最新22等差数列的前n项和汇总
- 格式:ppt
- 大小:373.00 KB
- 文档页数:19
2022等差数列前n项和公式(详解)
有的数学公式算法还是比较复杂的,很多公式求和之类的,也不是一步两步就可以算出结果的哦,店铺今天就带你们去了解一下这个等差数列前n项和公式方法有哪些。
等差数列前n项和公式方法有哪些
1、用倒序相加法求数列的前n项和。
如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。
2、用公式法求数列的前n项和(等差数列公式求和公式:Sn=n(a1+an)/2或Sn=na1+n(n-1)d/2)。
对等差数列,求前n项和Sn可直接用等差数列的前n项和公式进行求解。
运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。
3、用裂项相消法求数列的前n项和。
裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。
4、用构造法求数列的前n项和。
所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的前n项和。
什么是等差数列
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。
这个常数叫做等差数列的公差,公差常用字母d表示。
例如:1,3,5,7,9……2n-1。
通项公式为:an=a1+(n-1)*d。
首项a1=1,公差d=2。
前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。
注意:以上n均属于正整数。
其次节等差数列及其前n项和突破点(一)等差数列的性质及基本量的计算基础联通抓主干学问的“源”与“流”1.等差数列的有关概念(1)定义:假如一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n+1-a n=d(n∈N*,d为常数).(2)等差中项:数列a,A,b成等差数列的充要条件是A=a+b2,其中A叫做a,b的等差中项.2.等差数列的有关公式(1)通项公式:a n=a1+(n-1)d.(2)前n项和公式:S n=na1+n(n-1)2d=n(a1+a n)2.3.等差数列的常用性质(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*).(2)若{a n}为等差数列,且k+l=m+n(k,l,m,n∈N*),则a k+a l=a m+a n .(3)若{a n}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d.(4)若{a n}是等差数列,公差为d,则a k,a k+m,a k+2m,…(k,m∈N*)是公差为md的等差数列.(5)若数列{a n},{b n}是公差分别为d1,d2的等差数列,则数列{pa n},{a n+p},{pa n+qb n}都是等差数列(p,q都是常数),且公差分别为pd1,d1,pd1+qd2.考点贯穿抓高考命题的“形”与“神”等差数列的基本运算[例1](1)(2022·东北师大附中摸底考试)在等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为() A.1 B.2C.3 D.4(2)(2022·惠州调研)已知等差数列{a n}的前n项和为S n,若S3=6,a1=4,则公差d等于()A.1 B.53C.-2 D.3[解析](1)∵a1+a5=2a3=10,∴a3=5,则公差d=a4-a3=2,故选B.(2)由S3=3(a1+a3)2=6,且a1=4,得a3=0,则d=a3-a13-1=-2,故选C.[答案](1)B(2)C[方法技巧]1.等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a1和公差d,然后由通项公式或前n项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n项和公式,共涉及五个量a1,a n,d,n,S n,知其中三个就能求另外两个,体现了方程的思想.2.等差数列设项技巧若奇数个数成等差数列且和为定值时,可设中间三项为a-d,a,a+d;若偶数个数成等差数列且和为定值时,可设中间两项为a-d,a+d,其余各项再依据等差数列的定义进行对称设元.等差数列的性质[例2](1)在等差数列{a n}396n n S11=()A.18 B.99C.198 D.297(2)已知{a n},{b n}都是等差数列,若a1+b10=9,a3+b8=15,则a5+b6=________.[解析](1)由于a3+a9=27-a6,2a6=a3+a9,所以3a6=27,所以a6=9,所以S11=112(a1+a11)=11a6=99.(2)由于{a n},{b n}都是等差数列,本节主要包括3个学问点:1.等差数列的性质及基本量的计算;2.等差数列前n项和及性质的应用;3.等差数列的判定与证明.所以2a 3=a 1+a 5,2b 8=b 10+b 6, 所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6), 即2×15=9+(a 5+b 6), 解得a 5+b 6=21. [答案] (1)B (2)211.[考点一]《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱B.53钱C.32钱 D.43钱 解析:选D 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+d =3a 1+9d ,2a 1+d =52,解得⎩⎨⎧a 1=43,d =-16,即甲得43钱,故选D.2.[考点一]设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( ) A .5 B .6 C .7 D .8解析:选D 由题意知S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8. 3.[考点二]已知数列{a n }为等差数列,且a 1+a 7+a 13=π,则cos(a 2+a 12)的值为( ) A.32 B .-32 C.12 D .-12解析:选D 在等差数列{a n }中,由于a 1+a 7+a 13=π,所以a 7=π3,所以a 2+a 12=2π3,所以cos(a 2+a 12)=-12.故选D.4.[考点一]设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9, 解得⎩⎪⎨⎪⎧a 1=3,d =-1.所以S 16=16×3+16×152×(-1)=-72.答案:-725.[考点二]设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最终6项的和为180,S n =324(n >6),求数列{a n }的项数及a 9+a 10.解:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36,又S n =n (a 1+a n )2=324,∴18n =324,∴n =18. ∵a 1+a n =36,n =18, ∴a 1+a18=36,从而a 9+a 10=a 1+a 18=36.突破点(二) 等差数列前n 项和及性质的应用等差数列前n 项和的性质(1)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d . (2)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1).(3)当项数为偶数2n 时,S 偶-S 奇=nd ;项数为奇数2n -1时,S 奇-S 偶=a 中,S 奇∶S 偶=n ∶(n -1). (4){a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(5)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.等差数列前n 项和的性质[例1] 已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________. [解析] 法一:设数列{}a n 的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d=5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D . 所以5+2D =10,所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20. [答案] 20等差数列前n 项和的最值[例2] 等差数列{a n }的首项a 1>0,设其前n 项和为S n ,且S 5=S 12,则当n 为何值时,S n 有最大值? [解] 设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.法一:S n =na 1+n (n -1)2d=na 1+n (n -1)2·⎝⎛⎭⎫-18a 1 =-116a 1(n 2-17n )=-116a 1⎝⎛⎭⎫n -1722+28964a 1, 由于a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值.法二:设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a 1+(n -1)·⎝⎛⎭⎫-18a 1≥0,a 1+n ·⎝⎛⎭⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9,又n ∈N *,所以当n =8或n =9时,S n 有最大值. 法三:由于S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n ,设f (x )=d2x 2+⎝⎛⎭⎫a 1-d 2x ,则函数y =f (x )的图象为开口向下的抛物线, 由S 5=S 12知,抛物线的对称轴为x =5+122=172(如图所示),由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减.又n ∈N *,所以当n =8或n =9时,S n 最大.[方法技巧]求等差数列前n 项和S n 最值的三种方法 (1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方结合图象借助求二次函数最值的方法求解. (2)邻项变号法:①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .(3)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则: ①若p +q 为偶数,则当n =p +q2时,S n 最大;②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.力量练通 抓应用体验的“得”与“失”1.[考点二]在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15 B .S 16 C .S 15或S 16 D .S 17解析:选A ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.[考点二]设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7解析:选D 由(n +1)S n <nS n +1得(n +1)n (a 1+a n )2<n (n +1)(a 1+a n +1)2,整理得a n <a n +1,所以等差数列{a n }是递增数列,又a 8a 7<-1,所以a 8>0,a 7<0,所以数列{a n }的前7项为负值,即S n 的最小值是S 7.3.[考点一]已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.解析:∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=20×2-10=30,∴S 30=60.答案:604.[考点一]已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是________.解析:由等差数列前n 项和的性质知,a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7+12n +1,故当n =1,2,3,5,11时,a nb n 为整数,故使得a nb n 为整数的正整数n 的个数是5.答案:55.[考点一]一个等差数列的前12项的和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则该数列的公差d =________.解析:设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧ S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案:5突破点(三) 等差数列的判定与证明基础联通 抓主干学问的“源”与“流” 等差数列的判定与证明方法方法 解读适合题型定义法 对于数列{a n },a n -a n -1(n ≥2,n ∈N *)为同一常数⇔{a n }是等差数列解答题中的证明问题等差中项法 2a n -1=a n +a n -2(n ≥3,n ∈N *)成立⇔{a n }是等差数列通项公式法 a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列选择、填空题中的判定问题前n 项和公式法 验证S n =An 2+Bn (A ,B 是常数)对任意的正整数n 都成立⇔{a n }是等差数列考点贯穿 抓高考命题的“形”与“神”等差数列的判定与证明[典例] 已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,推断{a n }是否为等差数列,并说明你的理由.