等差数列的前n项和练习题及答案解析
- 格式:docx
- 大小:15.78 KB
- 文档页数:4
第1课时等差数列的前n项和课后篇巩固探究A组1.设S n是等差数列{a n}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35C.49D.63解析:S7==49.答案:C2.设S n是等差数列{a n}的前n项和,S5=10,则a3的值为()A. B.1 C.2 D.3解析:∵S5==5a3,∴a3=S5=×10=2.答案:C3.已知数列{a n}的通项公式为a n=2n-37,则S n取最小值时n的值为()A.17B.18C.19D.20解析:由≤n≤.∵n∈N+,∴n=18.∴S18最小,此时n=18.答案:B4.等差数列{a n}的前n项和为S n(n=1,2,3,…),若当首项a1和公差d变化时,a5+a8+a11是一个定值,则下列选项中为定值的是()A.S17B.S18C.S15D.S14解析:由a5+a8+a11=3a8是定值,可知a8是定值,所以S15==15a8是定值.答案:C5.若两个等差数列{a n},{b n}的前n项和分别为A n与B n,且满足(n∈N+),则的值是()A. B. C. D.解析:因为,所以.答案:C6.已知{a n}是等差数列,S n为其前n项和,n∈N+.若a3=16,S20=20,则S10的值为.解析:设等差数列{a n}的首项为a1,公差为d.∵a3=a1+2d=16,S20=20a1+d=20,∴解得d=-2,a1=20,∴S10=10a1+d=200-90=110.答案:1107.在等差数列{a n}中,前n项和为S n,若a9=3a5,则=.解析:S17=17a9,S9=9a5,于是×3=.答案:8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差等于.解析:设公差为d,则有5d=S偶-S奇=30-15=15,于是d=3.答案:39.若等差数列{a n}的公差d<0,且a2·a4=12,a2+a4=8.(1)求数列{a n}的首项a1和公差d;(2)求数列{a n}的前10项和S10的值.解(1)由题意知(a1+d)(a1+3d)=12,(a1+d)+(a1+3d)=8,且d<0,解得a1=8,d=-2.(2)S10=10×a1+d=-10.10.导学号33194010已知数列{a n}是首项为23,公差为整数的等差数列,且前6项均为正,从第7项开始变为负.求:(1)此等差数列的公差d;(2)设前n项和为S n,求S n的最大值;(3)当S n是正数时,求n的最大值.解(1)∵数列{a n}首项为23,前6项均为正,从第7项开始变为负,∴a6=a1+5d=23+5d>0,a7=a1+6d=23+6d<0,解得-<d<-,又d∈Z,∴d=-4.(2)∵d<0,∴{a n}是递减数列.又a6>0,a7<0,∴当n=6时,S n取得最大值,即S6=6×23+×(-4)=78.(3)S n=23n+×(-4)>0,整理得n(25-2n)>0,∴0<n<,又n∈N+,∴n的最大值为12.B组1.设数列{a n}为等差数列,公差d=-2,S n为其前n项和,若S10=S11,则a1=()A.18B.20C.22D.24解析:因为S11-S10=a11=0,a11=a1+10d=a1+10×(-2)=0,所以a1=20.答案:B2.(2017全国1高考)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8解析:设首项为a1,公差为d,则a4+a5=a1+3d+a1+4d=24,S6=6a1+d=48,联立可得①×3-②,得(21-15)d=24,即6d=24,所以d=4.答案:C3.等差数列{a n}的前n项和记为S n,若a2+a4+a15的值为一个确定的常数,则下列各数中也是常数的是()A.S7B.S8C.S13D.S15解析:∵a2+a4+a15=3a1+18d=3(a1+6d)=3a7为常数,∴S13==13a7为常数.答案:C4.导学号33194011若等差数列{a n}的通项公式是a n=1-2n,其前n项和为S n,则数列的前11项和为() A.-45 B.-50 C.-55 D.-66解析:∵S n=,∴=-n,∴的前11项和为-(1+2+3+…+11)=-66.故选D.答案:D5.已知等差数列{a n}前9项的和等于前4项的和.若a1=1,a k+a4=0,则k=.解析:设等差数列{a n}的公差为d,则a n=1+(n-1)d,∵S4=S9,∴a5+a6+a7+a8+a9=0.∴a7=0,∴1+6d=0,d=-.又a4=1+3×,a k=1+(k-1)d,由a k+a4=0,得+1+(k-1)d=0,将d=-代入,可得k=10.答案:106.已知数列{a n}为等差数列,其前n项和为S n,且1+<0.若S n存在最大值,则满足S n>0的n的最大值为.解析:因为S n有最大值,所以数列{a n}单调递减,又<-1,所以a10>0,a11<0,且a10+a11<0.所以S19=19×=19a10>0,S20=20×=10(a10+a11)<0,故满足S n>0的n的最大值为19.答案:197.导学号33194012在等差数列{a n}中,a1=-60,a17=-12,求数列{|a n|}的前n项和.解数列{a n}的公差d==3,∴a n=a1+(n-1)d=-60+(n-1)×3=3n-63.由a n<0得3n-63<0,解得n<21.∴数列{a n}的前20项是负数,第20项以后的项都为非负数.设S n,S n'分别表示数列{a n}和{|a n|}的前n项和,当n≤20时,S n'=-S n=-=-n2+n;当n>20时,S n'=-S20+(S n-S20)=S n-2S20=-60n+×3-2×n2-n+1260.∴数列{|a n|}的前n项和S n'=8.导学号33194013设等差数列{a n}的前n项和为S n,且a5+a13=34,S3=9.(1)求数列{a n}的通项公式及前n项和公式;(2)设数列{b n}的通项公式为b n=,问:是否存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.解(1)设等差数列{a n}的公差为d,因为a5+a13=34,S3=9,所以整理得解得所以a n=1+(n-1)×2=2n-1,S n=n×1+×2=n2.(2)由(1)知b n=,所以b1=,b2=,b m=.若b1,b2,b m(m≥3,m∈N)成等差数列,则2b2=b1+b m,所以,即6(1+t)(2m-1+t)=(3+t)(2m-1+t)+(2m-1)(1+t)(3+t),整理得(m-3)t2-(m+1)t=0,因为t是正整数,所以(m-3)t-(m+1)=0,m=3时显然不成立,所以t==1+.又因为m≥3,m∈N,所以m=4或5或7,当m=4时,t=5;当m=5时,t=3;当m=7时,t=2.所以存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列.。
《第二节等差数列》同步练习(等差数列的前n项和公式)一、选择题1.已知等差数列{a n}的前n项和为S n,且S2=10,S5=55,则过点P(n,S nn ),Q(n+2,S n+2n+2)(n∈N*)的直线的斜率为( )A.4B.3C.2D.12.[2022辽宁名校高三上联考]已知数列{a n}是等差数列,前n项和为S n,若a1+a2+a3+a4=3,a17+a18+a19+a20=5,则S20=( )A.10B.15C.20D.403.[2022四川成都七中高一下期中]已知等差数列{a n}的公差d<0,a5a7=35,a4+a8=12,前n 项和为S n,则S n的最大值为( )A.66B.72C.132D.1984.(多选)[2022湖南高三上联考]两个等差数列{a n}与{b n}的前n项和分别为S n与T n,且S2n T n =8n3n+5,则( )A.a3+a8=2b3B.当S n=2n2时,b n=6n+2C.a4+a11b4<2D.∀n∈N*,使得T n>05.(多选)[2022安徽临泉一中高二期末]已知等差数列{a n}的前n项和为S n,若S2 021>0,S2 022<0,则( )A.数列{a n}是递增数列B.|a1 012|>|a1 011|C.当S n取得最大值时,n=1 011D.S1 012<S1 0096.[2022山东潍坊高二调研]在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安四百二十里,良马初日行九十七里,日增一十五里;驽马初日行九十二里,日减一里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )A.4日B.3日C.5日D.6日7.如果有穷数列a1,a2,…,a n(n∈N*)满足a i=a n-i+1(i=1,2,3,…,n),那么称该数列为“对称数列”.设{a n}是项数为2k-1(k∈N,k≥2)的“对称数列”,其中a k,a k+1,…,a2k-1是首项为50,公差为-4的等差数列,记{a n }的各项之和为S 2k -1,则S 2k -1的最大值为( ) A.622B.624C.626D.6288.(多选)[2022江苏南京高三月考]如图的形状出现在中国南宋数学家杨辉所著的《详解九章算法》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,第四层有10个球,…….设第n 层有a n 个球,从上往下n 层球的总数为S n ,则( )A.S 5=35B.a n +1-a n =nC.S n -S n -1=n(n+1)2,n ≥2 D.1a 1+1a 2+1a 3+…+1a 100=200101二、非选择题9.如图所示,八个边长为1的小正方形拼成一个长为4,宽为2的矩形,A ,B ,D ,E 均为小正方形的顶点,在线段DE 上有 2 020个不同的点P 1,P 2,…,P 2 020,且它们等分DE.记M i =AB ⃗⃗⃗⃗⃗ ·AP i ⃗⃗⃗⃗⃗⃗ (i =1,2,…,2 020).则M 1+M 2+…+M 2 020的值为 .10.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,则{a n }的通项公式a n = ;若数列{b n }满足b n =12a n -30,其前n 项和为T n ,则T n 的最小值为 .11.[2022辽宁阜新高二上期末]在等差数列{a n }中,S n 是数列{a n }的前n 项和,已知a 2=4,S 4=20.(1)求数列{a n }的通项公式;(2)若b n =(-1)n·a n ,求数列{b n }的前n 项和T n .12.[2022河北唐山一中高二上月考]记S n是等差数列{a n}的前n项和,若S5=-35,S7=-21.(1)求数列{a n}的通项公式,并求S n的最小值;(2)设b n=|a n|,求数列{b n}的前n项和T n.参考答案一、选择题1.C设d为数列{a n}的公差,则{S nn }是公差为d2的等差数列.2.C由题易知S4,S8-S4,S12-S8,S16-S12,S20-S16成等差数列,又S4=3,S20-S16=5,则S20=(S20-S16)+(S16-S12)+(S12-S8)+(S8-S4)+S4=(5+3)×52=20.3.A因为d<0,a5a7=35,a4+a8=a5+a7=12,所以a5=7,a7=5,则d=-1,所以a n=a7+(n-7)d=-n+12,所以a12=0,所以当n=11或12时,S n取得最大值,最大值为S11=S12=12(a1+a12)2= 12×(11+0)2=66.4.AB由S2nT n =8n3n+5,知S10T5=10(a1+a10)25(b1+b5)2=a1+a10b3=a3+a8b3=4020=2,即a3+a8=2b3,故A正确;同理可得a4+a11b4=S14T7=2813>2,故C错误;当S n=2n2时,有S2n=8n2,则T n=n(3n+5),易得b n=6n+2,故B正确;当S n=-2n2时,有S2n=-8n2,则T n=-n(3n+5)<0,则不存在n∈N*,使得T n>0,故D错误.5.BC因为S2 021=2021(a1+a2021)2=2 021a1 011>0,S2 022=2022(a1+a2022)2=1 011(a1 011+a1 012)<0,所以a1 011>0,a1 011+a1 012<0,所以a1 012<0,且|a1 012|>|a1 011|,所以数列{a n}是递减数列,且当n=1 011时,S n取得最大值,故B,C正确,A错误.