当前位置:文档之家› 太阳能电池板和蓄电池配置计算公式.(DOC)

太阳能电池板和蓄电池配置计算公式.(DOC)

太阳能电池板和蓄电池配置计算公式.(DOC)
太阳能电池板和蓄电池配置计算公式.(DOC)

太阳能电池板和蓄电池配置计算公式

一:首先计算出电流:

如:12V蓄电池系统; 30W的灯2只,共60瓦。

电流=60W÷12V= 5 A

二:计算出蓄电池容量需求:

如:路灯每夜照明时间9.5小时,实际满负载照明为7小时(h);

例一:1 路 LED 灯

(如晚上7:30开启100%功率,夜11:00降至50%功率。

凌晨4:00后再100%功率,凌晨5:00关闭)

例二:2 路非LED灯(低压钠灯、无极灯、节能灯、等)

(如晚上7:30两路开启,夜11:00关闭1路,

凌晨4:00开启2路,凌晨5:00关闭)

需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天)

蓄电池=5A ×7h ×(5+1)天=5A ×42h=210 AH

另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留5%-20%左右。

所以210AH也只是应用中真正标准的70%-85%左右。另外还要根据负载的不同,测出实

际的损耗,实际的工作电流受恒流源、镇流器、线损等影响,可能会在5A 的基础上增加

15%-25%左右。

三:计算出电池板的需求峰值( WP ):

路灯每夜累计照明时间需要为 7 小时( h );

★:电池板平均每天接受有效光照时间为 4.5 小时( h );

最少放宽对电池板需求 20 %的预留额。

WP ÷ 17.4V =(5A × 7h × 120 %)÷ 4.5h

WP ÷ 17.4V = 9.33

WP = 162 ( W )

★ : 4.5h 每天光照时间为长江中下游附近地区日照系数。

另外在太阳能路灯组件中,线损、控制器的损耗、及镇流器或恒流源的功耗各有不同,实际应用

中可能在1 5 %-25%左

所以 162W 也只是理论值,根据实际情况需要有所增加。

(注:素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注!)

光伏系统设计计算公式

光伏发电系统设计计算公式 1、转换效率: η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率) 其中:Pin=1KW/㎡=100mW/cm2。 2、充电电压: Vmax=V额×1.43倍 3.电池组件串并联 3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah) 3.2电池组件串联数=系统工作电压(V)×系数1.43/组件峰值工作电压(V) 4.蓄电池容量 蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度 5平均放电率 平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度 6.负载工作时间 负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率 7.蓄电池: 7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数 7.2蓄电池串联数=系统工作电压/蓄电池标称电压 7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量 8.以峰值日照时数为依据的简易计算 8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数 损耗系数:取1.6~2.0,根据当地污染程度、线路长短、安装角度等; 8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数 系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等; 9.以年辐射总量为依据的计算方式 组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量 有人维护+一般使用时,K取230;无人维护+可靠使用时,K取251;无人维护+环境恶劣+要求非常可靠时,K取276; 10.以年辐射总量和斜面修正系数为依据的计算 10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量 系数5618:根据充放电效率系数、组件衰减系数等;安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.3; 10.2蓄电池容量=10×负载总用电量/系统工作电压;10:无日照系数(对于连续阴雨不超过5天的均适用) 11.以峰值日照时数为依据的多路负载计算 11.1电流: 组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数 系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。 11.2功率:

光伏板安装工程施工设计方案

一般施工方案(措施)报审表

本表一式三份,由施工项目部填报,监理项目部、施工项目部各存一份。 抚宁县20MWp(一期)农业设施光伏发 电项目工程 组件安装施工方案 批准:____________ 审核: 编写:____________