[解] 由于a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又S 1=a 1=12,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n=2+(n -1)×2=2n ,故S n =12n .所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是等差数列.1.若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差数列 B .公差为4的等差数列 C .公差为6的等差数列 D .公差为9的等差数列解析:选C 令b n =a 2n -1+2a 2n ,则b n +1=a 2n +1+2a 2n +2,故b n +1-b n =a 2n +1+2a 2n +2-(a 2n -1+2a 2n )=(a 2n +1-a 2n -1)+2(a 2n +2-a 2n )=2d +4d =6d =6×1=6.即{a 2n -1+2a 2n }是公差为6的等差数列.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1,∴a n +1=2-1a n .∴b n +1-b n =1a n +1-1-1a n -1=12-1a n -1-1a n -1=a n -1a n -1=1,∴{b n }是首项为b 1=12-1=1,公差为1的等差数列.3.已知公差大于零的等差数列{}a n 的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求数列{a n }的通项公式; (2)若数列{}b n 满足b n =S nn +c,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1)∵数列{}a n 为等差数列,∴a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13,∴⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,解得⎩⎪⎨⎪⎧a 1=1,d =4.∴数列{a n }的通项公式为a n =4n -3. (2)由(1)知a 1=1,d =4, ∴S n =na 1+n (n -1)2×d =2n 2-n ,∴b n =S nn +c =2n 2-n n +c,∴b 1=11+c ,b 2=62+c ,b 3=153+c ,其中c ≠0.∵数列{}b n 是等差数列,∴2b 2=b 1+b 3, 即62+c ×2=11+c +153+c,∴2c 2+c =0, ∴c =-12或c =0(舍去),故c =-12.即存在一个非零实数c =-12,使数列{b n }为等差数列.[全国卷5年真题集中演练——明规律] 1.(2022·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .97解析:选C ∵{a n }是等差数列,设其公差为d ,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C. 2.(2021·新课标全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A.172 B.192C .10D .12 解析:选B ∵数列{a n }的公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.3.(2021·新课标全国卷Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( ) A .3B .4C .5D .6解析:选C 由S m -1=-2,S m =0,S m +1=3,得a m =S m -S m -1=2,a m +1=S m +1-S m =3,所以等差数列的公差为d =a m +1-a m =3-2=1,由⎩⎪⎨⎪⎧a m =a 1+(m -1)d =2,S m =a 1m +12m (m -1)d =0,得⎩⎪⎨⎪⎧a 1+m -1=2,a 1m +12m (m -1)=0,解得⎩⎪⎨⎪⎧a 1=-2,m =5,选C. 4.(2021·新课标全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析:由已知⎩⎨⎧S 10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,则nS n =n 2a 1+n 2(n -1)2d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得微小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49<6S 6,所以当n =7时,nS n 取最小值,最小值为-49.答案:-495.(2022·全国甲卷)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解:(1)设数列{a n }的公差为d ,由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)由于b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.6.(2022·新课标全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.解:(1)证明:由题设,a n a n +1=λS n -1, a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1.令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,则a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考 [练基础小题——强化运算力量]1.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15解析:选B 由S 5=(a 2+a 4)·52,得25=(3+a 4)·52,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13.2.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( ) A .37B .36C .20D .19解析:选A a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37,即m =37.3.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14D.12解析:选B 由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0. 4.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 3+a 7=-6,则当S n 取最小值时,n 等于( ) A .9 B .8 C .7D .6解析:选D 设等差数列{a n }的公差为d .由于a 3+a 7=-6,所以a 5=-3,d =2,则S n =n 2-12n ,故当n 等于6时S n 取得最小值.5.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________.解析:∵{a n }是等差数列,∴2a n =a n -1+a n +1,又∵a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=(2n -1)a n =2(2n -1)=38,解得n =10.答案:10[练常考题点——检验高考力量] 一、选择题1.(2021·黄冈质检)在等差数列{a n }中,假如a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2021·东北三校联考)已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,由于a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=72[(b 2-d )+(b 2+5d )]=-112,又a 1=3,则a 8=-109.3.在等差数列{a n }中,a 3+a 5+a 11+a 17=4,且其前n 项和为S n ,则S 17为( ) A .20 B .17 C .42D .84解析:选B 由a 3+a 5+a 11+a 17=4,得2(a 4+a 14)=4,即a 4+a 14=2,则a 1+a 17=2,故S 17=17(a 1+a 17)2=17.4.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零.又∵a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉利数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉利数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,由于b 1=1,则n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.由于对任意的正整数n 上式均成立,所以(4k -1)d =0,(2k -1)(2-d )=0,解得d =2,k =14.所以数列{b n }的通项公式为b n=2n -1.6.设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是( )A .310B .212C .180D .121解析:选D 设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,由于a 1=1,所以22a 1+d =a 1+3a 1+3d ,化简可得d =2a 1=2,所以a n =1+(n -1)×2=2n -1,S n =n +n (n -1)2×2=n 2,所以S n +10a 2n =(n +10)2(2n -1)2=⎝ ⎛⎭⎪⎫n +102n -12=⎣⎢⎢⎡⎦⎥⎥⎤12(2n -1)+2122n -12=14⎝⎛⎭⎪⎫1+212n -12≤121.即S n +10a 2n 的最大值为121. 二、填空题7.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差d 是________.解析:由S 33-S 22=1得a 1+a 2+a 33-a 1+a 22=a 1+d -2a 1+d 2=d 2=1,所以d =2.答案:28.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13等于________.解析:由于S 17=a 1+a 172×17=17a 9=51,所以a 9=3.依据等差数列的性质知a 5+a 13=a 7+a 11,所以a 5-a 7+a 9-a 11+a 13=a 9=3.答案:39.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11等于________.解析:S 11=11(a 1+a 11)2=11a 6,设公差为d ,由a 9=12a 12+6得a 6+3d =12(a 6+6d )+6,解得a 6=12,所以S 11=11×12=132.答案:13210.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 三、解答题11.已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式.解:(1)证明:∵b n =1a n ,且a n =a n -12a n -1+1,∴b n +1=1a n +1=1a n 2a n +1=2a n +1a n ,∴b n +1-b n =2a n +1a n-1a n=2.又∵b 1=1a 1=1,∴数列{b n }是以1为首项,2为公差的等差数列.(2)由(1)知数列{b n }的通项公式为b n =1+(n -1)×2=2n -1,又b n =1a n ,∴a n =1b n =12n -1.∴数列{a n }的通项公式为a n =12n -1. 12.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,若b n =12a n -30,设数列{b n }的前n 项和为T n ,求T n 的最小值.解:∵2a n +1=a n +a n +2,∴a n +1-a n =a n +2-a n +1,故数列{a n }为等差数列.设数列{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72得,⎩⎪⎨⎪⎧a 1+2d =10,6a 1+15d =72,解得a 1=2,d =4.故a n =4n -2,则b n =12a n -30=2n -31,令⎩⎪⎨⎪⎧ b n ≤0,b n +1≥0,即⎩⎪⎨⎪⎧2n -31≤0,2(n +1)-31≥0,解得292≤n ≤312,∵n ∈N *,∴n =15,即数列{b n }的前15项均为负值,∴T 15最小.∵数列{b n }的首项是-29,公差为2,∴T 15=15(-29+2×15-31)2=-225,∴数列{b n }的前n 项和T n 的最小值为-225.。