又S1 012-S1 009=a1 010+a1 011+a1 012=3a1 011>0,所以S1 012>S1 009,故D错误.故选BC.6.A记良马第n日行程为a n,驽马第n日行程为b n,则由题意知数列{a n}是首项为97,公差为15的等差数列,数列{b n}是首项为92,公差为-1的等差数列,则a n=97+15(n-1)=15n+82,b n=92-(n-1)=93-n.因为数列{a n}的前n项和为n(97+15n+82)2=n(179+15n)2,数列{b n}的前n项和为n(92+93−n)2=n(185−n)2,所以n(179+15n)2+n(185−n)2=420×2,整理得n2+26n-120=0,解得n=4或n=-30(舍去),即4日相逢.7.C易知a k+a k+1+…+a2k-1=50k+k(k−1)×(−4)2=-2k2+52k,S2k-1=a1+…+a k+a k+1+…+a2k-1=2(a k+a k+1+…+a2k-1)-a k=-4k2+104k-50=-4(k-13)2+626,当k=13时,S2k-1取到最大值,且最大值为626.故选C.8.ACD因为a1=1,a2-a1=2,a3-a2=3,……,a n-a n-1=n,以上n个式子相加可得a n=1+2+3+…+n=n(n+1)2,所以S5=a1+a2+a3+a4+a5=1+3+6+10+15=35,故A正确;由递推关系可知a n+1-a n=n+1,故B 不正确;当n ≥2时,S n -S n -1=a n =n(n+1)2,故C 正确;因为1a n =2n(n+1)=2(1n−1n+1),所以1a 1+1a 2+…+1a 100=2[(1-12)+(12−13)+…+(1100−1101)]=2(1-1101)=200101,故D 正确.故选ACD.二、非选择题9.14 140 解析如图,设C 为DE 的中点,则AC =72.因为P 1,P 2,…,P 2 020等分DE ,所以AP i ⃗⃗⃗⃗⃗⃗ +AP 2 021−i ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2AC ⃗⃗⃗⃗⃗ .又M 1+M 2+…+M 2 020=AB ⃗⃗⃗⃗⃗ ·(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2⃗⃗⃗⃗⃗⃗⃗ +…+AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ),令S =M 1+M 2+…+M 2 020,则2S =AB ⃗⃗⃗⃗⃗ ·(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2⃗⃗⃗⃗⃗⃗⃗ +…+AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+AB ⃗⃗⃗⃗⃗ ·(AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AP 2 019⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +…+AP 1⃗⃗⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ ·[(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+(AP 2⃗⃗⃗⃗⃗⃗⃗ +AP 2 019⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+…+(AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AP 1⃗⃗⃗⃗⃗⃗⃗ )]=(2×2 020)AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =4 040×√5×72×√5=28 280,所以S =14 140.10.4n -2 -225 解析因为2a n +1=a n +a n +2,所以a n +1-a n =a n +2-a n +1,故数列{a n }为等差数列.设数列{a n }的公差为d.由a 3=10,S 6=72,得{a 1+2d =10,6a 1+15d =72,解得{a 1=2,d =4,所以a n =4n -2,所以b n =12a n -30=2n -31.令{b n ≤0,b n+1≥0,即{2n −31≤0,2(n +1)−31≥0,解得292≤n ≤312.因为n ∈N *,所以数列{b n }的前15项均为负值且第16项为正值,所以T 15最小.因为数列{b n }的首项为-29,公差为2,所以T 15=15(−29+2×15−31)2=-225,所以数列{b n }的前n 项和T n 的最小值为-225.11.(1)设首项为a 1,公差为d ,由题意知 {a 1+d =4,4a 1+4×32d =20,解得{a 1=2,d =2,故a n =2n. (2)由(1)得b n =(-1)n·a n =(-1)n·2n.当n 为偶数时,T n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ]=n2·2=n ;当n 为奇数时,T n =(-2+4)+(-6+8)+…+[-2(n -2)+2(n -1)]-2n =(n -1)-2n =-n -1, 所以T n ={n,n 为偶数,−n −1,n 为奇数.12.(1)设{a n }的公差为d ,则{5a 1+5×42d =−35,7a 1+7×62d =−21,解得{a 1=−15,d =4, 所以a n =-15+4(n -1)=4n -19.由a n=4n-19≥0,得n≥194,所以当n=1,2,3,4时,a n<0,当n≥5时,a n>0,所以S n的最小值为S4=4a1+4×32d=-36.(2)由(1)知,当n≤4时,b n=|a n|=-a n;当n≥5时,b n=|a n|=a n.又S n=na1+n(n−1)2d=2n2-17n,所以当n≤4时,T n=-S n=17n-2n2,当n≥5时,T n=S n-2S4=2n2-17n-2×(-36)=2n2-17n+72,即T n={17n−2n2,n≤4, 2n2−17n+72,n≥5.。
等差数列的前n项和习题及答案一、基础过关1.若数列{an}的前n项和Sn=n2-1,则a4等于() A.7 B.8 C.9 D.172.已知数列{an}的前n项和Sn=n3,则a5+a6的值为() A.91 B.152 C.218 D.2793.设Sn是等差数列{an}的前n项和,若a5a3=59,则S9S5等于()A.1 B.-1 C.2 D.124.设Sn是等差数列{an}的前n项和,若S3S6=13,则S6S12等于()A.310B.13C.18D.195.数列{an}的前n项和为Sn,且Sn=n2-n(n∈N*),则通项an=________.6.设Sn为等差数列{an}的前n项和,若a4=1,S5=10,则当Sn取得最大值时,n的值为________.7.已知数列{an}的前n项和公式为Sn=2n2-30n.(1)求数列{an}的通项公式an;(2)求Sn的最小值及对应的n值.8.设等差数列{an}满足a3=5,a10=-9.(1)求{an}的通项公式;(2)求{an}的前n项和Sn及使得Sn最大的序号n的值.二、能力提升9.已知数列{an}的前n项和Sn=n2-9n,第k项满足5<ak<8,则k为() A.9 B.8 C.7 D.610.设{an}是等差数列,Sn是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是() A.d<0 B.a7=0C.S9>S5 D.S6与S7均为Sn的最大值11.数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0 (n∈N*).(1)求数列{an}的通项公式;(2)设Sn=|a1|+|a2|+…+|an|,求Sn.三、探究与拓展12.设等差数列{an}的前n项和为Sn,已知a3=12,且S12>0,S13<0.(1)求公差d的取值范围;(2)问前几项的和最大,并说明理由.答案1.A 2.B 3.A 4.A 5.2n-2 6.4或57.解(1)∵Sn=2n2-30n,∴当n=1时,a1=S1=-28.当n≥2时,an=Sn-Sn-1=(2n2-30n)-[2(n-1)2-30(n-1)]=4n-32.∴an=4n-32,n∈N+.(2)∵an=4n-32,∴a1<a2<…<a7<0,a8=0,当n≥9时,an>0.∴当n=7或8时,Sn最小,且最小值为S7=S8=-112.8.解(1)由an=a1+(n-1)d及a3=5,a10=-9得a1+2d=5,a1+9d=-9,可解得a1=9,d=-2,所以数列{an}的通项公式为an=11-2n.(2)由(1)知,Sn=na1+n-12d=10n-n2.因为Sn=-(n-5)2+25,所以当n=5时,Sn取得最大值.9.B10.C11.解(1)∵an+2-2an+1+an=0.∴an+2-an+1=an+1-an=…=a2-a1.∴{an}是等差数列且a1=8,a4=2,∴d=-2,an=a1+(n-1)d=10-2n.(2)∵an=10-2n,令an=0,得n=5.当n>5时,an<0;当n=5时,an=0;当n<5时,an>0.∴当n>5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5-(a6+a7+…+an)=S5-(Sn-S5)=2S5-Sn=2•(9×5-25)-9n+n2=n2-9n+40,当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=9n-n2.∴Sn=9n-n2≤5-9n+4012.解(1)根据题意,得12a1+12×112d>0,13a1+13×122d<0,a1+2d=12,整理得:2a1+11d>0,a1+6d<0,a1+2d=12.解得:-247<d<-3.(2)∵d<0,∴a1>a2>a3>…>a12>a13>…,而S13=13+a13=13a7<0,∴a7<0.又S12=12+a12=6(a1+a12)=6(a6+a7)>0,∴a6>0.∴数列{an}的前6项和S6最大.。
【巩固练习】一、选择题1.已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( )A .5B .4C .3D .22.已知等差数列{a n }的前三项依次为a -1,172a -,3,则该数列中第一次出现负值的项为( ) A .第9项B .第10项C .第11项D .第12项 3.已知{a n }是等差数列,a 3+a 11=40,则a 6-a 7+a 8等于( ) A .20B .48C .60D .72 4. 等差数列{a n }中,a 1=8,a 5=2,若在每相邻两项间各插入一个数,使之成等差数列,那么新的等差数列的公差是( ) A.34B .34-C .67-D .-1 5.(2015 新课标Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A . 172 B .192C .10D .12 6. 已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且7453n n A n B n +=+,则使得n n a b 为整数的正整数n 的个数是( )A .2B .3C .4D .5二、填空题7.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________. 8.若x ≠y ,数列x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各自成等差数列,则1212a ab b --=________. 9.把20分成四个数成等差数列,使第一项与第四项的积同第二项与第三项的积的比为2∶3,则这四个数从小到大依次为____________.10.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =________.11.(2016 南通模拟)等差数列{}n a 中,1583,115a a a =-=,则其前n 项和n S 的最小值为 。