新疆海为新能电力工程有限公司(章) 年月日

组件安装施工方案 一、目的: 用于指导抚宁县20MWP(一期)农业设施光伏发电项目工程光伏厂区组件安装。二、适用范围 本施工技术措施适用于抚宁县20MWP(一期)农业设施光伏发电项目工程光伏厂区组件安装。 三、编制依据: 昆明勘测设计研究院有限公司设计图纸 《建筑结构荷载规范》(GBJ50009-2001) 《钢结构设计规范》(GB50017-2003) 《碳素结构钢》(GB700-88) 《优质碳素结构钢》(GB/T699-1999) 《钢结构工程施工质量验收规范》GB50205-2001 《钢结构工程质量检验评定标准》(GB50221-95) 《网架结构设计与施工规程》(JGJ7-91) 《钢结构高强螺栓连接的设计、施工通用验收规程》(JGJ82-91) 四、施工准备: (一)、作业准备 1.认真审核、熟悉施工图纸,做好图纸会审。 2.对施工班组进行有针对性的技术、安全交底。 3.根据工程实际情况划分施工区域,并以此为依据确定劳动力,具体细化到每道工序的作业部位及作业时间。 4.根据工程的需要选派熟练工人。特殊工种操作人员必须持证上岗。 5. 工作时必须穿工作服、工作鞋,佩戴手套、安全帽,在安装和维修组件时,严禁佩戴金属指环、表环、耳环等其它金属物品;

太阳能电池板与蓄电池配置计算公式

太阳能电池板与蓄电池配置计算公式(图) 太阳能电池板与蓄电池配置计算公式 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流=60W÷12V=5A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载7小时(h); (如晚上8:00开启,夜11:30关闭1路,凌晨4:30开启2路,凌晨5:30关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天) 蓄电池=5A×7h×(5+1)天=5A×42h=210AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为7小时(h); ★:电池板平均每天接受有效光照时间为4.5小时(h); 最少放宽对电池板需求20%的预留额。 WP÷17.4V=(5A×7h×120%)÷4.5h WP÷17.4V=9.33 WP=162(W)

光伏发电系统计算方法 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到几瓦的太阳能庭院灯,大到MW级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。 太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或11 0V,还需要配置逆变器。各部分的作用为: (一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项; (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220VAC、110VAC的交流电源。由于太阳能的直接输出一般都是12VDC、24VDC、48VDC。为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。 光伏系统的设计包括两个方面:容量设计和硬件设计。 在进行光伏系统的设计之前,需要了解并获取一些进行计算和选择必需的基本数据:光伏系统现场的地理位置,包括地点、纬度、经度和海拔;该地区的气象资料,包括逐月的太阳能总辐射量、直接辐射量以及散射辐射量,年平均气温和最高、最低气温,最长连续阴雨天数,最大风速以及冰雹、降雪等特殊气象情况等。 蓄电池的设计包括蓄电池容量的设计计算和蓄电池组的串并联设计。首先,给出计算蓄电池容量的基本方法。 (1)基本公式

太阳能光伏电池板安装计算攻略

太阳能电池板方阵安装角度怎样计算? 由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为 60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。 1. 方位角 太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。方位角=(一天中负荷的峰值时刻(24小时制)—12)X 1$ (经度-116)10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。 2. 倾斜角 倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制 条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考虑积雪的滑

!!!太阳能电池制程工艺-培训资料

员 工 培 训 资 料 2008年09月04日初订 目录 第一章太阳能概况 (2) 第二章太阳能电池的发明和未来前景 (3) 1.太阳能电池发明 (3)

2.太阳能电池前景 (4) 第三章太阳能光伏技术 (5) 1.光伏效应 (5) 2.光伏电池分类 (5) 3.晶体硅生产一般工艺流程 (5) 第四章硅太阳能电池的工作原理及其结构 (12) 第五章太阳能电池基本参数 (16) 1.标准测试条件 (16) 2.太阳电池等效电路 (16) 3.伏安(I-V)特性曲线 (17) 4.开路电压 (18) 5.短路电流 (18) 6.最大功率点 (18) 7.最佳工作电压 (18) 8.最佳工作电流 (18) 9.转换效率 (18) 10.填充因子(曲线因子) (19) 12.电压温度系数 (19) 第一章太阳能概况 太阳能是各种可再生能源中最重要的基本能源,生物质能、风能、海洋能、水能等都来自太阳能,广义地说,太阳能包含以上各种可再生能源。太阳能作为可再生能源的一种,则是指太阳能的直接转化和利用。通过转换装置把太阳辐射

