连铸坯表面裂纹缺陷分析
- 格式:pdf
- 大小:1.35 MB
- 文档页数:5
A105连铸坯表面横裂纹形成原因分析(壹佰钢铁网推荐)连铸坯表面缺陷可分为纵裂纹、横裂纹、网状裂纹、皮下针孔和宏观夹杂,但主要缺陷是表面裂纹。
表面裂纹形成的一个主要原因是在结晶器弯月面区域钢水-结晶器壁-保护渣-坯壳之间不均衡凝固,它取决于钢水在结晶器中的凝固过程。
在二冷区,铸坯表面裂纹会继续扩展.它会导致轧材表面的微细裂纹,影响产品质量。
连铸坯裂纹的形成是一个非常复杂的过程,是传热、传质和应力相互作用的结果。
北京科技大学的学者应用配有能谱仪的场发射扫描电镜分析了A105钢中裂纹处及基体内残余元素Cu、As和Sn以及P含量.应用Thermo-Calc热力学计算软件计算了A105钢的主要析出相以及钢液中P含量随固相质量分数变化关系。
应用Gleeble 1500热模拟试验机对A105钢的高温热塑性进行了研究。
发现P偏析是该钢产生横裂的主要原因,残余元素Cu、As和Sn在晶界的偏聚加剧了裂纹的形成,矫直温度偏低加速了裂纹的扩展,而裂纹的形成可能与AlN的析出无关,因为析出的AlN很少。
(壹佰钢铁网推荐)。
连铸板坯和方坯表面缺陷的分析与判定在钢板、板卷、棒材、型钢上的裂纹和其他等缺陷,大多源于板坯和方坯上的缺陷。
大多数钢厂面临的最大挑战是缺乏如何判定、检查这些缺陷及相应地采取何种对策。
令人遗感的是,目前很多钢厂在遇到表面缺陷问题时所做的一些措施并不恰当,甚至没有对板坯和方坯进行检测分析便作出相应的判定和措施。
板坯和方坯的表面缺陷类型板坯和方坯上的所有表面缺陷几乎可以被分成五大类,并且在世界上大多数铸机上它们的发生位置基本上也是可以预测的。
基于经验,按照发生概率的大小顺序列出了五大类缺陷,即针状气孔/疏松、裂纹、深度振痕、不良清理、结晶器壁污染和刮伤等。
依据加热炉的氧化条件,可以确定板坯和方坯表面缺陷的临界深度,从而判定缺陷是否最终会成为板材、板卷或棒材上的轧制表面缺陷。
大部分加热炉操作会导致1%~2%厚度的铸坯氧化成氧化铁皮。
如果铸坯的厚度为220mm,就意味着在加热过程中会造成2.2mm~4.4 mm的厚度损失。
这个厚度损失同样会传递到表面缺陷。
如果铸坯表面缺陷的深度小于铸坯厚度的1%~2%,那么这些缺陷将在加热过程中稍除。
而那些比成为氧化铁的1%~2%厚度更深的缺陷,最终会造成轧材的表面缺陷。
针状气孔/疏松在所有铸机上。
针状气孔/疏松几乎都是常见的,也是最容易被忽略的铸坯缺陷。
如果钢中的气体得不到合理控制,就会在板坯和方坯表面上产生针状气孔/疏松。
当凝固率达到90%而气体总压力Ar+H2+N2+CO+CO2>1atm时,针状气孔/疏松就会在板坯和方坯表面上形成。
找出表面和皮下针状气孔/疏松的形成原因并不困难。
在实际生产中,皮下通常是指表面以下10mm的深度。
根据经验,针状气孔/疏松是影响钢板、板卷表面质量的最突出问题。
举一个板坯上的针状气孔/疏松的例子,钢种是V和Nb复合微合金化的A572 Gr50结构钢,含0.15%C,在铸坯上角部出现针状气孔/疏松,导致14.3mm厚的成材的上边部出现缺陷。