课时作业8 等差数列的前n 项和时间:45分钟 满分:100分课堂训练1.已知{a n }为等差数列,a 1=35,d =-2,S n =0,则n 等于( ) A .33 B .34 C .35 D .36【答案】 D【解析】 本题考查等差数列的前n 项和公式.由S n =na 1+n (n -1)2d =35n +n (n -1)2×(-2)=0,可以求出n =36.2.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则数列前13项的和是( )A .13B .26C .52D .156 【答案】 B【解析】 3(a 3+a 5)+2(a 7+a 10+a 13)=24⇒6a 4+6a 10=24⇒a 4+a 10=4⇒S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26. 3.等差数列的前n 项和为S n ,S 10=20,S 20=50.则S 30=________. 【答案】 90【解析】 等差数列的片断数列和依次成等差数列. ∴S 10,S 20-S 10,S 30-S 20也成等差数列. ∴2(S 20-S 10)=(S 30-S 20)+S 10,解得S 30=90.4.等差数列{a n }的前n 项和为S n ,若S 12=84,S 20=460,求S 28. 【分析】 (1)应用基本量法列出关于a 1和d 的方程组,解出a 1和d ,进而求得S 28;(2)因为数列不是常数列,因此S n 是关于n 的一元二次函数且常数项为零.设S n =an 2+bn ,代入条件S 12=84,S 20=460,可得a 、b ,则可求S 28;(3)由S n =d 2n 2+n (a 1-d 2)得S n n =d 2n +(a 1-d2),故⎩⎨⎧⎭⎬⎫S n n 是一个等差数列,又2×20=12+28,∴2×S 2020=S 1212+S 2828,可求得S 28.【解析】 方法一:设{a n }的公差为d , 则S n =na 1+n (n -1)2d .由已知条件得:⎩⎨⎧12a 1+12×112d =84,20a 1+20×192d =460,整理得⎩⎨⎧2a 1+11d =14,2a 1+19d =46,解得⎩⎨⎧a 1=-15,d =4.所以S n =-15n +n (n -1)2×4=2n 2-17n , 所以S 28=2×282-17×28=1 092.方法二:设数列的前n 项和为S n ,则S n =an 2+bn . 因为S 12=84,S 20=460,所以⎩⎨⎧122a +12b =84,202a +20b =460,整理得⎩⎨⎧12a +b =7,20a +b =23.解之得a =2,b =-17, 所以S n =2n 2-17n ,S 28=1 092. 方法三:∵{a n }为等差数列, 所以S n =na 1+n (n -1)2d ,所以S n n =a 1-d 2+d2n ,所以⎩⎨⎧⎭⎬⎫S n n 是等差数列.因为12,20,28成等差数列, 所以S 1212,S 2020,S 2828成等差数列, 所以2×S 2020=S 1212+S 2828,解得S 28=1 092.【规律方法】 基本量法求出a 1和d 是解决此类问题的基本方法,应熟练掌握.根据等差数列的性质探寻其他解法,可以开阔思路,有时可以简化计算.课后作业一、选择题(每小题5分,共40分)1.已知等差数列{a n }中,a 2=7,a 4=15,则前10项的和S 10等于( )A .100B .210C .380D .400【答案】 B【解析】 d =a 4-a 24-2=15-72=4,则a 1=3,所以S 10=210.2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .27 B .24 C .29 D .48【答案】 C 【解析】由已知⎩⎨⎧2a 1+5d =19,5a 1+10d =40.解得⎩⎨⎧a 1=2,d =3.∴a 10=2+9×3=29.3.数列{a n }的前n 项和为S n =n 2+2n -1,则这个数列一定是( ) A .等差数列 B .非等差数列 C .常数列 D .等差数列或常数列 【答案】 B【解析】 当n ≥2时,a n =S n -S n -1=n 2+2n -1-[(n -1)2+2(n -1)-1]=2n +1,当n =1时a 1=S 1=2.∴a n =⎩⎨⎧2,n =1,2n +1,n ≥2,这不是等差数列.4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )C .8D .9【答案】 A 【解析】⎩⎨⎧a 1=-11,a 4+a 6=-6,∴⎩⎨⎧a 1=-11,d =2,∴S n =na 1+n (n -1)2d =-11n +n 2-n =n 2-12n . =(n -6)2-36. 即n =6时,S n 最小.5.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18【答案】 D【解析】 ∵a 1+a 2+a 3+a 4+a 5=34, a n +a n -1+a n -2+a n -3+a n -4=146, ∴5(a 1+a n )=180,a 1+a n =36, S n =n (a 1+a n )2=n ×362=234. ∴n =13,S 13=13a 7=234.∴a 7=18.6.一个有11项的等差数列,奇数项之和为30,则它的中间项为( )A .8B .7【答案】 D【解析】 S 奇=6a 1+6×52×2d =30,a 1+5d =5,S 偶=5a 2+5×42×2d =5(a 1+5d )=25,a 中=S 奇-S 偶=30-25=5.7.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n=7n n +3,则a 5b 5等于( ) A .7 B.23 C.278 D.214【答案】 D【解析】 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=92(a 1+a 9)92(b 1+b 9)=S 9T 9=214.8.已知数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于( )A .445B .765C .1 080D .1 305 【答案】 B【解析】 a n +1-a n =3,∴{a n }为等差数列. ∴a n =-60+(n -1)×3,即a n =3n -63.∴a n =0时,n =21,a n >0时,n >21,a n <0时,n <21. S ′30=|a 1|+|a 2|+|a 3|+…+|a 30|=-a 1-a 2-a 3-…-a 21+a 22+a 23+…+a 30 =-2(a 1+a 2+…+a 21)+S 30 =-2S 21+S 30 =765.二、填空题(每小题10分,共20分)9.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则数列的通项公式a n =________.【答案】 2n【解析】 设等差数列{a n }的公差d ,则⎩⎨⎧a 1+5d =12a 1+d =4,∴⎩⎨⎧a 1=2d =2,∴a n =2n .10.等差数列共有2n +1项,所有奇数项之和为132,所有偶数项之和为120,则n 等于________.【答案】 10【解析】 ∵等差数列共有2n +1项,∴S 奇-S 偶=a n +1=S 2n +12n +1.即132-120=132+1202n +1,求得n =10.【规律方法】 利用了等差数列前n 项和的性质,比较简捷. 三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8; (2)若a 1=1,a n =-512,S n =-1 022,求d .【分析】 在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个最基本量,利用通项公式和前n 项和公式,先求出a 1和d ,然后再求前n 项和或特别的项.【解析】 (1)∵a 6=10,S 5=5,∴⎩⎨⎧a 1+5d =10,5a 1+10d =5.解方程组,得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16, S 8=8(a 1+a 8)2=44. (2)由S n =n (a 1+a n )2=n (-512+1)2=-1 022, 解得n =4.又由a n =a 1+(n -1)d , 即-512=1+(4-1)d , 解得d =-171.【规律方法】 一般地,等差数列的五个基本量a 1,a n ,d ,n ,S n ,知道其中任意三个量可建立方程组,求出另外两个量,即“知三求二”.我们求解这类问题的通性通法,是先列方程组求出基本量a 1和d ,然后再用公式求出其他的量.12.已知等差数列{a n },且满足a n =40-4n ,求前多少项的和最大,最大值为多少?【解析】 方法一:(二次函数法)∵a n =40-4n ,∴a 1=40-4=36, ∴S n =(a 1+a n )n 2=36+40-4n2·n =-2n 2+38n =-2[n 2-19n +(192)2]+1922=-2(n -192)2+1922.令n -192=0,则n =192=9.5,且n ∈N +, ∴当n =9或n =10时,S n 最大,∴S n 的最大值为S 9=S 10=-2(10-192)2+1922=180. 方法二:(图象法)∵a n =40-4n ,∴a 1=40-4=36, a 2=40-4×2=32,∴d =32-36=-4,S n =na 1+n (n -1)2d =36n +n (n -1)2·(-4)=-2n 2+38n , 点(n ,S n )在二次函数y =-2x 2+38x 的图象上,S n 有最大值,其对称轴为x =-382×(-2)=192=9.5,∴当n =10或9时,S n 最大.∴S n 的最大值为S 9=S 10=-2×102+38×10=180. 方法三:(通项法)∵a n =40-4n ,∴a 1=40-4=36,a 2=40-4×2=32,∴d =32-36=-4<0,数列{a n }为递减数列.令⎩⎨⎧a n ≥0,a n +1≤0,有⎩⎨⎧40-4n ≥0,40-4(n +1)≤0,∴⎩⎨⎧n ≤10,n ≥9,即9≤n ≤10.当n =9或n =10时,S n 最大.∴S n 的最大值为S 9=S 10=a 1+a 102×10=36+02×10=180. 【规律方法】 对于方法一,一定要强调n ∈N +,也就是说用函数式求最值,不能忽略定义域,另外,三种方法中都得出n =9或n =10,需注意a m =0时,S m -1=S m 同为S n 的最值.。
1.数列{a n }为等差数列,a 1,a 2,a 3成等比数列,a 5=1,则a 10= ( ) A .5 B .-1 C .0 D .1解析:设公差为d ,由已知得⎩⎪⎨⎪⎧a 1+d 2=a 1a 1+2da 1+4d =1,解得⎩⎪⎨⎪⎧a 1=1d =0,所以a 10=a 1+9d =1,故选D 。
答案:D2.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是( ) A .13 B .26 C .52 D .156解析:∵a 3+a 5=2a 4,a 7+a 10+a 13=3a 10, ∴6a 4+6a 10=24,即a 4+a 10=4。
∴S 13=13a 1+a 132=13a 4+a 102=26。
