位长度,所以-10的绝对值是10D .绝对值等于它本身的数有两个,是0和1 A × 绝对值是一个距离,不能为负数B × 负数的绝对值等于它的相反数C √ 一个数的绝对值是它在数轴上对应点与原点的距离D × 正数和0的绝对值都等于它本身3.绝对值的性质(1)数轴上表示某个数的点到原点的距离越近,它的绝对值就越小,到原点的距离越远,它的绝对值就越大.(2)任何一个有理数的绝对值一定是非负数,即|a |≥0.0是绝对值最小的有理数.(3)互为相反数的两个数的绝对值相等.反过来,若两个数的绝对值相等,则这两个数相等或互为相反数.(4)任何一个有理数都有唯一的绝对值.但绝对值为某一正数的数有两个,它们互为相反数.例如,如果|a |=2,那么a =±2.(5)任何一个数的绝对值都大于或等于它本身,即|a |≥a .【例3】 下列说法:①若|x |=2 013,则x =2 013;②⎪⎪⎪⎪⎪⎪-23=⎪⎪⎪⎪⎪⎪+32;③绝对值最小的有理数是1;④0没有绝对值;⑤一个有理数的绝对值一定是非负数.正确的个数为( ).A .1B .2C .3D .4解析:绝对值是2 013的数是±2 013;⎪⎪⎪⎪⎪⎪-23=23,⎪⎪⎪⎪⎪⎪+32=32;绝对值最小的有理数是0;0的绝对值是0;正数的绝对值是正数,负数的绝对值是它的相反数,也是正数,0的绝对值是0.所以⑤正确.答案:A4.多重符号的化简化简规律:化简一个含有多重括号的非零有理数,结果与这个有理数前面的负号的个数有关.①当“-”号的个数是奇数时,结果为负;②当“-”号的个数是偶数时,结果为正.由于正号可以省略,所以化简符号时,主要看这个数前面“-”号的个数.【例4】 化简下列各数的符号:(1)-{-[+(-10)]};(2)-[-(+5)].分析:题号 负号的个数 答案(1) 3 -10(2) 2 5解:(1)-{-[+(-(2)-[-(+5)]=5.点评:化简一个含有多重括号的非零有理数,可以逐步地由内向外层层化简,也可以根据“奇负偶正”的规律进行化简.5.绝对值的求法绝对值的求法有两种方式:一是给出数字,直接按要求求这个数的绝对值;二是给出含有绝对值符号的式子,求式子的值.求绝对值的方法:(1)先判断这个数是正数、负数,还是0.(2)根据绝对值的代数意义确定它的绝对值是它本身,还是它的相反数,从而求得它的绝对值.绝对值的代数意义:①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0.弄清绝对值与相反数符号的意义及相反数和绝对值的求法,是求含有绝对值符号式子的关键.【例5-1】 求下列各数的绝对值:+11,-3.4,0,-32. 分析:可根据绝对值的意义,即根据“正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0”进行求解.解:|+11|=11,|-3.4|=3.4,|0|=0,⎪⎪⎪⎪⎪⎪-32=32. 【例5-2】 求下列各式的值:|+2 013|,|-3.9|,-⎪⎪⎪⎪⎪⎪-56,-|+18|. 分析:|+2 013| 求+2 013的绝对值 |-3.9| 求-3.9的绝对值-⎪⎪⎪⎪⎪⎪-56 求-56的绝对值的相反数 -|+18| 求+18的绝对值的相反数解:|+2 013|=2 013,|-3.9|=3.9,-⎪⎪⎪⎪⎪⎪-56=-56,-|+18|=-18. 6.利用绝对值比较大小(1)利用绝对值比较两个负数的大小两个负数比较大小,绝对值大的反而小.比较的具体步骤:①先求两个负数的绝对值;②比较绝对值的大小;③根据“两个负数,绝对值大的反而小”作出判断.(2)几个有理数的大小比较①同号两数,可以根据它们的绝对值来比较:a.两个正数,绝对值大的数较大;b.两个负数,绝对值大的反而小.②多个有理数的大小比较,需要先将它们按照正数、0、负数分类比较,然后利用各数的绝对值或借助于数轴来进一步比较.【例6-1】 比较下列每组数的大小:(1)-3和-2.9;(2)-23和-0.6. 分析:可先求出它们的绝对值,再根据“两个负数,绝对值大的反而小”比较大小. 