板坯连铸表面夹杂与表面裂纹的分析及预防措施摘 要:针对马钢板坯连铸生产过程中出现的表面夹杂与裂纹进行分析研究,提出了改进措施.关键词:连铸坯;表面夹杂;表面裂纹前 言连铸板坯表面出现夹杂与裂纹是影响铸坯质量的重要缺陷.夹杂与裂纹的出现,轻者要进行表面精整,重者会导致大宗废品的出现,既影响了铸机的生产,又影响了铸坯的质量,增加了企业的成本.本文就马钢第一炼钢厂板坯(220mmx1 300mm)生产中出现的表面夹杂和表面裂纹问题,从多角度分析研究其产生的原因,并提出减少夹杂与裂纹的措施,为板坯连铸生产提高参考.㈠ 表面夹杂缺陷1.1 夹杂来源和形成机理分析马钢第一炼钢厂板坯夹杂主要有两种类型:Ⅰ类为块状分布呈黄或白色;Ⅱ类为连续分布呈青色.通过电镜扫描分析发现:Ⅰ类夹杂是因耐火材料成块脱落而造成的,这种夹杂的结晶与上水口砖及某种耐火泥的结晶基本相同.因此,可以推断Ⅰ类夹杂的来源主要是结晶器上口与其护板之间抹的耐火泥和石英下水口成块脱落.这是因为在成分,颜色,岩相结构3方面与夹杂基本相同.在Ⅱ类夹杂的基体中有大小不等的结晶相α—A120,颗粒.而α—A12O 3有来源于脱氧产物的特征.夹杂中还有SiO 2,SiO 2为石英下水口的熔融状态.因此,可以推断Ⅱ类型夹杂的来源是石英下水口吸附A12O 3后的产物.形成机理是,A12O 3容易在石英质水口壁上附集.由于水口砖质的不均匀性及钢流冲刷的作用,A12O 3被吸附的结果会演变成凸起状颗粒.随其与基体结合面的减小,钢流冲刷及颗粒的增大,最后脱离石英水口而进入结晶器内.以A12O 3,和SiQ 2为主要组成的夹杂物因其熔点高,在保护渣中不易被熔融吸附.当它存在于结晶器四壁的钢液弯月面处时,若操作稍有不慎,这种颗粒状夹杂物就很容易被卷入铸坯表面形成表面夹杂.1.2 减少夹杂的解决办法连铸提高钢的质量控制夹杂物的办法有两类:第一类是防止夹杂物的生成和带入,第二类是去除钢液中已存在的夹杂物。
第二篇连铸板坯缺陷(AA)第二篇连铸板坯缺陷(AA) (1)2.1表面纵向裂纹(AA01) (4)2.2表面横裂纹(AA02) (6)2.3星状裂纹(AA03) (7)2.4角部横裂纹(AA04) (8)2.5角部纵裂纹(AA05) (10)2.6气孔(AA06) (11)2.7结疤(AA07) (12)2.8表面夹渣(AA08) (13)2.9划伤(AA09) (14)2.10接痕(AA13) (15)2.11鼓肚(AA11) (16)2.12脱方(AA10) (17)2.13弯曲(AA12) (18)2.14凹陷(AA14) (19)2.15镰刀弯(AA15) (20)2.16锥形(AA16) (21)2.17中心线裂纹(AA17) (22)2.18中心疏松(AA18) (23)2.19三角区裂纹(AA19) (25)2.20中心偏析(AA20) (27)2.21中间裂纹(AA21) (28)2.1表面纵向裂纹(AA01)图2-1-11、缺陷特征表面纵向裂纹沿浇注方向分布在连铸板坯上下表面,裂纹深度一般为2mm~15mm,裂纹部位伴有轻微凹陷。
在连铸浇注过程中,当连铸板坯坯壳在结晶器内所受到的应力超过了坯壳所能承受的抗拉强度时,即产生表面纵向裂纹。
表面纵向裂纹缺陷在结晶器内产生,出结晶器后若二次冷却不良,裂纹将进一步加剧。
2、产生原因及危害产生原因:①钢中碳含量处于裂纹敏感区内;②结晶器钢水液面异常波动。
当结晶器钢水液面波动超过10mm时,表面纵向裂纹缺陷易于产生;③结晶器保护渣性能不良。
保护渣液渣层过厚、过薄或渣膜厚薄不均,使连铸板坯凝固壳局部过薄而产生表面纵向裂纹;④中间包浸入式水口与结晶器对中不良,钢水产生偏流冲刷连铸板坯凝固壳,而产生表面纵向裂纹。
危害:轻微的表面纵裂纹经火焰清理后均能消除;表面纵向裂纹严重时可能会造成漏钢;表面纵向裂纹若送热轧进行轧制可能导致热轧产品出现分层、开裂缺陷。
连铸坯表面凹陷和纵裂分析一、现象描述2013年11月10日,2号机5机5流连铸机,浇注断面165*280mm,结晶器流量为每流170m³/h,拉速在1.0m/min在生产过程中,炉号3110340、3110346钢水生产的铸坯,出现表面凹陷、纵向裂纹,严重影响连铸坯质量。