答案:B3.在等差数列{a n }中,如果a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( ) A .297 B .144 C .99 D .66解析:∵a 1+a 4+a 7=39,a 3+a 6+a 9=27,∴a 1+a 4+a 7=3a 4=39,a 3+a 6+a 9=3a 6=27,即a 4=13,a 6=9.∴d =-2,a 1=19.∴S 9=19×9+9×82×(-2)=99。
答案:C4.已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64解析:2a 8=a 7+a 9=16⇒a 8=8,S 11=11a 1+a 112=11·2a 62=11a 6=992,所以a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A 。
答案:A5.在等差数列{a n }中,a 1=-2 012,其前n 项和为S n ,若S 2 0122 012-S 1010=2 002,则S 2 014的值等于( )A .2 011B .-2 012C .2 014D .-2 013 解析:等差数列中,S n =na 1+nn -12d ,S n n =a 1+(n -1)d 2,即数列{S nn}是首项为a 1=-2 012,公差为d 2的等差数列。
4.2.2 第一课时 等差数列的前n项和公式[A级 基础巩固]1.已知等差数列{a n}的前n项和为S n,若2a6=a8+6,则S7等于( )A.49 B.42C.35 D.28解析:选B 2a6-a8=a4=6,S7=72(a1+a7)=7a4=42.2.已知数列{a n}是等差数列,a4=15,S5=55,则过点P(3,a3),Q(4,a4)的直线斜率为( )A.4 D.1 4C.-4 D.-1 4解析:选A 由S5=5(a1+a5)2=5×2a32=55,解得a3=11.∴P(3,11),Q(4,15),∴k=15-114-3=4.故选A.3.在小于100的自然数中,所有被7除余2的数之和为( ) A.765 B.665 C.763 D.663解析:选B ∵a1=2,d=7,则2+(n-1)×7<100,∴n<15,∴n=14,S14=14×2+12×14×13×7=665.4.设S n是等差数列{a n}的前n项和,若a5a3=59,则S9S5等于( )A.1 B.-1C.2 D.1 2解析:选A S9S5=92(a1+a9)52(a1+a5)=92·2a552·2a3=9a55a3=95·a5a3=1.5.现有200根相同的钢管,把它们堆成一个正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A.9 B.10C.19 D.29解析:选B 钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为:1+2+3+…+n=n(n+1)2.当n=19时,S19=190.当n=20时,S20=210>200.∴n=19时,剩余钢管根数最少,为10根.6.已知{a n}是等差数列,a4+a6=6,其前5项和S5=10,则其公差为d=________.解析:a4+a6=a1+3d+a1+5d=6,①S5=5a1+12×5×(5-1)d=10,②由①②联立解得a1=1,d=1 2 .答案:1 27.已知数列{a n}中,a1=1,a n=a n-1+12(n≥2),则数列{a n}的前9项和等于________.解析:由a1=1,a n=a n-1+12(n≥2),可知数列{a n}是首项为1,公差为12的等差数列,故S9=9a1+9×(9-1)2×12=9+18=27.答案:27n=11.已知命题:“在等差数列{a n}中,若4a2+a10+a( )=24,则S11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为( )A.15 B.24C.18 D.28解析:选C 设括号内的数为n,则4a2+a10+a(n)=24,即6a1+(n+12)d=24.又因为S11=11a1+55d=11(a1+5d)为定值,所以a1+5d为定值.所以n+126=5,解得n=18.12.(多选)已知等差数列{a n}的前n项和为S n,若S7=a4,则( ) A.a1+a3=0 B.a3+a5=0 C.S3=S4 D.S4=S5解析:选BC 由S7=7(a1+a7)2=7a4=a4,得a4=0,所以a3+a5=2a4=0,S3=S4,故选B、C.13.在等差数列{a n}中,前m(m为奇数)项和为135,其中偶数项之和为63,且a m-a1=14,则m=________,a100=________.解析:∵在前m项中偶数项之和为S偶=63,∴奇数项之和为S奇=135-63=72,设等差数列{a n}的公差为d,则S奇-S偶=2a1+(m-1)d2=72-63=9.又∵a m=a1+d(m-1),∴a1+a m2=9,∵a m-a1=14,∴a1=2,a m=16.∵m(a1+a m)2=135,∴m=15,∴d=14m-1=1,∴a100=a1+99d=101.答案:15 10114.设S n是数列{a n}的前n项和且n∈N*,所有项a n>0,且S n=14a2n+12a n-34.(1)证明:{a n}是等差数列;(2)求数列{a n}的通项公式.解:(1)证明:当n=1时,a1=S1=14a21+12a1-34,解得a1=3或a1=-1(舍去).当n≥2时,a n=S n-S n-1=14(a2n+2a n-3)-14(a2n-1+2a n-1-3).所以4a n=a2n-a2n-1+2a n-2a n-1,即(a n+a n-1)(a n-a n-1-2)=0,因为a n+a n-1>0,所以a n-a n-1=2(n≥2).所以数列{a n}是以3为首项,2为公差的等差数列.(2)由(1)知a n=3+2(n-1)=2n+1.[C级 拓展探究]15.求等差数列{4n+1}(1≤n≤200)与{6m-3}(1≤m≤200)的公共项之和.解:由4n+1=6m-3(m,n∈N*且1≤m≤200,1≤n≤200),可得Error!(t∈N*且23≤t≤67).则等差数列{4n+1}(1≤n≤200),{6m-3}(1≤m≤200)的公共项按从小到大的顺序组成的数列是等差数列{4(3t-1)+1}(t∈N*且23≤t≤67),即{12t-3}(t∈N*且23≤t≤67),各项之和为67×9+67×662×12=27 135.。
1.若一个等差数列首项为0,公差为2,则这个等差数列的前20项之和为( )A .360B .370C .380D .390答案:C2.已知a 1=1,a 8=6,则S 8等于( )A .25B .26C .27D .28答案:D3.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________.解析:由已知⎩⎨⎧ a 1+5d =123a 1+3d =12?⎩⎨⎧a 1=2,d =2.故a n =2n . 答案:2n4.在等差数列{a n }中,已知a 5=14,a 7=20,求S 5.解:d =a 7-a 57-5=20-142=3, a 1=a 5-4d =14-12=2,所以S 5=5?a 1+a 5?2=5?2+14?2=40. 一、选择题1.(2011年杭州质检)等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4=( )A .12B .10C .8D .6 解析:选=a 3-a 2=2,a 1=-1,S 4=4a 1+4×32×2=8. 2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( )A .24B .27C .29D .48解析:选C.由已知⎩⎨⎧ 2a 1+5d =19,5a 1+10d =40.解得⎩⎨⎧a 1=2,d =3.∴a 10=2+9×3=29. 3.在等差数列{a n }中,S 10=120,则a 2+a 9=( )A .12B .24C .36D .48解析:选=10?a 1+a 10?2=5(a 2+a 9)=120.∴a 2+a 9=24. 4.已知等差数列{a n }的公差为1,且a 1+a 2+…+a 98+a 99=99,则a 3+a 6+a 9+…+a 96+a 99=( )A .99B .66C .33D .0解析:选B.由a 1+a 2+…+a 98+a 99=99,得99a 1+99×982=99. ∴a 1=-48,∴a 3=a 1+2d =-46.又∵{a 3n }是以a 3为首项,以3为公差的等差数列.∴a 3+a 6+a 9+…+a 99=33a 3+33×322×3=33(48-46)=66.5.若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A .13项B .12项C .11项D .10项解析:选A.∵a 1+a 2+a 3=34,①a n +a n -1+a n -2=146,②又∵a 1+a n =a 2+a n -1=a 3+a n -2,∴①+②得3(a 1+a n )=180,∴a 1+a n =60.③S n =?a1+a n ?·n 2=390.④将③代入④中得n =13.6.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 等于() A .9 B .10C .11D .12解析:选B.由等差数列前n 项和的性质知S 偶S 奇=nn +1,即150165=nn +1,∴n =10.二、填空题7.设数列{a n }的首项a 1=-7,且满足a n +1=a n +2(n ∈N *),则a 1+a 2+…+a 17=________. 解析:由题意得a n +1-a n =2,∴{a n }是一个首项a 1=-7,公差d =2的等差数列.∴a 1+a 2+…+a 17=S 17=17×(-7)+17×162×2=153.答案:1538.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差为d =__________.解析:a 4+a 6=a 1+3d +a 1+5d =6.①S 5=5a 1+12×5×(5-1)d =10.②由①②得a 1=1,d =12.答案:129.设S n 是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________.解析:由等差数列的性质知S 9=9a 5=-9,∴a 5=-1.又∵a 5+a 12=a 1+a 16=-9,∴S 16=16?a 1+a 16?2=8(a 1+a 16)=-72.答案:-72三、解答题10.已知数列{a n }的前n 项和公式为S n =n 2-23n -2(n ∈N *).(1)写出该数列的第3项;(2)判断74是否在该数列中.解:(1)a 3=S 3-S 2=-18.(2)n =1时,a 1=S 1=-24,n ≥2时,a n =S n -S n -1=2n -24,即a n =⎩⎨⎧ -24,n =1,2n -24,n ≥2,由题设得2n -24=74(n ≥2),解得n =49.∴74在该数列中.11.(2010年高考课标全国卷)设等差数列{a n }满足a 3=5,a 10=-9.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值. 解:(1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得⎩⎨⎧ a 1+2d =5,a 1+9d =-9,可解得⎩⎨⎧a 1=9,d =-2,所以数列{a n }的通项公式为a n =11-2n .(2)由(1)知,S n =na 1+n ?n -1?2d =10n -n 2. 因为S n =-(n -5)2+25,所以当n =5时,S n 取得最大值.12.已知数列{a n }是等差数列.(1)前四项和为21,末四项和为67,且各项和为286,求项数;(2)S n =20,S 2n =38,求S 3n .解:(1)由题意知a 1+a 2+a 3+a 4=21,a n -3+a n -2+a n -1+a n =67, 所以a 1+a 2+a 3+a 4+a n -3+a n -2+a n -1+a n =88.所以a 1+a n =884=22. 因为S n =n ?a 1+a n ?2=286,所以n =26. (2)因为S n ,S 2n -S n ,S 3n -S 2n 成等差数列,所以S 3n =3(S 2n -S n )=54.。