解:(1)因为|-3|=3,|-2.9|=2.9,3>2.9,所以-3<-2.9;(2)因为⎪⎪⎪⎪⎪⎪-23=⎪⎪⎪⎪⎪⎪23,|-0.6|=0.6,23>0.6, 所以-23<-0.6. 【例6-2】 求下列各数的绝对值,并用“>”将各数排列起来:-32,+1,0,-2.3. 分析:根据绝对值的意义来求各数的绝对值;根据“正数大于0”“0大于负数”“两个负数,绝对值大的反而小”来比较它们的大小.解:因为⎪⎪⎪⎪⎪⎪-32=32,|+1|=1,|0|=0,|-2.3|=2.3,所以+1>0>-32>-2.3. 7.绝对值的非负性的应用绝对值的非负性(1)绝对值具有非负性,即对于任意有理数,都有|a |≥0.绝对值的最小值为0.(2)若几个数的绝对值相加和为0,则这几个数的值都为0.用式子表示为:若|a |+|b |+|c |=0,则a =0,且b =0,且c =0.可以利用上面的知识求字母的值.【例7-1】 当m =__________时,5+|m -1|有最小值,最小值是__________. 解析:根据“任意一个有理数的绝对值都是非负数”来解答.因为|m -1|≥0,所以当m =1时,|m -1|有最小值为0,则5+|m -1|的最小值是5+0=5.答案:1 5【例7-2】 已知|a -2|+|7-b |+|c -3|=0,求a ,b ,c 的值.分析:当3个绝对值相加等于0时,说明每个绝对值都等于0.解:因为|a-2|≥0,|7-b|≥0,|c-3|≥0,且|a-2|+|7-b|+|c-3|=0,所以|a-2|=0,|7-b|=0,|c-3|=0,所以a=2,b=7,c=3.8.相反数与数轴的综合应用比较一组数的大小时,若需要比较相反数的大小,可按以下方法进行:(1)表示数:根据相反数的几何意义,将各数或字母的相反数在数轴上表示出来;(2)排顺序:按照数轴上“右边的数总是大于左边的数”,排列这组数的大小关系.【例8】如图,若A是有理数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是( ).A.a<1<-a B.a<-a<1C.1<-a<a D.-a<a<1解析:观察数轴可知,a<0,且|a|>1.因为-a是a的相反数,所以-a>0,且-a>1.先在数轴上标出有理数a的相反数-a的对应点,再排列大小可以得到a,-a,1的大小关系是a<1<-a,故选A.答案:A9.利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题,主要有以下两类:(1)判断物体或产品质量的好坏可以用绝对值判断物体或产品偏离标准的程度,绝对值越小,越接近标准,质量就越好.方法:①求每个数的绝对值;②比较所求绝对值的大小;③根据“绝对值越小,越接近标准”作出判断.(2)利用绝对值求距离路程问题中,当出现用“+”、“-”号表示的带方向的路程,求最后的总路程时,实际上就是求绝对值的和.方法:①求每个数的绝对值;②求所有数的绝对值的和;③写出答案.【例9-1】如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( ).解析:因为|-0.8|<|+0.9|<|+2.5|<|-3.6|,所以从轻重的角度看,最接近标准的是C.答案:C【例9-2】一天上午,出租车司机小王在东西走向的路上运营,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,-3,+12,-11,-13,+3,-12,-18,请问小王将最后一位乘客送到目的地时,共行驶了多少千米?分析:本题是绝对值意义在实际问题中的具体应用,有理数中的“+”号和“-”号在本题中表示的是方向,而它们的绝对值是小王在运营中所行驶的路程,因此求总共行驶的路程应是每次行车里程绝对值之和.解:|+15|+|-3|+|+12|+|-11|+|-13|+|+3|+|-12|+|-18|=15+3+12+11+13+3+12+18=87(千米).答:小王将最后一位乘客送到目的地时,共行驶了87千米.。
一、创设情境:
1.让学生画一条数轴,并在数轴上标出下列各
数:
在讨论数轴上的点与原点的距离时,只需要观
察它与原点之间相隔多少个单位长度,与位于原点
何方无关.