能转换成热能利用的属于太阳能热利用技术,再利用热能进行发电的称为太阳能热发电,也属于这一技术领域;通过转换装置把太阳辐射能转换成电能利用的属于太阳能光发电技术,光电转换装置通常是利用半导体器件的光伏效应原理进行光电转换的,因此又称太阳能光伏技术。 二十世纪50年代,太阳能利用领域出现了两项重大技术突破:一是1954年美国贝尔实验室研制出6%的实用型单晶硅电池,二是1955年以色列Tabor提出选择性吸收表面概念和理论并研制成功选择性太阳吸收涂层。这两项技术突破为太阳能利用进入现代发展时期奠定了技术基础。 70年代以来,鉴于常规能源供给的有限性和环保压力的增加,世界上许多国家掀起了开发利用太阳能和可再生能源的热潮。1973年,美国制定了政府级的阳光发电计划,1980年又正式将光伏发电列入公共电力规划,累计投入达8亿多美元。1992年,美国政府颁布了新的光伏发电计划,制定了宏伟的发展目标。日本在70年代制定了“阳光计划”,1993年将“月光计划”(节能计划)、“环境计划”、“阳光计划”合并成“新阳光计划”。德国等欧共体国家及一些发展中国家也纷纷制定了相应的发展计划。90年代以来联合国召开了一系列有各国领导人参加的高峰会议,讨论和制定世界太阳能战略规划、国际太阳能公约,设立国际太阳能基金等,推动全球太阳能和可再生能源的开发利用。开发利用太阳能和可再生能源成为国际社会的一大主题和共同行动,成为各国制定可持续发展战略的重要内容。 二十多年来,太阳能利用技术在研究开发、商业化生产、市场开拓方面都获得了长足发展,成为世界快速、稳定发展的新兴产业之一。 第二章太阳能电池的发明和未来前景 1.太阳能电池发明 1839年法国物理学家A·E·贝克勒尔意外的发现,两片金属进入溶液构成的伏打电池,受到阳光照射时会产生额外的伏打电势,他把这种现象称为光生伏打效应。1883年,有人在半导体硒和金属接触处发现了固体光伏效应。后来就把能够产生光生伏打效应的器件称为光伏器件。由于半导体PN结器件在阳光下光电

太阳能发电设计

2007-07-17 16:19 一、关于硅太阳能发电板容量 硅太阳能发电板容量是指平板式太阳能板发电功率WP。太阳能发电功率量值取决于负载24h所能消耗的电力 H(WH),由负载额定电源与负载24h所消耗的电力,决定了负载24h消耗的容量P(AH),再考虑到平均每天日照时数及阴雨天造成的影响,计算出太阳能电池阵列工作电流IP(A)。 由负载额定电源,选取蓄电池公称电压,由蓄电池公称电压来确定蓄电池串联个数及蓄电池浮充电压VF (V),再考虑到太阳能电池因温度升高而引起的温升电压VT (v)及反充二极管P-N结的压降VD(V)所造成的影响,则可计算出太阳能电池阵列的工作电压VP(V),由太阳电池阵列工作电源IP(A)与工作电压VP(V),便可决定平板式太阳能板发电功率WPW,从而设计出太阳能板容量,由设计出的容量WP与太阳能电池阵列工作电压VP,确定硅电池平板的串联块数与并联组数。 太阳能电池阵列的具体设计步骤如下: 1.计算负载24h消耗容量P。 P=H/V V——负载额定电源 2.选定每天日照时数T(H)。 3.计算太阳能阵列工作电流。 IP=P(1+Q)/T Q——按阴雨期富余系数,Q=0.21~1.00 4.确定蓄电池浮充电压VF。 镉镍(GN)和铅酸(CS)蓄电池的单体浮充电压分别为1.4~1.6V和2.2V。 5.太阳能电池温度补偿电压VT。 VT=2.1/430(T-25)VF 6.计算太阳能电池阵列工作电压VP。 VP=VF+VD+VT 其中VD=0.5~0.7 约等于VF 7.太阳电池阵列输出功率WP 平板式太阳能电板。 WP=IP×UP 8.根据VP、WP在硅电池平板组合系列表格,确定标准规格的串联块数和并联组数。 二、关于蓄电池的容量计算 蓄电池的容量由下列因素决定:

太阳能电池工艺简介及厂房建设总结1

太阳能电池片工艺简介及厂房建设总结 本文章主要侧重于太阳能电池的生产工艺及厂房及建设探讨,欢迎批评指正。 一、工艺简介及设备环境要求 太阳能电池片生产工艺分为:制绒清洗(扩散前清洗)→扩散→扩散后清洗→刻蚀→PECVD→丝网印刷→烧结→分类检测→封装,以下就各工艺进行详细分析及说明。 扩散前清洗的目的在于制绒,就是把相对光滑的原材料硅片的表面通过强酸和强碱腐蚀,使其凸凹不平,变得粗糙,形成漫反射,减少直射到硅片表面的太阳能的损失。 相关设备有无锡瑞宝,德国RENA,深圳捷佳创。 所使用的介质有HF,HCL,HNO3,NaOH,Na2SiO3和乙醇等。 动力源有自来水,纯水,压缩空气,氮气,工艺冷却水,废水,热排风和酸排风。 制绒的流程:单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。硅的各向异性腐蚀液通常用热的碱性溶液,可用的碱有氢氧化钠、氢氧化钾、氢氧化锂和乙二胺等。大多使用廉价的浓度约为1%的氢氧化钠稀溶液来制备绒面硅,腐蚀温度为70-85℃。为了获得均匀的绒面,还应在溶液中酌量添加醇类如乙醇和异丙醇等作为络合剂,以加快硅的腐蚀。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结 腐蚀制绒区环境要求:温度要求:23±2℃湿度要求:55±10%;十万级可满足车间要求。 不同设备厂家高度也不同RENA制绒设备的规格为7584*4540*3065,因此一般设计3.5~4米吊顶。 地坪采用>2mm环氧树脂即可,无防静电要求。 腐蚀制绒区排气(18个排气口) 排风量(PP or PVC):普通漂洗排风3000m3/h+酸排4290m3/h+碱排450m3/h /台 有酸/碱废液,排放酸性约19m3/h,碱性液体约8m3/h 压缩空气6Bar,224NM3/h/台管道采用不锈管 纯水:电子级1级,3.6m3/h/台管道采用CL-PVC 自来水流量2.4m3/h,,平均0.06m3/h/台管道采用PPR 冷却循环水:供水压力5Bar,进水温度18℃,接口流量2.4m3/h/台管道不锈管。 RENA清洗机功率:19.5KW 捷佳创功率:90KW

有关太阳能电池板的数据计算(1)

一,太阳能光电产品计算 下面以1kW输出功率,每天使用6个小时为例,介绍一下计算数据: 1.首先应计算出每天消耗的瓦时数(包括逆变器的损耗): 通常逆变器的转换效率为90%(国内企业研制的大功率光伏逆变器最高转换率 已达98.8%),则当输出功率为P 1=1kW时,则实际需要输出功率应为P 2 =1kW/90% =1.11kW;若按每天使用6小时,则耗电量为W 1 =1.11kW*6小时=6.66kWh。 2.蓄电池的选择: 按照蓄电池一次充满后连续放电(非浮充状态下)可供负载一天(6小时)使用 蓄电池采用规格: 2400WH/12V。 蓄电池容量:2400WH/12V=200AH,蓄电池每日放电量 6.66kw/12v=555Ah,即每天(6小时使用时间)的用电量为12V555Ah。蓄电池的最大放电深度最好保持在70%以内, 所以输入应为:W 2 =W 1 /0.7=6.66kwh/0.7=9.51kWh。 总共容量的计算:555Ah/0.7=792.85Ah≈800Ah,实际没有800AH的容量,可以用200AH四组就可以了. 3.太阳能电池容量的计算与当地的地理位置、太阳辐射、气侯等因素有关。首先计算标准辐照度下当地的年平均日照时数H(h) H=年辐射总量(kcal/cm2)×1.63(Wh/kcal) 365×0.1(W/cm2) 式中0.1W/cm2是25℃,AM1.5光谱时的辐照度,也是太阳能电池的标准测试条件。 表1 我国各类地区太阳能年辐射量 将年总辐射量代入公式,可得到各地区标准辐照度下当地的年平均日照时数H (h),结果如表1 按每日有效日照时间为H小时计算,再考虑到充电效率和充电过程中的损耗,充电过程中,太阳能电池板的实际使用功率为70%。 太阳能电池板的输出功率应为P 3 =9.51kWh/H/70%=13.585/H(W)。 太阳能峰值功率WP是在标准条件下:辐射强度1000W/m2,大气质量AM15,电池温度25℃条件下,太阳能电池的输出功率。太阳能电池的额定输出功率与转换效率有关,一般来讲,单位面积的电池组件,转换效率越高,其输出功率越大。太阳能电池目前的转换效率一般在14-17%之间,每平方米的太阳能电池组件输出功率约140-170WP. 面积功率*面积=功率 我们按照面积电池(m2)光电转换效率为15%计算,假设此时太阳光的总功率为 1000W/m2组件的功率为P 3 =13.585/H(kW)