4.2.2 等差数列的前n 项和1.(2020·宜宾市叙州区第一中学校高三三模(文))已知等差数列{}n a 的前n 项和为n S ,9445,31n S a -==,若198n S =,则n =( ) A .10 B .11C .12D .13【答案】B【解析】945S =1955945()952a a a a ⇒=+=⇒= ,所以154()()198(531)11222n n n n n nS a a a a n -=+=+∴=+∴= ,选B.2.(2020·东北育才学校高二月考(文))已知等差数列{}n a 的前n 项和为n S ,若74328a a =+,则25S =( ) A .50 B .100C .150D .200【答案】D【解析】设等差数列{a n }首项为1a ,公差为d,∵74328a a =+,∴3(()116)238a d a d +=++,∴1a +12d=8,即138a = 故S 25=()125252a a +=132522a ⨯=25a 13=200故选:D . 3.(2020·四川省泸县第二中学开学考试(文))等差数列{}n a 的前n 项和为n S ,23a =,且936S S =,则{}n a 的公差d =( )A .1B .2C .3D .4【答案】A【解析】由等差数列性质知()()1319329353939,?654922a a a a S a S S a ++=======,则56a =.所以5213a a d -==.故选A. 4.(2020·云南高一期末)《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺B .2.5尺C .3.5尺D .4.5尺题组一 等差数列的基本量【答案】C【解析】从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩,解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺).故选C .5.(2020·陕西省洛南中学高二月考)在等差数列{}n a 中,已知12232,10a a a a +=+=,求通项公式n a 及前n 项和n S .【答案】45n a n =-,223n S n n =- *(1,)n n N ≥∈【解析】令等差数列{}n a 的公差为d ,则由12232,10a a a a +=+=,知:11222310a d a d +=⎧⎨+=⎩,解之得11{4a d =-=; ∴根据等差数列的通项公式及前n 项和公式,有:()()1114145n a a n d n n =+-=-+-=-,21232nn a a S n n n +=⋅=- *(1,)n n N ≥∈;1.(2020·湖北黄州·黄冈中学其他(理))已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42 B .21C .7D .3【答案】B【解析】由等差数列的性质可得6354553a a a a a a +-=+-=,()1747772732122a a a S +⨯∴===⨯=.故选:B.2.(2019·贵州六盘水·高二期末(理))在等差数列{}n a 中,358a a +=,则7S =( )题组二 前n 项和S n 与等差中项A .12B .28C .24D .35【答案】B【解析】等差数列{}n a 中,358a a +=,故17358a a a a +=+=,所以()7717782822S a a +⨯===.故选:B. 3.(2020·湖北荆州·高二期末)已知等差数列{}n a 的前n 项和为n S ,若57942a a a ++=,则13S =( ) A .36 B .72C .91D .182【答案】D【解析】数列{}n a 为等差数列,则5797342a a a a ++==,解得714a = 则()113137131313141822a a S a+=⨯==⨯=故选:D4.(2019·黄梅国际育才高级中学月考)若两个等差数列{}{},n n a b 的前n 项和分别为A n 、B n ,且满足4255n n A n B n +=-,则513513a a b b ++的值为( )A .78B .79C .87D .1920【答案】A【解析】等差数列{}n a 、{}n b 前n 项和分别为n A ,n B ,由4255n n A n B n +=-, 得1131171131751717511177)2)217(4172717(51758a a a a a a Ab b b b b b B +++⨯+=====+++⨯-.故选:A . 5.(2020·赣州市赣县第三中学期中)设等差数列{}n a 前n 项和为n S ,等差数列{}n b 前n 项和为n T ,若20121n n S n T n -=-.则33a b =( ) A .595B .11C .12D .13【答案】B【解析】因为等差数列{}n a 前n 项和为n S ,所以1()2n n n a a S +=, 当n 是奇数时,112()2n n n n a a S na ++==,所以33533555a a Sb b T ==,故选:B6.(2020·广西田阳高中高二月考(理))已知等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且521n n S n T n +=-,则76a b =( ) A .67B .1211C .1825D .1621【答案】A【解析】因为等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且521n n S n T n +=-, 所以可设(5)n S kn n =+,(21)n T kn n =-, 所以77618a S S k =-=,66521b T T k =-=,所以7667a b =.故选:A 7.(2020·商丘市第一高级中学高一期末)等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且7453n n S n T n +=-,则使得nna b 为整数的正整数n 的个数是( ) A .3 B .4C .5D .6【答案】C【解析】∵等差数列{a n }、{b n },∴121121,22n n n n a a b ba b --++== , ∴()()121211212122n n n n n n n n n a a a na S n b b b nb T ----+===+ ,又7453n n S n T n +=- , ∴()()7214566721324n n n a b n n -+==+--- , 经验证,当n=1,3,5,13,35时,n n a b 为整数,则使得nna b 为整数的正整数的n 的个数是5.本题选择C 选项.1.(2020·榆林市第二中学高二月考)设等差数列{}n a 的前n 项和为n S ,若488,20S S ==,则题组三 前n 项和S n 的性质13141516a a a a +++= ( )A .12B .8C .20D .16【答案】C【解析】∵等差数列{}n a 的前n 项和为n S ,488,20S S ==, 由等差数列的性质得:4841281612,,,S S S S S S S ---成等比数列 又4848,20812,S S S =-=-=∴128122012416,S S S -=-=+=16121314151616420S S a a a a -=+++=+=.故选:C .2.(2020·重庆其他(文))等差数列{}n a 的前n 项和为n S ,已知312S =,651S =,则9S 的值等于( ) A .66 B .90C .117D .127【答案】C【解析】等差数列{}n a 的前n 项和为n S ,由题意可得63963,,S S S S S --成等差数列,故()()363962S S S S S -=+-,代入数据可得()()9251121125S -=+-,解得9117S =故选C3.(2020·江苏徐州·高二期中)已知n S 为等差数列{}n a 的前n 项之和,且315S =,648S =,则9S 的值为( ). A .63 B .81C .99D .108【答案】C【解析】由n S 为等差数列{}n a 的前n 项之和,则3S ,639633(1),,......m m S S S S S S ---- 也成等差数列, 则3S ,6396,S S S S --成等差数列,所以633962()()S S S S S -=+-,由315S =,648S =, 得999S =,故选:C.4.(2020·昆明市官渡区第一中学高二期末(理))等差数列{}n a 的前n 项和为n S ,且1020S =,2015S =,则30S =( ) A .10 B .20C .30-D .15-【答案】D【解析】由等差数列{}n a 的前n 项和的性质可得:10S ,1200S S -,3020S S -也成等差数列,20101030202()()S S S S S ∴-=+-,302(1520)2015S ∴⨯-=+-,解得3015S =-.故选D .5.(2020·朔州市朔城区第一中学校期末(文))设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .27【答案】B【解析】由等差数列性质知S 3、S 6﹣S 3、S 9﹣S 6成等差数列,即9,27,S 9﹣S 6成等差,∴S 9﹣S 6=45 ∴a 7+a 8+a 9=45故选B .6.(2020·新疆二模(文))在等差数列{}n a 中,12018a =-,其前n 项和为n S ,若101221210S S -=,则2020S =( ) A .-4040 B .-2020 C .2020 D .4040【答案】C【解析】设等差数列{}n a 的前n 项和为2+n S An Bn =,则+nS An B n=, 所以n S n ⎧⎫⎨⎬⎩⎭是等差数列.因为101221210S S -=,所以n S n ⎧⎫⎨⎬⎩⎭的公差为1,又11201811S a ==-,所以n S n ⎧⎫⎨⎬⎩⎭是以2018-为首项,1为公差的等差数列, 所以202020182019112020S =-+⨯=,所以20202020S =故选:C 8.(2020·河北路南·唐山一中)已知n S 是等差数列{}n a 的前n 项和,若12017a =-, 20142008620142008S S -=,则2017S =__________. 【答案】2017- 【解析】n S 是等差数列{}n a 的前n 项和, n S n ⎧⎫∴⎨⎬⎩⎭是等差数列,设其公差为d ,201420086,66,120142008S S d d -=∴==, 112017,20171S a =-∴=-,()()20172017112018,2018201720172017nS n n S n∴=-+-⨯=-+∴=-+⨯=-, 故答案为2017-.9.(2020·湖南怀化·高二期末)已知n S 是等差数列{}n a 的前n 项和,若12a =-,20202018220202018S S -=,则20192019S =________. 【答案】2016 【解析】n S 是等差数列{}n a 的前n 项和,n S n ⎧⎫∴⎨⎬⎩⎭是等差数列,设其公差为d .20202018 220202018S S -=,22d ∴=,1d =.12a =-,1S21∴=-. 2(1)13n S n n n ∴=-+-⨯=-.2019S20162019∴=.故答案为:2016.1.(2020·安徽铜陵·)设n S 是公差不为零的等差数列{}n a 的前n 项和,且10a >,若59S S =,则当n S 最大时,n=( ) A .6 B .7C .10D .9【答案】B【解析】由等差数列中,59S S =,可得,故,其中,可知当时,最大.2.