2.两辆汽车,第一辆沿公路向东行驶了5千米,
第二辆向西行驶了4千米.为了表示行驶的方向(规
定向东为正)和所在位置,分别记作+5千米和-4千
米.这样,利用有理数就可以明确表示每辆汽车在
公路上的位置了.
我们知道,出租汽车是计程收费的,这时我们
只需要考虑汽车行驶的距离,不需要考虑方向.当
不考虑方向时,两辆汽车行驶的距离就可以记为5
千米和4千米.揭示生活中确实存在只需考虑距离
的问题.这里的5叫做+5的绝对值,4叫做-4的绝
对值.
教师活动内容、方式学生活动方式、内容旁注
=,=,=;
=;
=,=,= .
教师活动内容、方式学生活动方式、内容旁注例2化简:
四、交流反思
和学生一起归纳本节课主要内容:
1.一个正数的绝对值是它的本身;一个负数的
绝对值是它的相反数;零的绝对值是零.
2.从数轴看,一个数a的绝对值就是数轴上表
示数a的点到原点的距离.
3.要注意一个数的绝对值不可能是负数.
五、巩固练习
1.课本P35练习
2.求下列各数的绝对值:
-5,,,+1,0.
3.填空:
(1)-3的符号是______, 绝对值是____;
(2)符号是“+”号,绝对值是7的数是_____;
(3)的符号是_____, 绝对值是______;
(4)绝对值是,符号是“-”号的数是_____.
六、布置作业
课本P36习题2.3 T1--5。
2.3.绝对值和相反数(3)【学习目标】
1、理解有理数的绝对值和相反数的意义。
2、经历将实际问题数学化得过程,感受数学与生活的联系。
3、通过实际问题的解决,培养学生勇于探索、锲而不舍的精神。
【学习重点】
1、会用绝对值比较两个负数的大小。
2、会求已知数的相反数和绝对值。
【自主学习】
1、—3的符号是___________,绝对值是__________
2、1.5的符号是____________,绝对值是___________________
3、—2
3
的相反数是__________,绝对值是
2
3
的数是________________
4、符号是“—”,绝对值是9的数是________________
5、比较下列两个数的大小:
(1)、3与—7 (2)、—5.4与—5.3
【例题剖析】
例1、(1)、若一个数的绝对值是2,则这个数___________
例2、计算(1)、︱—4
7
︱-︱—
1
8
︱
(2)、︱—0.75︱÷︱+55
8
︱
例3、比较—9.5与—1.75的大小。
例4、求下列各数的绝对值 +6、-3、-2.7、0
例5、求6、—6、1
4
、—
1
4
的大小。
【基础演练】
1、—2的符号是___________,绝对值是______________;3.5的符号是________,绝对值是____________。
2、符号是+,绝对值是6的数是___________________.
3、符号是—,绝对值是4.3的数是__________________
4、计算
(1)、︱—2︱+︱+8︱(2)、︱—1
2
︱+︱—
3
4
︱
(3)、︱—0.38︱+︱0.2︱(4)︱—7︱+︱—3
4
︱
5、比较下列有理数的大小
(1)、—0,。
7与—1.7 (2)、—3
4
与—
4
5
(3)、—
3
11
与—0.273 (4)、—5与0
(编写:蒋继盛)。