下面结合该缺陷的形成机理及影响因素、现场条件及成分等加以分析。
二、连铸坯表面凹陷及纵裂的状态连铸坯上所形成的纵向凹陷经常出现在铸坯内弧侧表面,距横断面边长约1/4处。
此缺陷宽窄不等,长短不一,有局部凹沟,也有贯穿整支铸坯,多呈凹弧面状,内部有裂纹,剪切时有纵向裂纹产生,裂口粗糙不齐,长度一般在50~150mm,宽度1~3mm,深度30~50mm。
角部凹陷和纵裂在生产中出现过许多,不但影响连铸坯的表面质量,同样也影响铸坯的内部质量。
铸坯表面凹陷及纵裂形态图及现场照片。
三、主要缺陷炉号成分分析由炉前化验和复检结果分析可见,炉号3110340的钢水钢中S含量明显偏高,Mn/S 为6.1,远远小于控制范围的正常Mn/S 比≥20,对钢水的可浇性产生较大影响。
四、表面凹陷、裂纹产生原因分析1、钢水成分的影响1)含碳量的影响我厂生产的连铸坯主要为低碳镇静钢,以Q195、Q235为主,碳含量范围为0.06% ~0.22%。
碳量在0.10%~0.17%(均为质量分数)的钢种凝固时处于包晶反应区(L+δ→γ),在固相线温度以下20~50℃钢的线收缩最大,此时结晶器弯月面刚凝固的坯壳随温度下降发生δFe →γFe 转变,伴随着较大的收缩,坯壳与结晶器铜壁脱离形成气隙,导出的热流最小,坯壳最薄,在表面会形成凹陷。
凹陷部位冷却和凝固速度比其他部位慢,结晶组织粗化,对裂纹敏感性强。
坯壳出结晶器后受到喷水冷却和钢水的膨胀作用,在凹陷的薄弱处造成应力集中而产生裂纹。
坯壳表面凹陷越深,坯壳厚度不均匀性就严重,纵裂出现的几率越大。
2)S 、P 及Mn/S 的影响钢中S 、P 对钢的高温性能有较大影响。
连铸坯在凝固过程中形成裂纹的原因随着市场竞争的日趋激烈,产品的质量已经成为占有市场的主要砝码,连铸坯作为炼钢厂的终端产品,其质量直接影响着轧材单位的产量和轧材质量,据统计炼钢厂连铸坯质量缺陷中约70%为连铸坯裂纹,连铸坯裂纹成为影响连铸坯产量和质量的重要缺陷之一,下面将对铸坯在凝固过程中裂纹的形成做简要分析:一、铸坯凝固过程的形成铸坯在连铸机内的凝固可看成是一个液相穴很长的钢锭,而凝固是沿液相穴的固液界面在液固相温度区间把液体转变为固体把潜热释放出来的过程。
在固液界面间刚凝固的晶体强度和塑性都非常小,当作用于凝固壳的热应力、鼓肚力、矫直力、摩擦力、机械力等外力超过所允许的外力值时,在固液界面就产生裂纹,这就形成了铸坯内部裂纹。
而已凝固的坯壳在二冷区接受强制冷却,由于铸坯线收缩,温度的不均匀性,坯壳鼓肚、导向段对弧形不准,固相变引起质点如(AlN)在晶界的沉淀等,容易使外壳受到外力和热负荷间歇式的突变,从而产生裂纹就是表面裂纹。
二、连铸坯裂纹形态和影响因素连铸坯裂纹形态分为表面裂纹和内部裂纹,表面裂纹有纵向、横向角部裂纹、表面横裂和纵裂、网状裂纹和凹陷等,内部裂纹有中间、中心和矫直裂纹等。
连铸坯裂纹的影响因素:连铸坯表面裂纹主要决定于钢水在结晶器的凝固过程,它是受结晶器传热、振动、润滑、钢水流动和液面稳定性所制约的,铸坯内部裂纹主要决定于二冷区凝固冷却过程和铸坯支撑系统(导向段)的对弧准确性。
铸坯凝固过程坯壳形成裂纹,从工艺设备和钢凝固特性来考虑影响裂纹形成的因素可分为:1、连铸机设备状态方面有:1)结晶器冷却不均匀2)结晶器角部形状不当。
3)结晶器锥度不合适。
4)结晶器振动不良。
5)二冷水分布不均匀(如喷淋管变形、喷咀堵塞等)。
6)支承辊对弧不准和变形。
2、工艺参数控制方面有:1)化学成份控制不良(如C、Mn/S)。
2)钢水过热度高。
3)结晶器液面波动太大。
4)保护渣性能不良。
5)水口扩径。
6)二次冷却水分配不良,铸坯表面温度回升过大。