(2020·河北运河·沧州市一中月考)等差数列{}n a 中,10a >,201520160a a +>,201520160a a <,则使前n 项和0n S >成立的最大自然数n 是( ) A .2015 B .2016C .4030D .4031【答案】C【解析】由题意知201520160,0a a ><,所以14030201520160a a a a +=+>,而14031201620a a a +=<,则有()140304*********a a S ⨯+=>,而()140314031403102a a S ⨯+=<,所以使前n 项和0n S >成立的最大自然数n 是4030,故选C .3.(2020·河北路南·唐山一中期末)已知等差数列{}n a 的前n 项和为n S ,且856a a -=-,9475S S -=,题组四 前n 项和S n 的最值则n S 取得最大值时n =( ) A .14 B .15C .16D .17【答案】A【解析】设等差数列{}n a 的公差为d ,则11369364675d a d a d =-⎧⎨+--=⎩,解得1227d a =-⎧⎨=⎩,故292n a n =-,故当114n ≤≤时,0n a >;当15n ≥时,0n a <, 所以当14n =时,n S 取最大值.故选:A.4.(2020·广西南宁三中开学考试)已知等差数列{}n a 的通项公式为29n a n =-,则使得前n 项和n S 最小的n 的值为( ) A .3 B .4C .5D .6【答案】B【解析】由290n a n =-≤,解得92n ≤,14n ∴≤≤时,0n a <;5n ≥时,0n a > 则使得前n 项和n S 最小的n 的值为4故选:B5.(2020·四川青羊·石室中学高一期末)在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( ) A .11S aB .88S aC .55S aD .99S a【答案】C 【解析】由于191109510569()10()9050222a a a a S a S a a ++====+>,()< ,所以可得5600a a >,<. 这样569121256900...0,0,...0S S S S S a a a a a ,,,>>><<,而125125S S S a a a ⋯⋯<<<,>>>>0, , 所以在912129...S S S a a a ,,,中最大的是55S a .故选C .6.(2020·福建宁德·期末)公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d < B .70a >C .{}n S 中5S 最大D .49a a <【答案】AD【解析】根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=<所以1110a a +>,1120a a +<, 由于11162a a a +=,11267a a a a +=+,所以60a >,760a a <-<,所以0d <,{}n S 中6S 最大,由于11267490a a a a a a +=+=+<,所以49a a <-,即:49a a <.故AD 正确,BC 错误.故选:AD.7.(2020·黑龙江让胡路·大庆一中高一期末)已知等差数列{}n a 的前n 项和为n S ,若780a a +>,790a a +<则n S 取最大值时n 的值是( ) A .4 B .5C .6D .7【答案】D【解析】等差数列{}n a 的前n 项和为n S ,且780a a +>,790a a +<,12130a d ∴+>且12140a d +<,10,0,a d ∴><且780,0a a ><,所以当S n 取最大值时7n =.故选:D8.(2020·浙江其他)已知等差数列{}n a 的前n 项和n S ,且34S =,714S =,则23n n S a +-最小时,n 的值为( ). A .2 B .1或2C .2或3D .3或4【答案】C【解析】设等差数列{}n a 的公差为d ,因为34S =,714S =,所以1132342767142a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩,解得11a =,13d =,所以2223(1)11550[1(2)]23318n n n n n n S an n +----=+⨯-++=, 因为n ∈+N ,所以当2n =或3n =时,其有最小值.选:C1.(2020·山西大同·高三其他(理))若等差数列{}n a 的前n 项和为n S ,已知129,a a Z =∈,且()5*n S S n N ≤∈,则12n a a a +++=________.【答案】2210,51050,5n n n n n n ⎧-≤⎨-+>⎩【解析】∵等差数列{}n a 的前n 项和为n S ,129,a a Z =∈,且5n S S ≤,56940,950a d a d ∴=+≥=+<, 2,2a Z d ∈∴=-,2(1)9(2)102n n n S n n n -∴=+⨯-=-, ∴当5n ≤时,212..10n a a a n n ++⋯+=-;当5n >时,()()21212345210n a a a a a a a a n n++⋯⋯+=++++--()222105510n n =⨯-+-21050n n =-+,212210,5..1050,5n n n n a a a n n n ⎧-≤∴++⋯+=⎨-+>⎩.故答案为:2210,51050,5n n n n n n ⎧-≤⎨-+>⎩. 2.(2020·黑龙江香坊·哈尔滨市第六中学校高三三模(理))已知等差数列{}n a 前三项的和为3-,前三项的积为15,(1)求等差数列{}n a 的通项公式;(2)若公差0d >,求数列{}n a 的前n 项和n T .题组五 含有绝对值的求和【答案】(1)49n a n =-或74n a n =-(2)25,1{2712,2n n T n n n ==-+≥【解析】(1)设等差数列的{}n a 的公差为d 由1233a a a ++=-,得233a =-所以21a =- 又12315a a a =得1315a a =-,即1111(2)15a d a a d +=-⎧⎨+=-⎩所以154a d =-⎧⎨=⎩,或134a d =⎧⎨=-⎩即49n a n =-或74n a n =- (2)当公差0d >时,49n a n =-1)当2n ≤时,490n a n =-<,112125,6T a T a a =-==--= 设数列{}n a 的前项和为n S ,则2(549)272n n S n n n -+-=⨯=-2)当3n ≥时,490n a n =->123123n n n T a a a a a a a a =++++=--+++()()123122n a a a a a a =++++-+2222712n S S n n =-=-+当1n =时,15T =也满足212171127T ≠⨯-⨯+=, 当2n =时,26T =也满足222272126T =⨯-⨯+=,所以数列{}n a 的前n 项和25127122n n T n n n =⎧=⎨-+≥⎩ 3.(2020·全国高三(文))在等差数列{}n a 中,28a =,64a =-. (1)求n a 的通项公式; (2)求12||||||n n T a a a =+++的表达式.【答案】(1)314n a n =-+;(2)2232542232552522n n n n T n n n ⎧-+≤⎪⎪=⎨⎪-+≥⎪⎩. 【解析】(1)设公差为d ,则11854a d a d +=⎧⎨+=-⎩,解得111a =,3d =-,所以314n a n =-+.(2)由314n a n =-+0≥可得4n ≤, 所以当4n ≤时,112()(11314)22n n n n a a n n T a a a +-+=+++===232522n n -+, 当5n ≥时,12345()n n T a a a a a a =+++-++1234122()()n a a a a a a a =+++-+++114()4()222n n a a a a ++=⨯-(253)522n n -=-23255222n n =-+. 所以2232542232552522n n n n T n n n ⎧-+≤⎪⎪=⎨⎪-+≥⎪⎩. 4.(2020·石嘴山市第三中学高三其他(理))已知数列{}n a 满足:313a =-,()141,n n a a n n N -=+>∈. (1)求1a 及通项n a ;(2)设n S 是数列{}n a 的前n 项和,则数列1S ,2S ,3S ,…n S …中哪一项最小?并求出这个最小值. (3)求数列{}n a 的前10项和.【答案】(1)121a =-,425n a n =-;(2)6S 最小,666S =-;(3)前10项和为:102. 【解析】(1)()142n n a a n -=+≥,∴当3n =时,324a a =+,217a =-,214a a =+,121a =-,由14n n a a --=知数列为首项是21-,公差为4的等差数列, 故425n a n =-;(2)425n a n =-,故610a =-<,730a =>,故6S 最小,()6656214662S ⨯=⨯-+⨯=-; (3)当16n ≤≤时,0n a <;当7n ≥时,0n a >,()()10121012678910……T a a a a a a a a a a ∴=+++=-+++++++()()()61061061092102142661022S S S S S ⨯=-+-=-=⨯-+⨯-⨯-=. 5.(2020·湖北武汉)已知数列{}n a 是等差数列,公差为d ,n S 为数列{}n a 的前n 项和,172a a +=-,315S =. (1)求数列{}n a 的通项公式n a ; (2)求数列{}n a 的前n 项和T n .【答案】(1)()*311n a n n N =-+∈;(2)2(193),3231960,42n n n n T n n n -⎧≤⎪⎪=⎨-+⎪≥⎪⎩. 【解析】(1)∵{}n a 是等差数列,公差为d ,且172a a +=-,315S =,∴11262323152a d a d +=-⎧⎪⎨⨯+=⎪⎩,解得18a =,3d =-, ∴()()()11813311n a a n d n n =+-=+--=-+, ∴数列{}n a 的通项公式为:()*311n a n n N=-+∈.(2)令0n a ≥,则3110n -+≥,∴311n ≤,∴233n ≤,*n N ∈. ∴3n ≤时,0n a >;4n ≥时,0n a <, ∵18a =,311n a n =-+,∴3n ≤时,12(8311)2n n n n T a a a -+=++⋅⋅⋅+=()1932n n -=, 当4n ≥时,()121234n n n T a a a a a a a a =++⋅⋅⋅+=+++--⋅⋅⋅-()()12312322n n a a a a a a S S =++-++⋅⋅⋅+=-23(199)(193)319602222n n n n ⨯---+=⨯-=.∴2(193),3231960,42n n n n T n n n -⎧≤⎪⎪=⎨-+⎪≥⎪⎩. 6.(2020·任丘市第一中学)在公差是整数的等差数列{}n a 中,17a =-,且前n 项和4n S S ≥. (1)求数列{}n a 的通项公式n a ;(2)令n n b a =,求数列{}n b 的前n 项和n T .【答案】(1)29n a n =-;(2)()228,4832,5n n n n T n N n n n *⎧-+≤=∈⎨-+≥⎩. 【解析】(1)设等差数列{}n a 的公差为d ,则d Z ∈,由题意知,{}n S 的最小值为4S ,则4500a a ≤⎧⎨≥⎩,17a =-,所以370470d d -≤⎧⎨-≥⎩,解得7743d ≤≤,d Z ∈,2d ∴=,因此,()()1172129n a a n d n n =+-=-+-=-; (2)29n n b a n ==-.当4n ≤时,0n a <,则n n n b a a ==-,()272982n n n n T S n n -+-∴=-=-=-+;当5n ≥时,0n a >,则n n n b a a ==,()22428216832n n T S S n n n n ∴=-=--⨯-=-+.综上所述:()228,4832,5n n n n T n N n n n *⎧-+≤=∈⎨-+≥⎩.。