太阳能电池板原理(DOC)

随着全球能源日趋紧张,太阳能成为新型能源得到了大力的开发,其中我们在生活中使用最多的就是太阳能电池了。太阳能电池是以半导体材料为主,利用光电材料吸收光能后发生光电转换,使它产生电流,那么太阳能电池的工作原理是怎么样的呢?太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子—空穴对。这样,光能就以产生电子—空穴对的形式转变为电能。 一、太阳能电池的物理基础 当太阳光照射p-n结时,在半导体内的电子由于获得了光能而释放电子,相应地便产生了电子——空穴对,并在势垒电场的作用下,电子被驱向型区,空穴被驱向P型区,从而使凡区有过剩的电子,P区有过剩的空穴。于是,就在p-n结的附近形成了与势垒电场方向相反的光生电场。 如果半导体内存在P—N结,则在P型和N型交界面两边形成势垒电场,能将电子驱向N区,空穴驱向P区,从而使得N区有过剩的电子,P区有过剩的空穴,在P—N结附近形成与势垒电场方向相反光的生电场。

制造太阳电池的半导体材料已知的有十几种,因此太阳电池的种类也很多。目前,技术最成熟,并具有商业价值的太阳电池要算硅太阳电池。下面我们以硅太阳能电池为例,详细介绍太阳能电池的工作原理。 1、本征半导体 物质的导电性能决定于原子结构。导体一般为低价元素,它们的最外层电子极易挣脱原子核的束缚成为自由电子,在外电场的作用下产生定向移动,形成电流。高价元素(如惰性气体)或高分子物质(如橡胶),它们的最外层电子受原子核束缚力很强,很难成为自由电子,所以导电性极差,成为绝缘体。常用的半导体材料硅(Si)和锗(Ge)均为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚的那么紧,因而其导电性介于二者之间。 将纯净的半导体经过一定的工艺过程制成单晶体,即为本征半导体。晶体中的原子在空间形成排列整齐的点阵,相邻的原子形成共价键。

太阳能电池板与蓄电池配置计算公式

太阳能电池板与蓄电池配置计算公式 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流=60W-12V= 5A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载7小时(h); (如晚上8:00 开启,夜11:30 关闭1 路,凌晨4:30 开启2 路,凌晨5:30 关闭) 需要满足连续阴雨天5 天的照明需求。(5 天另加阴雨天前一夜的照明,计6 天) 蓄电池=5A X7h X(5 + 1)天=5A X42h= 210AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为7小时(h); ★:电池板平均每天接受有效光照时间为小时(h) ; 最少放宽对电池板需求20%的预留额。 W- = (5A X7h X120%— WP-= WP=162(W)

光伏发电系统计算方法 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到几瓦的太阳能庭院灯,大到MV级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。 太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或11 0V,还需要配置逆变器。各部分的作用为: (一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保 护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项; (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220VAC 110VAC的交流电源。由于太阳能的直接输出一般 都是12VDC 24VDC 48VDC为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电 能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。光伏系统的设计包括两个方面:容量设计和硬件设计。

太阳能电池片生产工艺简介解读

培训资料 前道 一制绒工艺 制绒目的 1?消除表面硅片有机物和金属杂质。 2.去处硅片表面机械损伤层。 3?在硅片表面形成表面组织,增加太阳光的吸收减少反射。 工艺流程 来料,开盒,检查,装片,称重,配液加液,制绒,甩干,制绒后称重,绒面检查,流出。 单晶制绒1号机 2号机 基本原理 1#超声 去除有机物和表面机械损伤层。 目前采用柠檬酸超声,和双氧水与氨水混合超声。