高二数学复习考点知识精讲与练习 专题9 等差数列的前n 项和公式【考点梳理】考点一 等差数列的前n 项和公式考点二 等差数列前n 项和的性质1.若数列{a n }是公差为d 的等差数列,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且公差为d2.2.设等差数列{a n }的公差为d ,S n 为其前n 项和,则S m ,S 2m -S m ,S 3m -S 2m ,…仍构成等差数列,且公差为m 2d .3.若等差数列{a n }的项数为2n ,则S 2n =n (a n +a n +1),S 偶-S 奇=nd ,S 偶S 奇=a n +1a n. 4.若等差数列{a n }的项数为2n +1,则S 2n +1=(2n +1)·a n +1,S 偶-S 奇=-a n +1,S 偶S 奇=n n +1. 考点三 等差数列{a n }的前n 项和公式的函数特征1.公式S n =na 1+n (n -1)d 2可化成关于n 的表达式:S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n .当d ≠0时,S n关于n 的表达式是一个常数项为零的二次函数式,即点(n ,S n )在其相应的二次函数的图象上,这就是说等差数列的前n 项和公式是关于n 的二次函数,它的图象是抛物线y =d2x 2+⎝ ⎛⎭⎪⎫a 1-d 2x 上横坐标为正整数的一系列孤立的点.2.等差数列前n 项和的最值 (1)在等差数列{a n }中,当a 1>0,d <0时,S n 有最大值,使S n 取得最值的n 可由不等式组⎩⎨⎧ a n ≥0,a n +1≤0确定;当a 1<0,d >0时,S n 有最小值,使S n 取到最值的n 可由不等式组⎩⎨⎧a n ≤0,a n +1≥0确定.(2)S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,若d ≠0,则从二次函数的角度看:当d >0时,S n 有最小值;当d <0时,S n 有最大值.当n 取最接近对称轴的正整数时,S n 取到最值.大重难点规律总结: (1)利用基本量求值:等差数列的通项公式和前n 项和公式中有五个量a1,d ,n ,an 和Sn ,这五个量可以“知三求二”.一般是利用公式列出基本量a1和d 的方程组,解出a1和d ,便可解决问题.解题时注意整体代换的思想. (2)结合等差数列的性质解题:等差数列的常用性质:若m +n =p +q(m ,n ,p ,q ∈N*),则am +an =ap +aq ,常与求和公式Sn =n a1+an2结合使用.(3)等差数列前n 项和Sn 最大(小)值的情形①若a1>0,d<0,则Sn 存在最大值,即所有非负项之和. ②若a1<0,d>0,则Sn 存在最小值,即所有非正项之和. (2)求等差数列前n 项和Sn 最值的方法①寻找正、负项的分界点,可利用等差数列性质或利用 ⎩⎨⎧ an≥0,an +1≤0或⎩⎨⎧an≤0,an +1≥0来寻找. ②运用二次函数求最值.【题型归纳】题型一:等差数列前n 项和的有关计算1.(2022·全国·高二课时练习)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15.(1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.2.(2022·全国·高二课时练习)在等差数列{a n }中: (1)已知5104958,50a a a a +=+=,求10S ; (2)已知7342,510,45n n S S a -===,求n .3.(2022·全国·高二课时练习)根据下列各题中的条件,求相应等差数列{}n a 的前n 项和n S :(1)12a =,5d =,10n =; (2)12a =-,6n a =,12n =.题型二:等差数列片段和的性质4.(2022·全国·高二单元测试)设等差数列{}n a 的前n 项和为n S ,若2k S =,28k S =,则4k S =( )A .28B .32C .16D .245.(2022·河南·高二月考)记等差数列{}n a 的前n 项和为n S ,已知55S =,1521S =,则10S =( )A .9B .10C .12D .136.(2020·湖北·秭归县第一中学高二期中)已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是( )A .S 5,S 10-S 5,S 15-S 10必成等差数列B .S 2,S 4-S 2,S 6-S 4必成等差数列C .S 5,S 10,S 15+S 10有可能是等差数列D .S 2,S 4+S 2,S 6+S 4必成等差数列题型三:等差数列前n 项和与n 的比值问题7.(2020·江苏省包场高级中学高二月考)在等差数列{}n a 中,12018a =-,其前n 项和为n S ,若101221210S S -=,则2020S =( ) A .-4040B .-2020C .2020D .40408.(2022·全国·高二课时练习)在等差数列{}n a 中,12018a =-,其前n 项和为n S ,若151051510S S -=,则2020S =( ) A .0B .2018C .2019-D .20209.(2020·河北·邢台市南和区第一中学高二月考)已知数列{}n a 的通项公式是=12n a n -,前n 项和为n S ,则数列n S n ⎧⎫⎨⎬⎩⎭的前11项和为 A .45-B .50-C .55-D .66-题型四:两个等差数列前n 项和的比值问题10.(2022·河南·高二月考)已知等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且有192a a +=,468b b +=,则99S T 的值为( ) A .16B .14C .2D .311.(2022·全国·高二课时练习)已知数列{}n a 、{}n b 都是等差数列,设{}n a 的前n 项和为n S ,{}n b 的前n 项和为n T .若2132n n S n T n +=+,则55a b =( ) A .1929B .1125C .1117D .2312.(2022·西藏日喀则·高二期末(理))已知等差数列{}n a 与等差数列{}n b 的前n 项和分别为n S 和n T ,若3123nn S n T n -=+,则1010ab =( )A .54B .4041C .5641D .2921题型五:等差数列前n 项和的最值问题(二次函数、不等式)13.(2022·北京市一零一实验学校高二期末)设n S 是等差数列{}()n a n *∈N 的前n 项和,且675S S S >>,则下列结论正确的有( ) A .110S >B .120S <C .130S >D .86S S >14.(2022·全国·高二课时练习)已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .1815.(2022·福建·宁德市第九中学高二月考)已知等差数列{}n a 满足247,3a a ==,n S 是数列{}n a 的前n 项和,则使n S 取最大值的自然数n 是( )A .4B .5C .6D .7题型六:等差数列前n 项和偶数项和奇数项和与绝对值问题16.(2022·浙江杭州·高二期末)已知数列{}n a 的前n 项和为n S ,若11a =,1n n a a n ++=,则( )A .22S =B .24144S =C .31243S =D .60660S =17.(2020·河北·武邑武罗学校高二期中)已知等差数列{}n a 的公差为4,项数为偶数,所有奇数项的和为15,所有偶数项的和为55,则这个数列的项数为 A .10B .20C .30D .4018.(2022·浙江衢州·高二期末)已知等差数列满足:,则的最大值为( ) A .18B .16C .12D .8题型七:等差数列的简单应用19.(2022·山西·太原市第五十六中学校高二月考(文))如图,某报告厅的座位是这样的:第一排有9个座位,从第二排起每一排都比前一排多2个座位,共有10排座位.(1)求第六排的座位数;(2)根据疫情防控的需要,要求:同排的两个人要间隔一个座位就坐,(每一排从左到右都按第一、三、五、七、九……的座位就坐,其余的座位不能坐),那么该报告厅里最多可安排多少人同时参加会议20.(2022·全国·高二单元测试)某水泥厂计划用一台小型卡车从厂区库房运送20根水泥电线杆,到一条公路沿着路侧架设,已知库房到该公路入口处500米,从库房出发卡车进入公路后继续行驶,直到离入口50米处时放下第一根电线杆,然后沿着该公路同一侧边每隔50米逐一放下余下电线杆,放完折返库房重新装运剩余电线杆.已知卡车每趟从库房最多只能运送3根水泥杆.问:卡车运送完这批水泥杆,并最终返回库房,至少运送几趟?最少行驶多少米?21.(2022·全国·高二课时练习)新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向.工业部表示,到2025年中国的汽车总销量将达到3500万辆,并希望新能源汽车至少占总销量的五分之一.福建某新能源公司年初购入一批新能源汽车充电桩,每台12800元,第一年每台设备的维修保养费用为1000元,以后每年增加400元,每台充电桩每年可给公司收益6400元. (1)每台充电桩第几年开始获利?(5.7≈) (2)每台充电桩前几年的年平均利润最大(前n 年的年平均利润=n n前年的利润总和年数).【双基达标】一、单选题22.(2022·陕西·千阳县中学高二月考)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( )A .1B .2C .4D .823.(2022·河北省唐县第一中学高二月考)设n S 为等差数列{}n a 的前n 项和,()()11n n n S nS n N *++<∈.若871a a <-,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7S D .n S 的最小值是7S24.(2022·河南·高二月考(理))设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意的n ∈N *,都有n nS T =2343n n --,则2313a b b ++14511a b b +的值为( )A .2945B .1329C .919D .193025.(2022·河南·高二期中(文))已知数列{}n a 的前n 项和2n S n =,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前99项和为( ) A .1168B .1134C .198199D .9919926.(2022·河南商丘·高二期中(理))《莉拉沃蒂》是古印度数学家婆什迦罗的数学名著,书中有下面的表述:某王为夺得敌人的大象,第一天行军2由旬(由旬为古印度长度单位),以后每天均比前一天多行相同的路程,七天一共行军80由旬到达地方城市.下列说法正确的是( ) A .前四天共行1877由旬 B .最后三天共行53由旬C .从第二天起,每天比前一天多行的路程为237由旬 D .第三天行了587由旬 27.(2022·全国·高二课时练习)已知S n 是等差数列{a n }的前n 项和,且S 6>S 7>S 5,有下列四个命题:①d <0;②S 11>0;③S 12<0;④数列{S n }中的最大项为S 11,其中正确命题的序号是( ) A .②③B .①② C .①③D .①④28.(2022·河南·高二期中(理))设正项数列{}n a 的前n 项和为n S ,当*n ∈N 时,n a ,1n +,1n a +成等差数列,给出下列说法:①当*n ∈N 时,1n n S S +<;②9S 的取值范围是()48,52;③642112S =;④存在*n ∈N ,使得2060n S =.其中正确说法的个数为( ) A .1B .2C .3D .429.(2022·河南省实验中学高二期中(文))已知等差数列{}n a 和{}n b 的前n 项和分别为nS和n T ,且有192a a +=,468b b +=,则99S T 的值为( ) A .16B .14C .2D .330.(2022·河南南阳·高二期中)已知等差数列{}n a 满足927S =,330n S =,430n a -=,则n 值为( )A .20B .19C .18D .1731.(2022·上海外国语大学闵行外国语中学高二期中)等差数列{}n a 的前n 项和记为n S ,若3516a a a ++的值为一个确定的常数,则下列各数中也是常数的是( ) A .7S B .8S C .13S D .15S32.(2022·全国·高二课时练习)已知数列{}n a 的前n 项和24n S n n =-,则1210a a a ++⋅⋅⋅+的值为( )A .68B .67C .65D .56【高分突破】一:单选题33.(2022·江苏·高二单元测试)设等差数列的前n 项和为n S ,已知636S =,6144n S -=,324n S =,则n 的值为( )A .15B .16C .17D .1834.(2022·全国·高二课时练习)一百零八塔位于宁夏青铜峡市,是喇嘛式实心塔群(如图).该塔群随山势凿石分阶而建,依山势自上而下,第一阶1座,第二阶3座,第三阶3座,第四阶5座,第五阶5座,从第五阶开始塔的数目构成一个首项为5,公差为2的等差数列,总计108座,故名一百零八塔.则该塔群最下面三阶的塔数之和为( )A .39B .45C .48D .5135.(2022·全国·高二单元测试)已知非常数数列{}n a 满足()()()()2221140n n n n n n a a a a a a n *++++----=∈N ,n S 为数列{}n a 的前n 项和.若22020S =,20202S =,则2022S =( )A .2022B .2022-C .2021-D .202236.(2022·全国·高二课时练习)在等差数列{a n }和{b n }中,a 1=25,b 1=75,a 100+b 100=100,则数列{a n +b n }的前100项的和为( )A .10000B .8000C .9000D .1100037.(2022·广西师范大学附属外国语学校高二月考)设等差数列{}n a 的前n 项和为n S ,且满足170S >,180S <,则17121217,,,S S S a a a 中最大的项为( ) A .1100S a B .99S a C .88S a D .77S a38.