4.2.2等差数列的前n项和公式第1课时等差数列前n项和及其性质基础过关练题组一求等差数列的前n项和1.已知等差数列{a n}满足a1=1,a m=99,d=2,则其前m项和S m等于()A.2300B.2400C.2600D.25002.在-20与40之间插入8个数,使这10个数成等差数列,则这10个数的和为()A.200B.100C.90D.703.设S n是等差数列{a n}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35C.49D.634.(2020安徽合肥高三第一次教学质量检测)已知等差数列{a n}的前n 项和为S n,a1=-3,2a4+3a7=9,则S7等于()A.21B.1C.-42D.05.若数列{a n}为等差数列,S n为其前n项和,且a1=2a5-1,则S17等于()A.-17B.-172C.172D.176.(2019湖南师大附中高二上期中)在等差数列{a n}中,若a5,a7是方程x2-2x-6=0的两个根,则数列{a n}的前11项的和为()A.22B.-33C.-11D.117.已知等差数列{a n}.(1)若a6=10,a8=16,求S5;(2)若a2+a4=48,求S5.5题组二等差数列前n项和的性质8.设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9等于()A.63B.45C.36D.279.在等差数列{a n}中,S n是其前n项和,且S2011=S2018,S k=S2008,则正整数k为()A.2019B.2020C.2021D.202210.含2n+1项的等差数列,其奇数项的和与偶数项的和之比为()A.2n+1n B.n+1nC.n-1n D.n+12n11.已知等差数列{a n},{b n}的前n项和分别为S n,T n,若S nT n =3n2n+5,则a8b8=()A.87B.4837C.97D.1213题组三等差数列前n项和的应用12.数列{a n}为等差数列,它的前n项和为S n,若S n=(n+1)2+λ,则λ的值是()A.-2B.-1C.0D.113.(2020山东济南一中高二上期中)已知等差数列{a n}的前9项和为27,a10=8,则a100=()A.100B.99C.98D.9714.(2020山东青岛高二上期末)已知数列{a n}的前n项和为S n,若a n+1=a n+2,S5=25,n∈N*,则a5=()A.7B.5C.9D.315.(2020天津一中高二上期中)已知等差数列前3项的和为34,后3项的和为146,所有项的和为390,则这个数列的项数为()A.13B.12C.11D.1016.若数列{a n}的前n项和S n=2n2-3n(n∈N*),则a1+a7等于()A.11B.15C.17D.2217.(2019湖南怀化三中高二上期中)已知{a n}是首项为a1,公差为d的等差数列,S n是其前n项和,且S5=5,S6=-3.求数列{a n}的通项公式及S n.能力提升练题组一求等差数列的前n项和1.(2020湖南郴州高二上期中,)已知数列{a n}是等差数列且a n>0,设其前n项和为S n.若a1+a9=a52,则S9=()A.36B.18C.27D.92.(2020江西九江一中高二上期中,)等差数列{a n}的前n项和为S n,若a2+a7+a12=30,则S13等于()A.130B.65C.70D.753.(2019湖北黄冈高一下期末,)如图,将若干个点摆成三角形图案,每条边(包括两个端点)有n(n≥2,n∈N*)个点,相应的图案中点的总数记为a n,则a2+a3+a4+…+a n等于()A.3n 22B.n(n+1)2C.3n(n-1)2D.n(n-1)24.(2020安徽阜阳高二上期末,)已知数列{a n}中,a1=1,a2=2,对任意正整数n,a n+2-a n=2+cos nπ,S n为{a n}的前n项和,则S100=.题组二等差数列前n项和的性质5.()已知数列{a n},{b n}均为等差数列,其前n项和分别记为A n,B n,满足A nB n =4n+12n+3,则a5b7的值为(深度解析)A.2117B.3729C.5329D.41316.()设等差数列{a n}的前n项和为S n,且S m=-2,S m+1=0,S m+2=3,则m=.7.(2019河北沧州一中高二期中,)在等差数列{a n}中,前m(m为奇数)项的和为135,其中偶数项之和为63,且a m-a1=14,则a100=.题组三等差数列前n项和的应用8.(2020河北正定中学高二期末,)设S n是等差数列{a n}的前n项和,若a5a3=59,则S9S5等于()A.1B.-1C.2D.129.(2019陕西西安一中高二上月考,)设S n(S n≠0,n∈N*)是数列{a n}的前n项和,且a1=-1,a n+1=S n·S n+1,则S n等于()A.nB.-nC.1n D.-1n10.()若数列{a n}的前n项和S n=n2-4n+2(n∈N*),则|a1|+|a2|+…+|a10|等于()A.15B.35C.66D.10011.(2020天津耀华中学高二上期中,)数列{a n}满足a n=1+2+3+…+nn (n∈N*),则数列{1a n a n+1}的前n项和为()A.nn+2B.2nn+2C.nn+1D.2nn+112.()已知数列{a n}的前n项和S n=n2+2n-1(n∈N*),则a1+a3+a5+…+a25=.13.()已知等差数列的前三项依次为a,3,5a,前n项和为S n,且S k=121.(1)求a及k的值;(2)设数列{b n}的通项公式为b n=S nn,求{b n}的前n项和T n.14.()在数列{a n}中,a1=8,a4=2,且满足a n+2-2a n+1+a n=0(n∈N*).(1)求数列{a n}的通项公式;(2)设T n=|a1|+|a2|+…+|a n|,求T n.深度解析答案全解全析 基础过关练1.D 解法一:由a m =a 1+(m-1)d,得99=1+(m-1)×2,解得m=50, 所以S m =S 50=50×1+50×492×2=2 500.解法二:同解法一,得m=50, 所以S m =S 50=50(a 1+a 50)2=50×(1+99)2=2 500.故选D.2.B 设该等差数列为{a n },其前n 项和为S n ,则由题意可知,a 1=-20,a 10=40,所以S 10=10×(-20+40)2=100.3.C 由题意得,S 7=7(a 1+a 7)2=7(a 2+a 6)2=7×(3+11)2=49. 4.D 设等差数列{a n }的公差为d,则2a 4+3a 7=2(-3+3d)+3(-3+6d)=9,解得d=1,∴S 7=7a 1+7×62×d=7×(-3)+7×3×1=0,故选D.5.D 设等差数列{a n }的公差为d,∵a 1=2a 5-1,∴a 1=2(a 1+4d)-1,∴a 1+8d=1,即a 9=1,∴S 17=17×(a 1+a 17)2=17a 9=17.故选D.6.D 在等差数列{a n }中,若a 5,a 7是方程x 2-2x-6=0的两个根,则a 5+a 7=2, ∴a 6=12(a 5+a 7)=1,∴数列{a n }的前11项的和为11×(a 1+a 11)2=11a 6=11×1=11.故选D.7.解析 设等差数列{a n }的首项为a 1,公差为d. (1)∵a 6=10,a 8=16,∴{a 1+5d =10,a 1+7d =16,解得{a 1=-5,d =3. ∴S 5=5a 1+5×42d=5.(2)解法一:∵a 2+a 4=a 1+d+a 1+3d=485,∴a 1+2d=245.∴S 5=5a 1+5×42d=5a 1+10d=5(a 1+2d)=5×245=24.解法二:∵a 2+a 4=a 1+a 5,∴a 1+a 5=485, ∴S 5=5(a 1+a 5)2=52×485=24.8.B 由等差数列前n 项和的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即S 9=3S 6-3S 3,又S 3=9,S 6=36,所以S 9=3×36-3×9=81,所以a 7+a 8+a 9=S 9-S 6=81-36=45.9.C 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数图象的对称性及S 2 011=S 2 018,S k =S 2 008,可得2 011+2 0182=2 008+k2,解得k=2 021,故选C.10.B 设该等差数列为{a n },其首项为a 1,前n 项和为S n ,则S 奇=(n+1)(a 1+a 2n+1)2,S 偶=n(a 2+a 2n )2,∵a 1+a 2n+1=a 2+a 2n ,∴S 奇S 偶=n+1n.11.C 由等差数列的性质知a 8b 8=15(a 1+a 15)215(b 1+b 15)2=S 15T 15=3×152×15+5=4535=97.故选C.12.B ∵等差数列前n 项和S n 的形式为S n =An 2+Bn(A,B 为常数),且S n =(n+1)2+λ=n 2+2n+1+λ,∴λ=-1.13.C 设等差数列{a n }的首项为a 1,公差为d,由等差数列{a n }的前9项和为27,a 10=8,得{9a 1+9×82d =9a 1+36d =27,a 1+(10-1)d =a 1+9d =8,解得{a 1=-1,d =1.故a 100=a 1+99d=98.故选C.14.C ∵a n+1=a n +2,即a n+1-a n =2,∴{a n }是公差为2的等差数列,设其首项为a 1, 则S 5=5a 1+5×42×2=25,解得a 1=1,∴a 5=1+(5-1)×2=9.15.A 设该等差数列为{a n },其前n 项和为S n .由题意得,a 1+a 2+a 3=34,a n-2+a n-1+a n =146,∴(a 1+a 2+a 3)+(a n-2+a n-1+a n )=(a 1+a n )+(a 2+a n-1)+(a 3+a n-2)=3(a 1+a n )=34+146,∴a 1+a n =60. 又S n =n(a 1+a n )2,∴390=n×602,解得n=13,故选A.16.D 由S n =2n 2-3n(n ∈N *)可知,数列{a n }为等差数列,所以S 7=7×(a 1+a 7)2=2×72-3×7,解得a 1+a 7=22,故选D.17.解析 由S 5=5,S 6=-3,得{5a 1+5×42d =5,6a 1+6×52d =-3,解得{a 1=7,d =-3, ∴a n =7+(n-1)×(-3)=-3n+10(n ∈N *),S n =n[7+(-3n+10)]2=-32n 2+172n(n ∈N *).能力提升练1.B 由a 1+a 9=a 52得,2a 5=a 52,又a n >0,∴a 5=2,∴S 9=9(a 1+a 9)2=9×2a 52=18,故选B.2.A 解法一:设等差数列{a n }的首项为a 1,公差为d,则a 2+a 7+a 12=(a 1+d)+(a 1+6d)+(a 1+11d)=3a 1+18d=30,∴a 1+6d=10. ∴S 13=13a 1+13×122d=13(a 1+6d)=13×10=130,故选A.解法二:设等差数列{a n }的首项为a 1,∵a 2+a 7+a 12=30,∴3a 7 =30,即a 7 =10,∴S 13=13(a 1+a 13)2=13×2a 72=13a 7=130.故选A.3.C 由题图可知,a 2=3,a 3=6,a 4=9,a 5=12,依此类推,n 每增加1,图案中的点数增加3,所以相应图案中的点数构成首项为a 2=3,公差为3的等差数列,所以a n =3+(n-2)×3=3n-3,n ≥2,n ∈N *, 所以a 2+a 3+a 4+…+a n =(n -1)(3+3n -3)2=3n(n -1)2.故选C.4.