3#4#5#6#制绒 利用NaOH 溶液对单晶硅片进行各向异性腐蚀的特点来制备绒面。当各向异性因子((100) 面与(111)面单晶硅腐蚀速率之比)=10 时,可以得到整齐均匀的金字塔形的角锥体组成的绒面。绒面具有受光面积大,反射率低的特点。可以提高单晶硅太阳能电池的短路电流,从而提高太阳能电池的光转换效率。 化学反应方程式:Si+2NaOH+H 2O=Nasio 3+2H 2 f 影响因素 1.温度 温度过高,首先就是IPA 不好控制,温度一高,IPA 的挥发很快,气泡印就会随之出现,这样就大大减少了PN 结的有效面积,反应加剧,还会出现片子的漂浮,造成碎片率的增加。可控程度:调节机器的设置,可以很好的调节温度。 2.时间金字塔随时间的变化:金字塔逐渐冒出来;表面上基本被小金字塔覆盖,少数开始成长;金字塔密布的绒面已经形成,只是大小不均匀,反射率也降到比较低的情况;金字塔向外扩张兼并,体积逐渐膨胀,尺寸趋于均等,反射率略有下降。可控程度:调节设备参数,可以精确的调节时间。 3.IPA 1.协助氢气的释放。 2.减弱NaOH 溶液对硅片的腐蚀力度,调节各向因子。纯NaOH 溶液在 高温下对原子排列比较稀疏的100 晶面和比较致密的111 晶面破坏比较大,各个晶面被腐蚀而消融,IPA 明显减弱NaOH 的腐蚀强度,增加了腐蚀的各向异性,有利于金字塔的成形。乙醇含量过高,碱溶液对硅溶液腐蚀能力变得很弱,各向异性因子又趋于1。 可控程度:根据首次配液的含量,及每次大约消耗的量,来补充一定量的液体,控制精度不高。 4.NaOH 形成金字塔绒面。NaOH 浓度越高,金字塔体积越小,反应初期,金字塔成核密度近似不受NaOH 浓度影响,碱溶液的腐蚀性随NaOH 浓度变化比较显著,浓度高的NaOH 溶液与硅反映的速度加快,再反应一段时间后,金字塔体积更大。NaOH 浓度超过一定界限时,各向异性因子变小,绒面会越来越差,类似于抛光。 可控程度:与IPA 类似,控制精度不高。 5.Na 2SiO 3 SI 和NaOH 反应生产的Na2SiO3 和加入的Na2SiO3 能起到缓冲剂的作用,使反应不至于很剧烈,变的平缓。Na 2SiO 3使反应有了更多的起点,生长出的金字塔更均匀,更小一点Na2SiO3 多的时候要及时的排掉,Na2SiO3 导热性差,会影响反应,溶液的粘稠度也增加,容易形成水纹、花蓝印和表面斑点。 可控程度:很难控制。 4#酸洗 HCL 去除硅片表面的金属杂质盐酸具有酸和络合剂的双重作用,氯离子能与多种金属离子形成可溶与水的络合物。 6#酸洗 HF 去除硅片表面氧化层,SiO2+6HF=H 2[siF6]+2H 2O。控制点 1.减薄量定义:硅片制绒前后的前后重量差。 控制范围

太阳能电池板日发电量简易计算方法

太阳能电池板日发电量简易计算方法 太阳能电池板日发电量 简易计算方法 太阳能交流发电系统是由太阳电池板、充电控制器、逆变器和蓄电池共同组成;太阳能直流发电系统则不包括逆变器。为了使太阳能发电系统能为负载提供足够的电源,就要根据用电器的功率,合理选择各部件。太阳能发电系统的设计需要考虑如下因素: Q1、太阳能发电系统在哪里使用?该地日光辐射情况如何? Q2、系统的负载功率多大? Q3、系统的输出电压是多少,直流还是交流? Q4、系统每天需要工作多少小时? Q5、如遇到没有日光照射的阴雨天气,系统需连续供电多少天? 下面以(负载)100W输出功率,每天使用6个小时为例,介绍一下计算方法: 1. 首先应计算出每天消耗的瓦时数(包括逆变器的损耗): 若逆变器的转换效率为90%,则当输出功率为100W时,则实际需要输出功率应为100W/90%=111W;若按每天使用6小时,则耗电量为111W*6小时=666Wh,即0.666度电。 2. 计算太阳能电池板: 按每日有效日照时间为5小时计算,再考虑到充电效率和充电过程中的损耗,太阳能电池板的输出功率应为666Wh÷5h÷70% =190W。其中70%是充电过程中,太阳能电池板的实际使用功率。 3. 180瓦组件日发电量 180×0.7×5=567WH=0.63度 1MW日发电量=1000000×0.7×5=3500,000=3500度 例2:安10w灯,每天照明6小时,3个连雨天,如何计算太阳能电池板wp?以及12V 蓄电池ah? 每天的用电量: 10W X 6H= 60WH, 计算太阳能电池板: 假设你安装点的平均峰值日照时数为4小时. 则:60WH/4小时, = 15WP 太阳能电池板. 再计算充放电损耗, 以及每天需要给太阳能电池板的补充: 15WP/0.6= 25WP, 也就是一块25W的太阳能电池板就够了. 再计算蓄电池. 60WH/12V=5AH. 每天要用12V5AH的电量. 三天则为12V15AH.