(2022·江苏·苏州中学高二月考)已知数列{}n a满足11a =,)*2,N n n ≥∈且()*2cos 3n n n a b n π=∈N ,则数列{}n b 前36项和为( ) A .174B .672C .1494D .590439.(2022·河南·高二月考)记等差数列{}n a 与{}n b 的前n 项和分别为n S 和n T ,若123nnS n T n +=+,则105510a ba b =( )A .8281B .8182C .4241D .414240.(2022·全国·高二专题练习)已知n S 为等差数列{}n a 的前n 项和,10S <,212520S S +=,则n S 取最小值时,n 的值为() A .11B .12C .13D .1441.(2022·全国·高二课时练习)若数列{}n a 是等差数列,首项10a >,公差0d <,且()2019201820190a a a +>,()2020201920200a a a +<,则使数列{}n a 的前n 项和0n S >成立的最大自然数n 是( )A .4039B .4038C .4037D .4036二、多选题42.(2022·江苏·高二专题练习)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则( )A .a n =-112n -B .a n =*1,1,11,2,1n n n N n n-=⎧⎪⎨-≥∈⎪-⎩ C .数列1n S ⎧⎫⎨⎬⎩⎭为等差数列D .20110111+..S S S ++=-505043.(2022·福建省龙岩第一中学高二月考)设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S <,60a >,则( ) A .70a <B .数列1n a ⎧⎫⎨⎬⎩⎭是递减数列 C .0n S >时,n 的最大值为11D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项44.(2022·福建省连城县第一中学高二月考)已知公差为d 的等差数列{}n a ,n S 为其前n 项和,下列说法正确的是( )A .若90S <,100S >,则6a 是数列{}n a 中绝对值最小的项B .若3614S S =,则61247S S =C .若18a =,42a =,则12832a a a +++=D .若48a a =,0d ≠,则110S =45.(2022·辽宁大连·高二期末)已知等差数列{}n a 的前n 项和为n S ,等差数列{}n b 的前n项和为n T ,且12nnS n T n +=,则下列选项中正确的是( )A .3335a b =B .321a b = C .数列{}n a 是递增数列D .数列{}n a 是递减数列46.(2022·江苏省苏州第十中学校高二月考)已知数列{a n }满足a 1=1,na n +1﹣(n +1)a n =1,n ∈N *,其前n 项和为S n ,则下列选项中正确的是( ) A .数列{a n }是公差为2的等差数列B .满足S n <100的n 的最大值是9C .S n 除以4的余数只能为0或1D .2S n =na n47.(2022·全国·高二课时练习)《张丘建算经》是中国古代众多数学名著之一.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何?”其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织5尺,一个月共织了9匹3丈,问从第二天起,每天比前一天多织多少尺布?”已知1匹4=丈,1丈10=尺,若这个月有30天,记该女子这个月中第n 天所织布的尺数为n a ,2nan b =,则( )A .1058b b =B .数列{}n b 是等比数列C .130105a b =D .357246209193a a a a a a ++=++三、填空题48.(2022·河南·高二月考(文))若数列{a n }的前n 项和S n =3n 2-2n +1,则数列{a n }的通项公式a n =________.49.(2022·江苏·高二专题练习)已知等差数列{a n }的首项a 1=a ,S n 是数列{a n }的前n 项和,且满足22213n n n a S n S -+=,0n a ≠,n ≥2,n ∈N *,那么a =____.50.(2022·山西·怀仁市第一中学校高二期中(文))已知等差数列{}n a 的通项公式为319n a n =-.令()*14m m m m T a a a m N ++=+++∈,则m T 的最小值为_______.51.(2022·江苏·苏州中学高二期中)在等差数列{}n a 中,120212022202120220,0,0a a a a a >+><,则使0n S >成立的最大自然数n 为_______52.(2022·陕西·铜川市第一中学高二期中(理))观察下面的数阵,则第16行从左边起第2个数是______.四、解答题53.(2022·浙江·嘉兴市第五高级中学高二期中)已知等差数列{}n a 满足39a =-,105a =. (1)求公差d ;(2)求数列{}n a 的通项公式;(3)设数列{}n a 的前n 项和为n S ,求使得n S 最小的n 的值.54.(2022·全国·高二课时练习)(1)等差数列{}n a 的前m 项和为30,前2m 项和为100,求数列{}n a 的前3m 项的和S 3m ;(2)两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,已知723nn S n T n +=+,求55ab 的值.55.(2022·河南南阳·高二期中)若数列{}n a 的前n 项和为n S ,且21n n S a =-;数列{}n b 满足11(2,)n n n n b b b b n n N ---=≥∈,11b =. (1)求数列{}n a ,{}n b 的通项公式; (2)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T .56.(2022·河南焦作·高二期中(理))已知等差数列{}n a 的前n 项和为n S ,37a =,315S a =. (1)求{}n a 的通项公式; (2)设数列21n S ⎧⎫+⎨⎬⎩⎭的前n 项和为n T ,用符号[]x 表示不超过x 的最大数,当[][][]1252n T T T ++⋅⋅⋅+=时,求n 的值.【答案详解】1.(1)a n =2n -9;(2)S n = (n -4)2-16;-16. (1)设数列{a n }的公差为d ,由题意得a 1=-7,3S =3a 1+3d =-15. 所以d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得()1722n n n S n -=-+⨯=n 2-8n =(n -4)2-16. 所以当n =4时,S n 取得最小值,最小值为-16. 2.(1)S 10=210 (2)n =20 (1)由已知条件得11014912135821150a a a d a a a d +=+=⎧⎨+=+=⎩,解得134a d =⎧⎨=⎩,10110(101)10910103421022S a d ⨯-⨯∴=+=⨯+⨯=; (2)()177447742,62a a S a a +===∴=, ()()143(645)510222n n n n a a n a a n S -+++∴====,20n ∴=. 3. (1)245 (2)24 (1)()1110920524522n n n S na d -⨯=+=+⨯=. (2)()()112262422n n n a a S +⨯-+===. 4.B 【详解】由等差数列{}n a 前n 项和的性质,可得k S ,2k k S S -,32k k S S -,43k k S S -成等差数列, ∴()2322k k k k k S S S S S -=+-,解得318k S =. ∴ 2,6,10,418k S -成等差数列, 可得4210618k S ⨯=+-,解得432k S =. 故选:B 5.C 【详解】因为n S 是等差数列{}n a 的前n 项,由等差数列前n 项和的性质可知:5S ,105S S -,1510S S -成等差数列,所以()()105515102S S S S S -=+-,即()()101025521S S -=+-,解得:1012S =, 故选:C. 6.D 【详解】由题意,数列{}n a 为等差数列,n S 为前n 项和,根据等差数列的性质,可得而51051510,,S S S S S --,和24264,,S S S S S --构成等差数列,所以,所以A ,B 正确;当首项与公差均为0时,5101510,,S S S S +是等差数列,所以C 正确;当首项为1与公差1时,此时2426102,31,86S S S S S =+=+=,此时24264,,S S S S S ++不构成等差数列,所以D 错误. 故选:D. 7.C设等差数列{}n a 的前n 项和为2+n S An Bn =,则+nS An B n=, 所以n S n ⎧⎫⎨⎬⎩⎭是等差数列.因为101221210S S -=,所以n S n ⎧⎫⎨⎬⎩⎭的公差为1,又11201811S a ==-,所以n S n ⎧⎫⎨⎬⎩⎭是以2018-为首项,1为公差的等差数列,所以202020182019112020S =-+⨯=,所以20202020S =故选:C 8.D 【详解】设等差数列{}n a 的公差为d , 由等差数列的性质可得112n S n a d n -=+为等差数列,n S n ⎧⎫⎨⎬⎩⎭的公差为2d . 151051510S S -=, 552d∴⨯=, 解得2d =.则()20202020201920202018220202S ⨯=⨯-+⨯=. 故选:D. 9.D 【详解】由题意知数列{}n a 为等差数列, ∴2[1(12)]2n n n S n -+-==-.∴nS n n=-, ∴数列n S n ⎧⎫⎨⎬⎩⎭的前11项和为11(111)1211(1211)662⨯+----=-+++=-=-. 选D . 10.B【详解】因为{}{},n n a b 为等差数列,故2855522a a a a a +=+==,即51a =,同理可得:54b =,所以19951995912492a a S ab bT b +⨯===+⨯. 故选:B . 11.A 【详解】∵2132n nS n T n +=+,∴195519919551999()22911929()2392292a a a a a a Sb b b b b b T ++⨯+======++⨯+, 故选:A 12.C 【详解】因为3123nn S n T n -=+,则()()11910119101919193191562192193412a a S ab b T b +⨯⨯-====+⨯⨯+. 故选:C . 13.A 【详解】因为等差数列{}n a 的前n 项和2122n d d S n a n ⎛⎫=+- ⎪⎝⎭,所以由675S S S >>可知,0d <,抛物线开口向下,其对称轴在()6,6.5之间, 所以抛物线与x 轴正半轴交点的横坐标范围是()12,13,结合二次函数的图象和性质可知110S >;120S >;130S <;86S S <. 故选:A 14.B 【详解】∵(a 2-a 1)+(a 4-a 3)+(a 6-a 5)=3d , ∴99-105=3d .∴d =-2.又∵a 1+a 3+a 5=3a 1+6d =105,∴a 1=39. ∴S n =na 1+(1)2n n -d =-n 2+40n =-(n -20)2+400. ∴当n =20时,S n 有最大值. 故选:B. 15.B 【详解】设等差数列{}n a 的公差为d ,依题意,11733a d a d +=⎧⎨+=⎩,解得:19,2a d ==-,于是得9(1)(2)211n a n n =+-⋅-=-+,由0n a >得,5n ≤,因此,数列{}n a 是递减等差数列,其前5项均为正,从第6项开始为负,则其前5项和最大,所以使n S 取最大值的自然数n 是5.故选:B 16.B 【详解】解:数列{}n a 的前n 项和为n S ,若11a =,1n n a a n ++=, 可得:20a =,11n n a a n -+=-,21S =,所以A 不正确;可得111n n a a +--=,可知数列奇数项与偶数项都是等差数列,公差都是1,24123412012311144S ∴=++++⋅⋅⋅++++++⋅⋅⋅+=,所以B 正确; 31123415012315241243S =++++⋅⋅⋅++++++⋅⋅⋅+=≠,所以C 不正确;60123430012329900S =++++⋅⋅⋅++++++⋅⋅⋅+=,所以D 不正确;故选:B . 17.B 【详解】设等差数列{}n a 的公差为4d =,项数为n ,前n 项和为n S ,则2402n S S d n -===奇偶,即这个数列的项数为20,故选择B . 18.C 【详解】不为常数列,且数列的项数为偶数,设为则,一定存在正整数k 使得或不妨设,即,从而得,数列为单调递增数列,,且,,同理即,根据等差数列的性质,所以n 的最大值为12,选项C 正确,选项ABD 错误 故选:C.19.(1)19;(2)95. 【详解】(1)根据题意:每排座位数构成等差数列{}n a ,且19a =,2d =. 所以692519a =+⨯=,即第六排的座位数为19. (2)因为每排座位数都为奇数,所以得到第一排做5人,第二排做6人,第三排做7人,……. 即每排人数构成等差数列{}n b ,且15b =,1d =,10n =. 所以10109105952S ⨯=⨯+=,即最多可安排95人同时参加会议. 20.至少运送7趟,最少行驶14700米.【详解】因为每趟从库房最多只能运送3根水泥杆,20362=⨯+,所以至少运送7趟, 第一趟运送2根,后6趟每次运送3根时行驶路程最少,后6趟行驶路程构成以为(500505)2+⨯⨯首项,(5032)⨯⨯为公差的等差数列,最少行驶16(500505)2(5032)65(500502)2147002+⨯⨯+⨯⨯⨯⨯⨯++⨯⨯=米 21.