答案 5 050解析 当n 为奇数时,a n+2-a n =1,即数列{a n }的奇数项是以1为首项,1为公差的等差数列;当n 为偶数时,a n+2-a n =3,即数列{a n }的偶数项是以2为首项,3为公差的等差数列,所以S 100=(a 1+a 3+…+a 99)+(a 2+a 4+…+a 100)=(50×1+50×492)+50×2+50×492×3=5 050.5.B 由等差数列前n 项和的特征及An B n =4n+12n+3,可设A n =kn(4n+1),B n =kn(2n+3). ∴a 5=A 5-A 4=5×(4×5+1)k-4×(4×4+1)k=37k,b 7=B 7-B 6=7×(2×7+3)k-6×(2×6+3)k=29k. ∴a5b 7=37k 29k =3729.故选B.解题模板易错警示 等差数列{a n }的前n 项和的表示形式为S n =an 2+bn(a,b 为常数),解题时可采用这种形式简化运算.本题要注意A n B n中有比例系数k,防止遗漏导致错误. 6.答案 4解析 因为S n 是等差数列{a n }的前n 项和,所以数列{Sn n }是等差数列,所以Sm m +S m+2m+2=2S m+1m+1,即-2m +3m+2=0,解得m=4.7.答案 101解析 设等差数列{a n }的公差为d,前n 项和为S n ,由题意可知,S m =135,前m 项中偶数项之和S 偶=63,∴S 奇=135-63=72,∴S 奇-S 偶=a 1+(m -1)d 2=2a 1+(m -1)d 2=a 1+a m2=72-63=9.∵S m =m(a 1+a m )2=135,∴m=15,又∵a m -a 1=14,a m =a 1+(m-1)d, ∴a 1=2,d=a m -a 1m -1=14m -1=1,∴a 100=a 1+99d=101. 8.AS 9S 5=92(a 1+a 9)52(a 1+a 5)=92×2a 552×2a 3=9a 55a 3=95·a 5a 3=1.故选A.9.D ∵a n+1=S n+1-S n ,∴S n+1-S n =S n+1·S n , 又∵S n ≠0,∴1S n+1-1S n=-1.又S 1=a 1=-1,∴1S 1=-1,∴数列{1Sn}是以-1为首项,-1为公差的等差数列,∴1S n=-1+(n-1)×(-1)=-n,∴S n =-1n.故选D.10.C 由S n =n 2-4n+2①得,当n=1时,a 1=S 1=1-4+2=-1,当n ≥2时,S n-1=(n-1)2-4(n-1)+2②,①-②得,a n =2n-5(n ≥2,n ∈N *),经检验,当n=1时,不符合a n =2n-5,∴a n ={-1,n =1,2n -5,n ≥2,n ∈N *.∴|a 1|=1,|a 2|=1,a 3=1,令a n >0,则2n-5>0, ∴n ≥3.∴|a 1|+|a 2|+…+|a 10|=1+1+a 3+…+a 10=2+(S 10-S 2)=2+[(102-4×10+2)-(22-4×2+2)]=66.故选C. 11.B 依题意得,a n =n(1+n)2n=n+12, ∴1a n a n+1=4(n+1)(n+2)=4(1n+1-1n+2).∴1a 1a 2+1a 2a 3+…+1a n a n+1=4(12-13)+(13-14)+…+1n+1-1n+2=4(12-1n+2)=2nn+2,故选B. 12.答案 350解析 当n=1时,a 1=S 1=12+2×1-1=2; 当n ≥2时,a n =S n -S n-1=2n+1, 经检验,当n=1时,不符合上式, ∴a n ={2,n =1,2n +1,n ≥2,n ∈N *,因此{a n }除第1项外,其余项构成以a 2=5为首项,2为公差的等差数列,从而a 3,a 5,…,a 25是以a 3=7为首项,4为公差的等差数列, ∴a 1+a 3+a 5+…+a 25 =a 1+(12a 3+12×112×4)=350.13.解析 (1)设该等差数列为{a n },首项为a 1,公差为d,则a 1=a,a 2=3,a 3=5a. 由已知得a+5a=6,得a=1, ∴a 1=1,a 2=3,a 3=5, ∴d=2,∴S k=ka1+k(k-1)2·d=k+k(k-1)2×2=k2.由S k=k2=121,得k=11(负值舍去).∴a=1,k=11.(2)由(1)得S n=n2,则b n=S nn=n,∴b n+1-b n=1,又b1=S11=1,∴数列{b n}是首项为1,公差为1的等差数列,∴T n=n 2+n 2.14.解析(1)∵a n+2-2a n+1+a n=0,∴a n+2-a n+1=a n+1-a n,∴数列{a n}是等差数列,设其公差为d,∵a1=8,a4=2,∴d=a4-a14-1=-2,∴a n=a1+(n-1)d=10-2n,n∈N*.(2)设数列{a n}的前n项和为S n,则由(1)可得,S n=8n+n(n-1)2×(-2)=9n-n2,n∈N*.由(1)知a n=10-2n,令a n=0,得n=5.∴当n>5时,a n<0,则T n=|a1|+|a2|+…+|a n|=a1+a2+…+a5-(a6+a7+…+a n)=S5-(S n-S5)=2S5-S n=2×(9×5-25)-(9n-n2)=n2-9n+40;当n ≤5时,a n ≥0, 则T n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =9n-n 2.∴T n ={9n -n 2,n ≤5,n ∈N *,n 2-9n +40,n ≥6,n ∈N *.解题反思 求数列{|a n |}的前n 项和,关键在于分清哪些项为非负的,哪些项为负的,最终应化为去掉绝对值符号后的数列进行求和. 如果数列{a n }为等差数列,S n 为其前n 项和,T n =|a 1|+|a 2|+…+|a n |,那么有: (1)若a 1>0,d<0,则存在k ∈N *,使得a k ≥0,a k+1<0, 从而有T n ={S n (n ≤k),2S k -S n (n >k);(2)若a 1<0,d>0,则存在k ∈N *,使得a k ≤0,a k+1>0, 从而有T n ={-S n (n ≤k),S n -2S k (n >k).。
1.若一个等差数列首项为0,公差为2,则这个等差数列的前20项之和为( )
A .360
B .370
C .380
D .390
答案:C
2.已知a 1=1,a 8=6,则S 8等于( )
A .25
B .26
C .27
D .28
答案:D
3.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________.
解析:由已知⎩⎪⎨⎪⎧ a 1+5d =123a 1+3d =12?⎩⎪⎨⎪⎧ a 1=2,d =2.故a n =2n .
答案:2n
4.在等差数列{a n }中,已知a 5=14,a 7=20,求S 5.
解:d =a 7-a 57-5
=20-142=3, a 1=a 5-4d =14-12=2,
所以S 5=5?a 1+a 5?2=5?2+14?2
=40. 一、选择题
1.(2011年杭州质检)等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4=( )
A .12
B .10
C .8
D .6
解析:选C.d =a 3-a 2=2,a 1=-1,
S 4=4a 1+4×32
×2=8. 2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( )
A .24
B .27
C .29
D .48
解析:选C.由已知⎩⎪⎨⎪⎧ 2a 1+5d =19,5a 1+10d =40.
解得⎩⎪⎨⎪⎧ a 1=2,d =3.∴a 10=2+9×3=29.
3.在等差数列{a n }中,S 10=120,则a 2+a 9=( )
A .12
B .24
C .36
D .48
解析:选B.S10=10?a1+a10?
2=5(a2+a9)=120.∴a2+a9=24.
4.已知等差数列{a n}的公差为1,且a1+a2+…+a98+a99=99,则a3+a6+a9+…+a96+a99=()
A.99 B.66
C.33 D.0
解析:选B.由a1+a2+…+a98+a99=99,
得99a1+99×98
2=99.
∴a1=-48,∴a3=a1+2d=-46.
又∵{a3n}是以a3为首项,以3为公差的等差数列.
∴a3+a6+a9+…+a99=33a3+33×32
2×3
=33(48-46)=66.
5.若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有()
A.13项B.12项
C.11项D.10项
解析:选A.∵a1+a2+a3=34,①
a n+a n-1+a n-2=146,②
又∵a1+a n=a2+a n-1=a3+a n-2,
∴①+②得3(a1+a n)=180,∴a1+a n=60.③
S n=?a1+a n?·n
2=390.④
将③代入④中得n=13.
6.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于()
A.9 B.10
C.11 D.12
解析:选B.由等差数列前n项和的性质知S偶
S奇
=
n
n+1
,即
150
165=
n
n+1
,∴n=10.
二、填空题
7.设数列{a n}的首项a1=-7,且满足a n+1=a n+2(n∈N*),则a1+a2+…+a17=________.
解析:由题意得a n+1-a n=2,
∴{a n}是一个首项a1=-7,公差d=2的等差数列.
∴a 1+a 2+…+a 17=S 17=17×(-7)+17×162
×2=153. 答案:153
8.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差为d =__________.
解析:a 4+a 6=a 1+3d +a 1+5d =6.①
S 5=5a 1+12
×5×(5-1)d =10.② 由①②得a 1=1,d =12
. 答案:12
9.设S n 是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:由等差数列的性质知S 9=9a 5=-9,∴a 5=-1. 又∵a 5+a 12=a 1+a 16=-9,
∴S 16=16?a 1+a 16?2
=8(a 1+a 16)=-72. 答案:-72
三、解答题
10.已知数列{a n }的前n 项和公式为S n =n 2-23n -2(n ∈N *).
(1)写出该数列的第3项;
(2)判断74是否在该数列中.
解:(1)a 3=S 3-S 2=-18.
(2)n =1时,a 1=S 1=-24,
n ≥2时,a n =S n -S n -1=2n -24,
即a n =⎩⎪⎨⎪⎧ -24,n =1,2n -24,n ≥2,
由题设得2n -24=74(n ≥2),解得n =49.
∴74在该数列中.
11.(2010年高考课标全国卷)设等差数列{a n }满足a 3=5,a 10=-9.
(1)求{a n }的通项公式;
(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值. 解:(1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得
⎩⎪⎨⎪⎧ a 1+2d =5,a 1+9d =-9,可解得⎩⎪⎨⎪⎧ a 1=9,d =-2,
所以数列{a n }的通项公式为a n =11-2n .
(2)由(1)知,S n=na1+n?n-1?
2d=10n-n
2.
因为S n=-(n-5)2+25,
所以当n=5时,S n取得最大值.
12.已知数列{a n}是等差数列.
(1)前四项和为21,末四项和为67,且各项和为286,求项数;
(2)S n=20,S2n=38,求S3n.
解:(1)由题意知a1+a2+a3+a4=21,a n-3+a n-2+a n-1+a n=67,所以a1+a2+a3+a4+a n-3+a n-2+a n-1+a n=88.
所以a1+a n=88
4=22.
因为S n=n?a1+a n?
2=286,所以n=26.
(2)因为S n,S2n-S n,S3n-S2n成等差数列,所以S3n=3(S2n-S n)=54.。