光伏阵列(太阳能电池板方阵)安装角度计算和确定

太阳能电池板方阵安装角度计算 由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为30~40%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。 1.方位角 太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116)10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。 2.倾斜角 倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应

太阳能电池片功率计算公式

太阳能电池片功率计算公式 电池片制造商在产品规格表中会给出标准测试条件下的太阳电池性能参数:一般包括有短路电流Isc;开路电压Voc;最大功率点电压Vap;最大功率点电流Iap;最大功率Pmpp; 转换效率Eff等。标准测试条件下,最大功率Pmpp 与转换效率之间有如下关系: Pmpp = 电池面积(m2)*1000(W/m2)*Eff 举例如下: 产品类型转化效率(%) 功率(W) 单晶125*125 15 单晶156*156 15 多晶125*125 15 多晶156*156 15 注1:测试条件符合太阳光谱的辐照强度1000W/m2,电池温度25℃,测试方法 符合IEC904-1,容许偏差Efficiency ±5% REL。 注2: AM是air mass的简称,意思是大气质量。 是一种条件,它描述太阳光入射于地表之平均照度,其太阳总辐照度为1000W/m2;太阳电池的标定温度为25±1℃。 注3:IEC904-1 IEC:国际电工委员会,international electrotechnical commission。 IEC904等同于GB/T6495。 注4:REL :rate of energy loss 能量损耗率

太阳能电池功率 一:首先计算出电流: 如:12V蓄电池系统;30W的灯2只,共60瓦。 电流= 60W÷12V= 5 A 二:计算出蓄电池容量需求: 如:路灯每夜照明时间小时,实际满负载照明为 7小时(h); 例一:1 路 LED 灯 (如晚上7:30开启100%功率,夜11:00降至50%功率,凌晨4:00后再100%功率,凌晨5:00 关闭) 例二:2 路非LED灯(低压钠灯、无极灯、节能灯、等) (如晚上7:30两路开启,夜11:00关闭1路,凌晨4:00开启2路,凌晨5:00关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天)蓄电池= 5A× 7h×( 5+1)天= 5A× 42h =210 AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留5%-20%左右。 所以210AH也只是应用中真正标准的70%-85%左右。另外还要根据负载的不同,测出实际的损耗,实际的工作电流受恒流源、镇流器、线损等影响,可能会在5A的基础上增加15%-25%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为 7小时(h); ★:电池板平均每天接受有效光照时间为小时(h); 最少放宽对电池板需求20%的预留额。 WP÷=(5A× 7h× 120%)÷ WP÷= WP = 162(W) ★:每天光照时间为长江中下游附近地区日照系数。

光伏板支架安装施工方案

SJSB3 一般施工方案(措施)报审表 一般施工方案(措施)报审表 工程名称:晶科电力濮阳濮阳县20MWP分布式光伏发电项目安装工程编号:SJSB3-001 份。一份,由施工项目部填报,监理项目部、施工项目部各存本表一式三注 晶科电力濮阳濮阳县20MWP分布

式 光伏发电项目安装工程 支架、组件安装施工方案(措施)江苏龙海建工集团有限公司(章) 年月日 批准:____________ ________年____月____日 审核:____________ ________年____月____日 编写:____________ ________年____月____日 支架、组件安装施工方案 一、目的: 用于指导晶科电力濮阳濮阳县20MWP分布式光伏发电项目安装工程光伏厂区支架及组件安装。. 二、适用范围 本施工技术措施适用于晶科电力濮阳濮阳县20MWP分布式光伏发电项目安装工程光伏厂区支架及组件安装。三、编制依据: 河南同力电力设计有限公司设计图纸 《建筑结构荷载规范》(GBJ50009-2001) 《钢结构设计规范》(GB50017-2003) 《碳素结构钢》(GB700-88) 《优质碳素结构钢》(GB/T699-1999) 《钢结构工程施工质量验收规范》GB50205-2001 《钢结构工程质量检验评定标准》(GB50221-95) 《网架结构设计与施工规程》(JGJ7-91)