(1)3(2)8 【详解】(1)每台充电桩第n 年总利润为16400[1000(1)400]128002n n n n -+--216400[1000(1)400]128000286402n n n n n n -+-->∴-+<14142625.4325n .n n N n ∴-<+<<∈∴≤≤所以每台充电桩第3年开始获利(2)每台充电桩前n 年的年平均利润16400[1000(1)400]128002n n n n n -+-- ][64=20028200282400n n ⎡⎛⎫-+≤-=⎢ ⎪⎝⎭⎣当且仅当64,8n n n==时取等号 所以每台充电桩前8年的年平均利润最大 22.C 【详解】设等差数列{}n a 的公差为d ,则45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立11272461548a d a d +=⎧⎨+=⎩,解得4d =.故选:C. 23.D 【详解】由()11n n n S nS ++<得:()()()()1111122n n n n a a n n a a +++++<,整理可得:1n n a a +<,∴等差数列{}n a 为递增数列,又871a a <-,80a ∴>,70a <, ∴当7n ≤且n *∈N 时,0n a <;当8n ≥且n *∈N 时,0n a >;n S ∴有最小值,最小值为7S .故选:D. 24.C 【详解】由题意可知b 3+b 13=b 5+b 11=b 1+b 15=2b 8,∴2313a b b ++14511a b b +=21482a a b +=88a b =1515S T =21534153⨯-⨯-=2757=919故选:C . 25.D解:因为数列{}n a 的前n 项和2n S n =,2121n S n n -=-+,两式作差得到21(2)n a n n =-≥,又当1n =时,21111a S ===,符合上式,所以21n a n =-,111111(21)(21)22121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以12233411111n n a a a a a a a a +++++=111111111111233557212122121n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 所以12233499100111199992991199a a a a a a a a ++++==⨯+. 故选:D. 26.D 【详解】由题意,不妨设每天行军的路程为数列{}n a ,则12a =又以后每天均比前一天多行相同的路程,故{}n a 构成一个等差数列,不妨设公差为d 七天一共行军80由旬,即780S = 故71767802S a d ⨯=+=,解得227d = 4143188427S a d ⨯=+=,A 错误; 567741883728077a a a S S ++=-=-=,B 错误; 由于227d =,故从第二天起,每天比前一天多行的路程为227由旬,C 错误;31225822277a a d =+=+⨯=,D 正确 故选:D 27.B 【详解】∵S 6>S 7,∴a 7<0,∵S 7>S 5,∴a 6+a 7>0,∴a 6>0,∴d <0,①正确.又S 11=112(a 1+a 11)=11a 6>0,②正确. S 12=122(a 1+a 12)=6(a 6+a 7)>0,③不正确. {S n }中最大项为S 6,④不正确. 故正确的是①②. 故选:B 28.C解:因为数列{}n a 的各项都是正数,所以1n n S S +<,所以①正确;由n a ,1n +,1n a +成等差数列,可得12(1)n n a a n ++=+,*n ∈N ,则124a a +=,348a a +=,5612a a +=,;236+=a a ,4510a a +=,6714a a +=,,所以数列{}212n n a a -+是首项为4,公差为4的等差数列;{}221n n a a ++是首项为6,公差为4的等差数列.所以()()()912345891143464482S a a a a a a a a a ⨯=+++++++=+⨯+⨯=+, 由214a a =-,得11040a a >⎧⎨->⎩解得104a <<,所以9S 的取值范围是()48,52,所以②正确;643231324421122S ⨯=⨯+⨯=,所以③正确; 因为642060S >,所以()()()63123456263S a a a a a a a =+++++++1113130316418618602046(2046,2050)2a a a ⨯=+⨯+⨯=++=+∈,632060S <,所以④错误. 故正确的命题的个数为3个, 故选:C.29.B 【详解】由等差数列的求和公式可得()199992a a S +==,()()19469993622b b b b T ++===, 因此,9991364S T ==.故选:B. 30.A 【详解】()9199227s a a =+⨯÷=,故19526+==a a a ,即53a =.()()15433033222n n n n n na a a S a -=++===,解得20n =. 故选:A. 31.D解:设3516a a a p ++=(常数),1321a d p ∴+=,即813a p =. 11515815()1552a a S a p ⨯+∴===. 故选:D . 32.A 【详解】当2n ≥时,()()221414125n n n a S S n n n n n -⎡⎤=-=-----=-⎣⎦; 当1n =时,113a S ==-符合上式, 所以25n a n =-,所以12108(115)|3||1|135154682a a a +++⋅⋅⋅+=-+-++++⋅⋅⋅+=+=. 故选:A. 33.D 【详解】 解:由题意可得612345324144180n n n n n n n n S S a a a a a a -------=+++++=-=即12345180n n n n n n a a a a a a -----+++++=①612345636S a a a a a a =+++++=②且等差数列满足12132435465n n n n n n a a a a a a a a a a a a -----+=+=+=+=+=+∴①②两式相加得16()18036216n a a +=+= ∴136n a a +=代入求和公式可得1()183242n n n a a S n +=== 解得18n = 故选:D. 34.D 【详解】设该塔群共有n 阶,自上而下每一阶的塔数所构成的数列为{}n a ,依题意可知5a ,6a ,…,n a 成等差数列,且公差为2,55a =,则()()()4513355421082n n n --++++-+⨯=,解得12n =.故最下面三价的塔数之和为()101112113352651a a a a ++==+⨯=. 故选:D35.B∵()()()2221140n n n n n n a a a a a a ++++----=,∴()()()()221121140n n n n n n n n a a a a a a a a ++++++-+----=⎡⎤⎣⎦, 化简得()()22110n n n n a a a a +++---=⎡⎤⎣⎦, ∴212n n n a a a +++=,∴数列{}n a 为等差数列. 又22020S =,20202S =,∴()202023420203202010092018S S a a a a a -=+++=+=-, ∴32020120222a a a a +=+=-, ∴()120222022202220222a a S +==-.故选:B. 36.A由已知得{a n +b n }为等差数列,故其前100项的和为S 100=11100100100[()()]2a b a b +++50(2575100)10000=⨯++=.故选:A 37.B 【详解】()117179171702a a S a +==>,得90a >, ()()1181891018902a a S a a +==+<,所以1090a a +<,即100a < 所以1090a a -<,数列的公差0d <,10a >,综上可知,9a 是数列正项中的最小值,9S 是n S 中的最大值,所以99S a 是17121217,,,SS S a a a 中的最大项.故选:B 38.B 【详解】在数列{}n a 中,11a =,当*2,N n n ≥∈(n=⇔-于是得数列{是常数列,则1=,即21n a n =, 因*n ∈N ,2cos3n n n a b π=,则22cos 3n n b n π=, 因此,*n ∈N ,32313222115(32)(31)(3)9222n n n n c b b b n n n n --==----+=-++,显然数列{}n c 是等差数列, 于是得1121234563435361212122b b b b b b b b b c c c c c ++++++++++=+++=⨯1356(912)67222=+⨯-=, 所以数列{}n b 前36项和为672. 故选:B 39.C 【详解】因为()()1191011919101191911919191202192193412a a a a a S b b b T b b +++=====+⨯++,()()1951995199199911029293212a a a a a Sb b b T b b+++=====+⨯++,可得552110b a =,所以105510202142411041a b a b =⨯=,故选:C. 40.A 解:10S <,212520S S +=,∴公差0d >.∴11212025242(21)25022a d a d ⨯⨯⨯+++=, 1677200a d ∴+=,67072067067<<+,1116767067720067737a d a d a d∴+<+=<+,111267067a a ∴<<,即11120a a <<n S ∴取最小值时,11n =.故选:A . 41.B由题意,得数列{}n a 是递减数列,由()2019201820190a a a +>,且()2020201920200a a a +<,可得20190a >,20200a <,且20192020a a >,201920200a a +>,∴4039202040390S a =<,()201920204038201920204038201902a a S a a +=⨯=+>, ∴使数列{}n a 的前n 项和0n S >成立的最大自然数n 是4038. 故选:B 42.BCD 【详解】S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1, 则S n +1-S n =S n S n +1,整理得11n S +-1n S =-1(常数),所以数列1n S ⎧⎫⎨⎬⎩⎭是以11S =-1为首项,-1为公差的等差数列.故C 正确;所以1nS =-1-(n -1)=-n ,故S n =-1n .所以当n ≥2时, a n =S n -S n -1=11n --1n,11a =-不适合上式, 故a n =1,1,11,2,,1n n n N n n '-=⎧⎪⎨-≥∈⎪-⎩故B 正确,A 错误;所以()1231001111...123...1005050S S SS ++++=-++++=-, 故D 正确. 故选:BCD 43.ACD 解:112126712()6()02a a S a a +==+<,670a a ∴+<,又60a >,70a ∴<,A 对;由A 的分析可知,当16n 时0n a >,当7n 时0n a <,可知等差数列{}n a 为递减数列,当16n 时,数列1{}na 为递增数列,B 错;11111611()1102a a S a +==>,又120S <,C 对; [1n ∈,11]时0n S >,[12n ∈,)+∞时,0nS <,[1n ∴∈,6][12,)+∞时,0nnS a >, 当[7n ∈,11]时,0n nS a <、0n a <且递减、n S 为正数且递减,∴77Sa 最小.D 对.故选:ACD .44.CD 【详解】对于A :因为{}n a 为等差数列,且9100S S <⎧⎨>⎩, 所以1911000a a a a +<⎧⎨+<⎩,即55600a a a <⎧⎨+>⎩,所以65||a a >,即5a 是数列{}n a 中绝对值最小的项. 故选项A 错误;对于B :因为{}n a 为等差数列,所以3S ,63S S -,96S S -,129S S -为等差数列,设3S x =,由3614S S =得:64S x =,故x ,3x ,94S x -,129S S -为等差数列 解得1216S x =,所以61241164S x Sx ==. 故选项B 错误;对于C :因为{}n a 为等差数列,且18a =,42a =, 所以36d =-,2d =-, 则82(1)210n a n n =--=-+. 则 128||||||a a a +++8642024632=+++++++=.故选项C 正确;对于D :因为{}n a 为等差数列,且48||||a a =,0d ≠,所以48a a =-,480a a +=, 则481111111()11()022a a a a S ++===. 故选项D 正确; 故选:CD. 45.AB 【详解】由题意并结合等差数列前n 项和的特征,可设:()21,2n n S kn n T kn =+=,其中k ≠0对于A : 33222332342333232255a S S k k k b T T k k k -⨯-⨯====-⨯-⨯,故A 正确;对于B :3322222134236122216a S S k k kb T T k k k -⨯-⨯====-⨯-⨯,故B 正确;对于C :当k <0时,11221122,=2324a S k a S S k k k a a ==-=⨯-=∴>,,所以{}n a 不是递增数列,故C 错误;对于D :当k >0时,11221122,=2324a S k a S S k k k a a ==-=⨯-=∴<,,所以{}n a 不是递减数列,故D 错误. 故选:AB 46.ABC 【分析】 令nn a b n=,由题干条件可得1111n n b b n n +-=-+,可得12n b n =-,可求得21n a n =-,2n S n =,依次分析即可判断 【详解】由题意,na n +1﹣(n +1)a n =1,故11111(1)1n n a a n n n n n n +-==-+++令n n a b n=,则1111n n b b n n +-=-+ 则1122111111()()...() (11212)n n n n b b b b b b n n n n ----+-++-=-+-++---- 即11112n n b b b nn-=-∴=-故121,2n n n n a nb n a a -==--=,数列{a n }是公差为2的等差数列,A 正确;21()2n n a a nS n +==,满足S n <100的n 的最大值是9,B 正确; 当41,n k k N =+∈时,2n S n =除以4余1;当42,n k k N =+∈时,2n S n =除以4余0;当43,n k k N =+∈时,2n S n =除以4余1;当44,n k k N =+∈时,2n S n =除以4余0,C 正确; 222n S n =≠22n na n n =-,D 错误.故选:ABC 47.BD 【详解】由题意可知,数列{}n a 为等差数列,设数列{}n a 的公差为d ,首项15a =, 则13029309410303902d a ⨯+=⨯⨯+=,解得1629d =,∴()116129129n n a a n d +=+-=. ∵2na nb =,∴1112222n n n n a a a d n a n b b ++-+===, ∴数列{}n b 是等比数列,B 选项正确; ∵16803292595d =⨯=≠,∴()553105222d d b b ==≠,A 选项错误; 3012921a a d =+=,∴2113052105a b =⨯>,C 选项错误;41161933532929a a d =+=+⨯=,51162094542929a a d =+=+⨯=, ∴357552464432093193a a a a a a a a a a ++===++,D 选项正确.故选:BD.48.2,1,65,2n n n =⎧⎨-≥⎩【详解】当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5, 显然当n =1时,不满足上式.故数列{a n }的通项公式为a n =2,1,65, 2.n n n =⎧⎨-≥⎩ 故答案为:2,1,65,2n n n =⎧⎨-≥⎩49.3 【详解】在22213n n n a S n S -+=中,因为a 1=a ,所以分别令n =2,n =3得(a +a 2)2=12a 2+a 2,(a +a 2+a 3)2=27a 3+(a +a 2)2,因为0n a ≠,所以a 2=12-2a ,a 3=3+2a . 因为数列{a n }是等差数列,所以a 1+a 3=2a 2,即2(12-2a )=a +3+2a ,解得a =3. 经检验a =3时,a n =3n ,S n =3(1)2n n +,S n -1=3(-1)2n n ,满足S n 2=3n 2a n + S n -12.所以a =3. 故答案为:3. 50.5由等差数列{}n a 的通项公式为319n a n =-. 根据等差数列的性质可得2553135m m T a m +==-≥, 当4m =时取等号,此时m T 的最小值为5. 故答案为:5 51.4022 【详解】由等差数列的性质可得14022202120220a a a a ++=> 又202120220a a <,所以20212022,a a 异号,又10a >,所以等差数列{}n a 必为递减数列,202120220,0a a ∴><,14023202220a a a =∴<+所以()()140221440023224023402240230,022a a a a S S =++=><,使0n S >成立的最大自然数n 为4022. 故答案为:4022. 52.227 【详解】由题得每一行数字个数分别为11a =,23a =,35a =,…,21n a n =-, 它们成等差数列,则前15行总共有()1151515(129)22522a a ++==个数, 因此第16行从左边起第2个数为227. 故答案为:227 53.(2)215n a n =- (3)7n = (1)1032103-==-a a d (2)311249a a d a =+=+=-,解得113a =-,所以215n a n =-. (3)()()1221321514(7)4922n n n a a n n S n n n +-+-===-=--由二次函数的性质得当7n =时,使得n S 最小. 54.(1)210;(2)6512. 【详解】(1)在等差数列{}n a 的性质,可得232,,m m m m m S S S S S --成等差数列, 即330,70,100m S -成等差数列,所以327030100m S ⨯=+-,解得3210m S =. (2)由等差数列的前n 项和的性质,且723n n S n T n +=+, 可得9119515199999()1()792652219()9312()22a a a a ab b b T b b S ++⨯+====+++=. 55. (1)12n na ,1n b n=(2)(1)21n n T n =-⋅+(1)由21n n S a =-,得1121S a =-,11a ∴=. 又21n n S a =-,1121(2)n n S a n --=-≥, 两式相减,得1122n n n n S S a a ---=-,122n n n a a a -=-. 12n n a a -∴=,2n ≥.∴数列{}n a 是首项为1,公比为2的等比数列.11122n n n a --∴=⋅=.由()*112,N n n n n b b b b n n ---=≥∈,得1111n n b b --=,又11b =,∴数列1n b ⎧⎫⎨⎬⎩⎭是首项为1,公差为1的等差数列. 11(1)1n n n b ∴=+-⋅=.1n b n ∴=; (2)01112222n n T n -=⋅+⋅+⋅⋅⋅+⋅,12212222n n T n ∴=⋅+⋅+⋅⋅⋅+⋅. 两式相减,得11121222212212n n nn n n n T n n n ---=++⋅⋅⋅+-⋅=-⋅=-+-⋅- (1)21n n T n . 56.(1)21n a n =+(2)9(1)不妨设等差数列{}n a 的公差为d , 故3127a a d =+=,131533S a a d =+=,解得13a =,2d =,从而1(1)21n a a n d n =+-=+, 即{}n a 的通项公式为21n a n =+. (2) 由题意可知,1()(2)2n n n a a S n n +==+, 所以2211111(2)2n S n n n n +=+=+-++, 故11111111111132435112n T n n n n n =⨯+-+-+-++-+--++ 1111()212n n n =++--++, 因为当2n ≤时,1110212n n --<++;当3n ≥时,1110212n n -->++, 所以,2[]1,3n n n T n n ≤⎧=⎨+≥⎩, 由[][][]1252n T T T ++⋅⋅⋅+=可知,1245152n ++++++=,即(2)(41)3522n n -+++=,解得9n =, 即n 的值为9.。
4.2.2.1等差数列的前n 项和要点一 等差数列的前n 项和公式 设等差数列{a n }的公差为d ,则S n =11()(1)22n n a a n n na d +-=+ 【重点总结】(1)等差数列前n 项和公式的推导:设S n =a 1+a 2+…+a n ,倒序得S n =a n +a n -1+…+a 2+a 1.相加得2S n =(a 1+a n )+(a 2+a n -1)+…+(a n +a 1).由等差数列性质,得2S n =n(a 1+a n ),∴S n =n (a 1+a n )2.我们不妨将上面的推导方法称为倒序相加求和法. 今后,某些数列求和常常会用到这种方法.(2)在求等差数列前n 项和时,若已知a 1和a n 及项数n ,则使用S n =n (a 1+a n )2;若已知首项a 1和公差d 及项数n ,则采用公式S n =na 1+n (n -1)2d 来求.要点二 等差数列前n 项和的主要性质 1.S n ,S 2n -S n ,S 3n -S 2n ,…成等差数列.2.若S 奇表示奇数项的和,S 偶表示偶数项的和,公差为d ,①当项数为偶数2n 时,S 偶-S 奇=nd ,S 奇S 偶=1n n aa+;②当项数为奇数2n -1时,S 奇-S 偶=n a ,S 奇S 偶=1n n -.S 2n -1=(2n -1)a n . 【重点总结】关于奇数项的和与偶数项的和的问题,要根据项数来分析,当项数为奇数或偶数时,S 奇与S偶的关系是不相同的.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)数列的前n 项和就是指从数列的第1项a 1起,一直到第n 项a n 所有项的和.( ) (2)数列{a n }为等差数列,S n 为前n 项和,则S 2,S 4,S 6成等差数列.( ) (3)在等差数列{a n }中,S n 为前n 项和,则有S 2n -1=(2n -1)a n .( ) (4)在等差数列{a n }中,当项数m 为偶数2n 时,则S 偶-S 奇=a n +1.( ) 【答案】(1)√(2)×(3)√(4)×2.在等差数列{a n }中,已知a 1=2,a 9=10,则S 9等于( ) A .45 B .52 C .108 D .54 【答案】D【解析】S 9=9(a 1+a 9)2=9×122=54.故选D.3.已知等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则S 12=( ) A .28 B .32 C .36 D .40 【答案】C【解析】∵数列{a n }为等差数列, ∴S 4,S 8-S 4,S 12-S 8成等差数列,∴2(S 8-S 4)=S 4+S 12-S 8,解得:S 12=36.4.已知数列{a n }是等差数列,且a 3+a 9=4,那么数列{a n }的前11项和等于________. 【答案】22【解析】∵数列{a n }为等差数列,∴a 3+a 9=a 1+a 11=4.∴S 11=11(a 1+a 11)2=112×4=22.题型一 等差数列前n 项和的基本运算【例1】在等差数列{a n }中,(1)已知a 1=56,a n =-32,S n =-5,求n 和d ;(2)已知a 1=4,S 8=172,求a 8和d .(3)已知d =2,a n =11,S n =35,求a 1和n .【解析】(1)由题意得,S n =n (a 1+a n )2=n ⎝⎛⎭⎫56-322=-5,解得n =15.又a 15=56+(15-1)d =-32,∴d =-16.∴n =15,d =-16.(2)由已知得S 8=8(a 1+a 8)2=8(4+a 8)2=172,解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5. ∴a 8=39,d =5.(3)∵a n =11,d =2,S n =35,∴⎩⎪⎨⎪⎧a 1+(n -1)×2=11na 1+n (n -1)2×2=35解得n =5,a 1=3或n =7,a 1=-1. 【方法归纳】a 1,d ,n 称为等差数列的三个基本量,a n 和S n 都可以用这三个基本量来表示,五个量a 1,d ,n ,a n ,S n 中可知三求二,一般通过通项公式和前n 项和公式联立方程组求解,在求解过程中要注意整体思想的运用.【跟踪训练】在等差数列{a n }中,(1)a 1=32,d =-12,S m =-15,求m 及a m ;(2)a 6=10,S 5=5,求a 8和S 10. (3)已知a 3+a 15=40,求S 17.【解析】(1)∵S m =m ×32+m (m -1)2×⎝⎛⎭⎫-12=-15,整理得m 2-7m -60=0解得m =12或m =-5(舍去)∴a m =a 12=32+(12-1)×⎝⎛⎭⎫-12=-4. (2)⎩⎪⎨⎪⎧S 5=5a 1+5×42d =5,a 6=a 1+5d =10,解得⎩⎪⎨⎪⎧a 1=-5,d =3.∴a 8=a 6+2d =10+2×3=16,S 10=10a 1+10×92d =10×(-5)+5×9×3=85.(3)S 17=17×(a 1+a 17)2=17×(a 3+a 15)2=17×402=340.题型二 等差数列前n 项和性质的应用【例2】(1)等差数列前3项的和为30,前6项的和为100,则它的前9项的和为( ) A .130 B .170 C .210 D .260 【答案】C【解析】利用等差数列的性质:S 3,S 6-S 3,S 9-S 6成等差数列. 所以S 3+(S 9-S 6)=2(S 6-S 3),即30+(S 9-100)=2(100-30),解得S 9=210.(2)已知{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,且S n T n =2n +2n +3,则a 5b 5=________.【答案】53【解析】由等差数列的性质,知a 5b 5=a 1+a 92b 1+b 92=a 1+a 92×9b 1+b 92×9=S 9T 9=2×9+29+3=53. (3)已知等差数列{a n }前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =________. 【答案】14【解析】 S n -S n -4=a n -3+a n -2+a n -1+a n =80, S 4=a 1+a 2+a 3+a 4=40.两式相加得4(a 1+a n )=120,∴a 1+a n =30,又S n =n (a 1+a n )2=15n =210,∴n =14.【笔记小结】(1)中S 3,S 6-S 3,S 9-S 6也成等差数列. (2)中a 5b 5=qa 5qb 5=S 9T 9.(3)中S n -S n -4为末4项和,S 4为前4项和,倒序相加可得 4(a 1+a n ). 【方法归纳】等差数列前n 项和的常用性质(1)S n ,S 2n -S n ,S 3n -S 2n ,…是等差数列.(2)数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,公差为数列{a n }的公差的12.(3)涉及两个等差数列的前n 项和之比时,一般利用公式a m b n =2n -12m -1·S 2m -1T 2n -1进行转化,再利用其他知识解决问题.(4)用公式S n =n (a 1+a n )2时常与等差数列的性质a 1+a n =a 2+a n -1=a 3+a n -2=…相结合.【跟踪训练2】设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14等于( ) A .18 B .17 C .16 D .15 【答案】A【解析】设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.故选A.(2)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对于任意的自然数n ,都有S n T n =2n -34n -3,则a 3+a 152(b 3+b 9)+a 3b 2+b 10=( )A.1941B.1737C.715D.2041 【答案】A【解析】a 3+a 152(b 3+b 9)+a 3b 2+b 10=a 9b 3+b 9+a 3b 2+b 10=a 9+a 3b 2+b 10=a 1+a 11b 1+b 11=S 11T 11=22-344-3=1941.故选A.(3)已知等差数列{a n }的前n 项和为S n ,且S 10=100,S 100=10,则S 110=________.【解析】(3)方法一:因为S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100成等差数列,设公差为d ,前10项的和为:10×100+10×92d =10,所以d =-22,所以前11项的和S 110=11×100+11×102d =11×100+11×102×(-22)=-110.方法二:设等差数列{a n }的公差为d , 则S n n =d 2(n -1)+a 1,所以数列⎩⎨⎧⎭⎬⎫S n n 成等差数列. 所以S 100100-S 1010100-10=S 110110-S 100100110-100,即10100-10010100-10=S 110110-1010010,所以S 110=-110.方法三:设等差数列{a n }的公差为d ,S 110=a 1+a 2+…+a 10+a 11+a 12+…+a 110=(a 1+a 2+…+a 10)+[(a 1+10d )+(a 2+10d )+…+(a 100+10d )]=S 10+S 100+100×10d ,又S 100-10S 10=100×992d -100×92d =10-10×100,即100d =-22,所以S 110=-110. 题型三 求数列{|a n |}的前n 项和【例3】在等差数列{a n }中,a 1=-60,a 17=-12,求数列{|a n |}的前n 项和. 【解析】等差数列{a n }的公差 d =a 17-a 117-1=-12-(-60)16=3,∵a n =a 1+(n -1)d =-60+3(n -1)=3n -63, 令a n <0,即3n -63<0,则n <21.∴等差数列{a n }的前20项是负数,第20项以后的项是非负数,设S n 和S ′n 分别表示数列{a n }和{|a n |}的前n 项和.当n ≤20时,S ′n =-S n =-⎣⎡⎦⎤-60n +3n (n -1)2=-32n 2+1232n ;当n >20时,S ′n =-S 20+(S n -S 20)=S n -2S 20=-60n +3n (n -1)2-2×⎝⎛⎭⎫-60×20+20×192×3=32n 2-1232n +1 260, ∴数列{|a n |}的前n 项和为S ′n =⎩⎨⎧-32n 2+1232n ,n ≤20,32n 2-1232n +1 260,n >20.【方法归纳】已知{a n }为等差数列,求数列{|a n |}的前n 项和的步骤 第一步,解不等式a n ≥0(或a n ≤0)寻找{a n }的正负项分界点.第二步,求和:①若a n 各项均为正数(或均为负数),则{|a n |}各项的和等于{a n }的各项的和(或其相反数);②若a 1>0,d <0(或a 1<0,d >0),这时数列{a n }只有前面有限项为正数(或负数),可分段求和再相加. 【跟踪训练3】已知数列{a n }的前n 项和S n =-32n 2+2052n ,求数列{|a n |}的前n 项和T n .【解析】a 1=S 1=-32×12+2052×1=101.当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫-32n 2+2052n - ⎣⎡⎦⎤-32(n -1)2+2052(n -1)=-3n +104.∵n =1也适合上式,∴数列{a n }的通项公式为a n =-3n +104(n ∈N *). 由a n =-3n +104≥0,得n ≤34.7. 即当n ≤34时,a n >0;当n ≥35时,a n <0.①当n ≤34时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-32n 2+2052n ;②当n ≥35时,T n =|a 1|+|a 2|+…+|a 34|+|a 35|+…+|a n |=(a 1+a 2+…+a 34)-(a 35+a 36+…+a n )=2(a 1+a 2+…+a 34)-(a 1+a 2+…+a n )=2S 34-S n =2⎝⎛⎭⎫-32×342+2052×34-⎝⎛⎭⎫-32n 2+2052n =32n 2-2052n +3 502. 故T n =⎩⎨⎧-32n 2+2052n ,n ≤34且n ∈N *,32n 2-2052n +3 502,n ≥35且n ∈N *.【易错辨析】混淆等差数列的性质致误【例4】已知等差数列{a n }的前n 项之和记为S n ,S 10=10,S 30=70,则S 40=________. 【答案】120【解析】由题意知⎩⎨⎧10a 1+10×92d =1030a 1+30×292d =70得⎩⎨⎧a 1=25,d =215.所以S 40=40×25+40×392×215=120.【易错警示】 1. 出错原因将等差数列中S m ,S 2m -S m ,S 3m -S 2m 成等差数列误认为S m ,S 2m ,S 3m 成等差数列. 2. 纠错心得本题可用等差数列的性质:S m ,S 2m -S m ,S 3m -S 2m 成等差数列求解;还可以由S 10=10,S 30=70联立方程组解得a 1和d ,再求S 40.一、单选题1.已知等差数列{}n a 的前n 项和为18,若21S =,13n n a a -+=,则n 的值为( )A .9B .18C .27D .36【答案】B 【分析】由已知得()121124n n n a a a a a a -+++=+=,得12n a a +=,再由等差数列求和公式可求得答案. 【解析】解:∵等差数列{}n a 的前n 项和为18,21S =,13n n a a -+=,∵121a a +=, ∵()121124n n n a a a a a a -+++=+=,解得12n a a +=, 又()1182n n n a a S +==,∵2182n ⨯=,∵18n =.故选:B.2.已知在等比数列{}n a 中,3544a a a =,等差数列{}n b 的前n 项和为n S ,且74b a =,则13S =( ) A .26 B .52 C .78 D .104【答案】B 【分析】利用等比中项的性质可求得4a 的值,即为7b 的值,再利用等差数列的求和公式可求得13S 的值. 【解析】因为在等比数列{}n a 中,3544a a a =,可得2444a a =,40a ≠,解得44a =,又因为数列{}n b 是等差数列,744b a ==,则()13113711313134522S b b b =⨯+==⨯=.故选:B.3.已知数列{}n a 的各项均不为零,1a a =,它的前n 项和为n S .且n a1n a +(*N n ∈)成等比数列,记1231111n nT S S S S =+++⋅⋅⋅+,则( ) A .当1a =时,202240442023T < B .当1a =时,202240442023T > C .当3a =时,202210111012T > D .当3a =时,202210111012T <【答案】C 【分析】结合等比性质处理得22n n a a +-=,再分1a =和3a =分类讨论,1a =时较为简单,结合裂项法直接求解,当3a =时,放缩后再采用裂项即可求解.【解析】由n a1n a +成等比数列可得,12n n n S a a +=⋅①,也即1122n n n S a a +++=⋅②,②-①得()1122n n n n a a a a +++=-,因为0n a ≠,所以,22n n a a +-=,即数列的奇数项成等差数列,偶数项成等差数列,当1a a =时,1122a a a =⋅,即22a =,对A 、B ,当1a =时,12341,2,3,4,n a a a a a n =====,此时数列为等差数列,前n 项和为()12n n n S +=,()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭, 故12311111111112121223+11n n T S S S S n n n ⎛⎫⎛⎫=+++⋅⋅⋅+=-+-+-=- ⎪ ⎪+⎝⎭⎝⎭, 当2022n =时,2022140442120232023T ⎛⎫=-=⎪⎝⎭,故A 、B 错误; 对C 、D ,当3a =时,1352021202113,5,7,3+220232a a a a -====⨯=, 2420222,4,,2022a a a ===,当n 为偶数时,232n n nS +=, 当n 为奇数时,()()()2213132122n n n n n S n +++++=-+=, 所以()()12,2n n n S n N *++≤∈,()()121121212n S n n n n ⎛⎫≥=- ⎪++++⎝⎭, 此时202212320221111T S S S S =+++⋅⋅⋅+ 111111110112123342023202410121012⎛⎫>-+-++-=-= ⎪⎝⎭,故C 正确,D 错误. 故选:C4.数列{}n a 中,12a =,且112n n n n n a a a a --+=+-(2n ≥),则数列()211n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭前2021项和为( ) A .20211010B .20211011C .20191010D .40402021【答案】B 【分析】由已知可得221(1)(1)n n a a n ----=,从而得221(1)(1)(1)2n a a n n ---=+-+⋅⋅⋅+,再由12a =得2(1)(1)2n n n a +-=,所以212112(1)(1)1n a n n n n ⎛⎫==- ⎪-++⎝⎭,然后利用裂项相消求和法可求得结果【解析】因为112n n n n na a a a --+=+-(2n ≥),所以22112()n n n n a a a a n -----=,整理得,221(1)(1)n n a a n ----=,所以221(1)(1)(1)2n a a n n ---=+-+⋅⋅⋅+,因为12a =,所以2(1)(1)2n n n a +-=, 所以212112(1)(1)1n a n n n n ⎛⎫==- ⎪-++⎝⎭,所以数列()211n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭前2021项和为2021111111202121212232021202220221011S ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-=⎪ ⎪⎝⎭⎝⎭, 故选:B5.有一个三人报数游戏:首先甲报数字1,然后乙报两个数字2、3,接下来丙报三个数字4、5、6,然后轮到甲报四个数字7、8、9、10,依次循环,则甲报出的第2028个数字为( ) A .5986 B .5987 C .5988 D .以上都不对【答案】C 【分析】首先分析出甲第n 次报数的个数,得到甲第n 次报完数后总共报数的个数,计算出甲是第0n 次报数中会报到第2020个数字,再计算当甲第0n 次报数时,3人总的报数次数m , 再推算出此时报数的最后一个数m S ,再推出甲报出的第2028个数字. 【解析】由题可得甲第n *()n N ∈次报数的个数为32n -, 则甲第n 次报完数后总共报数的个数为[1(32)](31)22n n n n n T +--==,再代入正整数n ,使2020,n T n ≥的最小值为37,得372035T =, 而甲第37次报时,3人总共报数为3631109⨯+=次, 当甲第109次报完数3人总的报数个数为109(1091)12310959952m S +=++++==, 即甲报出的第2035个数字为5995, 所以甲报出的第2028个数字为5988. 故选:C.6.已知数列{}n a 满足()112nn n a a n +=-+,*n N ∈,则10S =( )A .32B .50C .72D .90【答案】B 【分析】由递推关系式,求得12a a +,34a a +,56a a +,78a a +,910a a +,然后相加可得10S . 【解析】由已知212a a =-+,122a a +=,436a a =-+,346a a +=,同理5610a a +=,7814a a +=,91018a a +=, 所以102610141850S =++++=. 故选:B .7.庑殿是古代传统建筑中的一种屋顶形式,其可近似看作由两个全等的等腰梯形和两个全等的等腰三角形组成,如图所示.若在等腰梯形与等腰三角形侧面中需铺瓦6层,等腰梯形中下一层铺的瓦数比上一层铺的瓦数多2,等腰三角形中下一层铺的瓦数是上一层铺的瓦数的2倍.两个等腰梯形与两个等腰三角形侧面同一层全部铺上瓦,其瓦数视作同一层的总瓦数.若顶层需铺瓦82块,整个屋顶需铺瓦666块,则最底层需铺瓦块数为( )A .82B .114C .164D .228【答案】C 【分析】由题意得等腰梯形中铺的瓦数自上而下构成一个公差为2的等差数列{}n a ,等腰三角形中铺的瓦数自上而下构成一个公比为2的等比数列{}n b ,故得到()()11611282,1265262666,212a b b a ⎧+=⎪⎪⎡⎤-⨯⎨⎢⎥+⨯+=⎪-⎢⎥⎪⎣⎦⎩,进而可求得两个数列的通项公式,再分别求每个数列的第6项,()()56622502164a b +=+=可得到最终结果.【解析】由题意等腰梯形中铺的瓦数自上而下构成一个公差为2的等差数列{}n a , 等腰三角形中铺的瓦数自上而下构成一个公比为2的等比数列{}n b , 由条件可知,()()11611282,1265262666,212a b b a ⎧+=⎪⎪⎡⎤-⨯⎨⎢⎥+⨯+=⎪-⎢⎥⎪⎣⎦⎩解之得1140,1ab ==,所以()14021238,2n n n a n n b -=+-=+=,所以()()56622502164a b +=+=,故最底层需铺瓦块数为164,故选:C.8.设数列{}n a 和{}n b 的前n 项和分别为n S ,n T ,已知数列{}n b 的等差数列,且2n n na nb a +=,33a =,4511b b +=,则n n S T +=( ) A .22n n - B .22n n -C .22n n +D .22n n +【答案】D 【分析】设等差数列{}n b 的公差为d ,进而根据等差数列的通项公式计算得121b d =⎧⎨=⎩,故1n b n =+,n a n =,再根据等差数列前n 项和公式求解即可。
2022届高考数学一轮复习讲义__62_等差数列及其前n项和一轮复习讲义要点梳理忆一忆知识要点1.等差数列的定义如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母2.等差数列的通项公式如果等差数列{an}的首项为a1,公差为d,那么它的通项公式是an=a1+(n-1)d.3.等差中项a+b如果A=2,那么A叫做a与b的等差中项.d表示.要点梳理忆一忆知识要点4.等差数列的常用性质(1)通项公式的推广:an=am+(n-m)d,(n,m∈N 某).(2)若{an}为等差数列,且k+l=m+n,(k,l,m,n∈N某),则ak+al=am+an.(3)若{an}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d.(4)若{an},{bn}是等差数列,则{pan+qbn}也是等差数列.(5)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,(k,m∈N某)是公差为md 的等差数列.要点梳理忆一忆知识要点5.等差数列的前n项和公式na1+an设等差数列{an}的公差为d,其前n项和Sn=或2nn-1Sn=na1+2d.6.等差数列的前n项和公式与函数的关系dd2Sn=n+a1-2n.2数列{an}是等差数列Sn=An2+Bn,(A、B为常数).7.等差数列的最值在等差数列{an}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存在最小值.要点梳理[难点正本疑点清源]1.等差数列的判定忆一忆知识要点(1)定义法:an-an-1=d(n≥2);(2)等差中项法:2an+1=an+an+2.2.等差数列与等差数列各项和的有关性质(1)am,am+k,am+2k,am+3k,仍是等差数列,公差为kd.(2)数列Sm,S2m-Sm,S3m-S2m,也是等差数列.(3)S2n-1=(2n-1)an.n(4)若n为偶数,则S偶-S奇=d.2若n为奇数,则S奇-S 偶=a中(中间项).等差数列的判定或证明31例1已知数列{an}中,a1=,an=2-(n≥2,n∈N某),数5an-11列{bn}满足bn=(n∈N某).an-1(1)求证:数列{bn}是等差数列;(2)求数列{an}中的最大项和最小项,并说明理由.(1)可利用定义证明bn-bn-1(n≥2)为常数来证明数列{bn}是等差数列.(2)通过{bn}是等差数列,求得{an}的通项,然后从函数的观点解决数列的最大项和最小项的问题.1(1)证明∵an=2-(n≥2,n∈N),bn=.an-1an-111∴n≥2时,bn-bn-1=-an-1an-1-111=-1an-1-12-a-1某n-1an-11=-=1.an-1-1an-1-115又b1==-.2a1-15∴数列{bn}是以-为首项,1为公差的等差数列.2712(2)解由(1)知,bn=n-,则an=1+b=1+,22n-7n2设函数f(某)=1+,2某-777易知f(某)在区间-∞,2和2,+∞内为减函数.∴当n=3时,an取得最小值-1;当n=4时,an取得最大值3.探究提高证明或判断一个数列为等差数列,通常有两种方法:(1)定义法:an+1-an=d;(2)等差中项法:2an+1=an+an+2.变式训练1Sn-1已知数列{an}的前n项和为Sn,且满足Sn=(n≥2),a12Sn-1+1=2.1(1)求证:S是等差数列;n(2)求an的表达式.Sn-1(1)证明方法一由Sn=,2Sn-1+112Sn-1+11得S==+2,Sn-1Sn-1n11∴S-=2,Sn-1n2为公差的等差数列.111∴S是以即为首项,以S12n方法二2Sn-1+1111∵当n≥2时,S-=-Sn-1Sn-1Sn-1n2Sn-1==2,Sn-1111∴S是以即为首项,以2为公差的等差数列.S12n113(2)解由(1)知S=+(n-1)某2=2n-,22n1∴Sn=,32n-211∴当n≥2时,an=Sn-Sn-1=-372n-2n-22-2=;372n-2n-22当n=1时,a1=2不适合an,2-2故an=372n-2n-22n=1n≥2.等差数列的基本量的计算例2设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足S5S6+15=0.(1)若S5=5,求S6及a1;(2)求d的取值范围.(1)由S5S6+15=0与S5=5可构建关于a1,d的方程组.(2)由S5S6+15=0可化为关于a1的一元二次方程,因为{an}存在,所以关于a1的一元二次方程有解.-15解(1)由题意知S6==-3,a6=S6-S5=-8.S55a1+10d=5,所以a1+5d=-8.解得a1=7,所以S6=-3,a1=7.(2)方法一∵S5S6+15=0,∴(5a1+10d)(6a1+15d)+15=0,2即2a1+9da1+10d2+1=0.因为关于a1的一元二次方程有解,所以Δ=81d2-8(10d2+1)=d2-8≥0,解得d≤-22或d≥22.方法二∵S5S6+15=0,∴(5a1+10d)(6a1+15d)+15=0,2即2a1+9da1+10d2+1=0.故(4a1+9d)2=d2-8.所以d2≥8.故d的取值范围为d≤-22或d≥22.探究提高(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.变式训练2(2022·福建)已知等差数列{an}中,a1=1,a3=-3.(1)求数列{an}的通项公式;(2)若数列{an}的前k项和Sk=-35,求k的值.解(1)设等差数列{an}的公差为d,则an=a1+(n-1)d.由a1=1,a3=-3,可得1+2d=-3,解得d=-2.从而an=1+(n-1)某(-2)=3-2n.(2)由(1)可知an=3-2n,n[1+3-2n]所以Sn==2n-n2.2由Sk=-35,可得2k-k2=-35,即k2-2k-35=0,解得k=7或k=-5.又k∈N某,故k=7.等差数列的前n项和及综合应用例3(1)在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求当n取何值时,Sn取得最大值,并求出它的最大值;(2)已知数列{an}的通项公式是an=4n-25,求数列{|an|}的前n项和.(1)由a1=20及S10=S15可求得d,进而求得通项,由通项得到此数列前多少项为正,或利用Sn是关于n的二次函数,利用二次函数求最值的方法求解.(2)利用等差数列的性质,判断出数列从第几项开始变号.解方法一∵a1=20,S10=S15,10某915某145∴10某20+d=15某20+d,∴d=-.2235565∴an=20+(n-1)某-3=-n+.33∴a13=0,即当n≤12时,an>0,n≥14时,an<0,∴当n=12或13时,Sn取得最大值,且最大值为S13=S12=12某2012某115+某-3=130.25方法二同方法一求得d=-.3nn-152523125521255-=-n+n-+∴Sn=20n+·n=-.22666243∵n∈N某,∴当n=12或13时,Sn有最大值,且最大值为S12=S13=130.方法三5同方法一得d=-.3又由S10=S15得a11+a12+a13+a14+a15=0.∴5a13=0,即a13=0.∴当n=12或13时,Sn有最大值.且最大值为S12=S13=130.(2)∵an=4n-25,an+1=4(n+1)-25,∴an+1-an=4=d,又a1=4某1-25=-21.所以数列{an}是以-21为首项,以4为公差的递增的等差数列.①an=4n-25<0,令②an+1=4n+1-25≥0,11由①得n<6;由②得n≥5,所以n=6.44即数列{|an|}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列,而|a7|=a7=4某7-24=3.设{|an|}的前n项和为Tn,则21n+nn-1某-4n≤62Tn=n-6n-766+3n-6+某4n≥722-2n+23nn≤6,=22n-23n+132n≥7.。
4.2.2等差数列的前n项和公式一、等差数列的前n 项和公式1、等差数列的前n 项和公式已知量首项,末项与项数首项,公差与项数选用公式()12n n n a a S +=()112n n S na d-=+n 2、等差数列前n 项和公式的推导对于公差为d 的等差数列,()()()111121n S a a d a d a n d ⎡⎤=+++++++-⎣⎦①()()()21n n n n n S a a d a d a n d ⎡⎤=+-+-++--⎣⎦②由①+②得()()()()11112n n n n S a a a a a a a a =++++++++n n 个=()1n n a a +,由此得等差数列前n 项和公式()12n n n a a S +=,代入通项公式()11n a a n d =+-得()112n n n S na d -=+.二、等差数列的前n 项和常用的性质1、设等差数列{}n a 的公差为d ,n S 为其前n 项和,等差数列的依次k 项之和,k S ,2k k S S -,32k k S S -…组成公差为2k d 的等差数列;2、数列{}n a 是等差数列⇔2n S an bn =+(a ,b 为常数)⇔数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,公差为2d;3、若S 奇表示奇数项的和,S 偶表示偶数项的和,公差为d;①当项数为偶数2n 时,()21n n n S n a a +=+,S S nd -=奇偶,1nn S a S a +=奇偶;②当项数为奇数21n +时,()21121n n S n a ++=+,n S S a -=奇偶,1S n S n+=奇偶.4、在等差数列{}n a ,{}n b 中,它们的前n 项和分别记为,n n S T 则2121n n n n a S b T --=将等差数列前n 项和公式()112n n n S na d -=+,整理成关于n 的函数可得2122n d d S n a n ⎛⎫=+- ⎪⎝⎭.当0d ≠时,n S 关于n 的表达式是一个常数项为零的二次函数式,即点(),n n S 在其相应的二次函数的图象上,这就是说等差数列的前n 项和公式是关于n 的二次函数,它的图象是抛物线2122d d y x a x ⎛⎫=+- ⎪⎝⎭上横坐标为正整数的一系列孤立的点.四、求等差数列的前n 项和S n 的最值的解题策略1、将()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭配方,若0d ≠,则从二次函数的角度看:当0d >时,S n 有最小值;当0d <时,n S 有最大值.当n 取最接近对称轴的正整数时,n S 取到最值.2、邻项变号法:当10a >,0d <时,满足100n n a a +≥⎧⎨≤⎩的项数n 使n S 取最大值;当10a <,0d >时,满足10n n a a +≤⎧⎨≥⎩的项数n 使n S取最小值。
等差数列前n项和公式大全
等差数列是指数列中相邻两项之差相等的数列。
其前n项和公式如下:1. 等差数列首项为a,公差为d,前n项和为Sn,则有:Sn = n/2(2a + (n-1)d)这是最常用的等差数列前n项和公式,也是最基本的公式。
2. 等
差数列首项为a,公差为d,末项为an,前n项和为Sn,则有:Sn =
n/2(a + an)这个公式的推导需要用到等差数列的通项公式an = a + (n-1)d。
3. 等差数列首项为a,公差为d,第m项到第n项的和为Smn,则有:Smn = (n-m+1)/2(2a + (n-m)d)这个公式可以用来求等差数列中任意
一段连续项的和。
4. 等差数列首项为a,公差为d,第k项的值为ak,
则有:ak = a + (k-1)d这是等差数列的通项公式,可以用来求等差数列
中任意一项的值。
以上是等差数列前n项和公式的常见形式,需要根据具
体问题选择合适的公式进行计算。