《钢结构高强螺栓连接的设计、施工通用验收规程》(JGJ82-91) 四、施工准备: (一)、作业准备 1.认真审核、熟悉施工图纸,做好图纸会审。 2.对施工班组进行有针对性的技术、安全交底。 3.根据工程实际情况划分施工区域,并以此为依据确定劳动力,具体细化到每道工序的作业部位及作业时间。 4.根据工程的需要选派熟练工人。特殊工种操作人员必须持证上岗。 5. 工作时必须穿工作服、工作鞋,佩戴手套、安全帽,在安装和维修组件时,严禁佩戴金属指环、表环、耳环等其它金属物品; (二)、作业条件: 1. 地桩已完成浇筑、校正,并通过监理、业主验收。 2. 支架、镀锌扁钢等原材料已通过监理、业主审批,允许使用。 3. 业主提供合格、无破损可正常工作的光伏电池; 4. 注意事项: 4.1 搬运组件的时候要用双手抓住边框,严禁拖拽接线盒上的电缆线; 不要在组件上放置其它物品,禁止站立在组件上; 4.2 4.3 破损的光伏组件严禁使用,应及时通知业主或供货商; 4.4 不要尝试分解组件,不要拆除组件上的任何铭牌或者部位; 4.5 不要在组件上喷涂任何燃料或者粘合剂; 4.6 在潮湿或者风力较大的情况下,严禁操作或安装组件; 4.7 光伏组件在安装前,要一直保存在原包装箱里; 4.8 当发生意外情况时,请立即把断路器和逆变器关闭, (三)、作业顺序 1. 总体工艺流程: 施工准备→技术交底→支架安装→支架验收→组件汇线→组件安装→成品保护→验收 (四)、施工机械设备准备 施工过程中实行机械化,可以减轻劳动强度,提高劳动生产率,有利于加快施工速度,保证施工质量。在施工过程中,施工方法的选择和施工机具的选择是紧密相连的,所以,在选择施工机具时,我们还要从现场施工的角度考虑到:施工方法的技术先进性与经济合理性的统一;施工机械的适用性与多用性的兼顾,尽可能充分发挥施工机械的效率和利用程度。在此基础上,我们将选择如下主要施工机具运用到本工程中: 2.1 测量仪器选用 序名称数量备注 号垂直经纬1 仪DJ2 度 1 测2 标高、1 找水准仪Z3 平 2.2 安装设备选用

太阳能电池板发电原理

在近20年中,您可能不断听到“太阳能革命”这一说法 -- 讲的是有一天我们会全部使用从太阳获得的免费电能。这是一个诱人的承诺:在天气晴朗、阳光明媚的日子里,太阳向地球表面辐射的能量约为1,000瓦每平方米,如果我们可以将这些能量全部收集起来,就可以轻松地为住宅和办公室提供免费电力。 SunLine Transit Agency供图 SunLine Transit Agency用太阳能板吸收能量来制氢。 在本文中,我们将研究太阳能电池,了解它们如何将太阳能直接转换为电能。在阅读过程中,您将了解到为什么说太阳能离人们的日常生活越来越近,以及为什么在这项技术具有成本效益之前我们还有许多研究工作要做。 将光子转换为电子 计算器和人造卫星上使用的太阳能电池都是光伏电池或者模块(模块就是一组通过电路连接并封装在一个框架内的电池)。光伏电池(Photovoltaics),顾名思义(photo=光, voltaic=电),是指将太阳光转换为电能的电池。光伏电池之前只用在太空中,而现在却越来越普及,且使用方式也越来越普通。它们甚至可以为您的住宅供电。这些装置是如何工作的呢? 光伏(PV)电池由半导体材料制成,比如硅就是目前最常用的一种半导体。当光照射电池时,有一部分光会被半导体材料吸收。这意味着吸收的光能将传给半导体。能量会导致电子逸出,使它们可以自由流动。光伏电池中还有一个或多个电场,可以迫使由光吸收并释放的电子以一定方向流动。电子的流动形成电流,通过在光伏电池的顶部和底部安放金属触点,我们可以将电流引出来,以供使用。例如,电流可以为计算器供电。此电流以及电池电压(由内部电场产生)决定了太阳能电池的功率(或者瓦特数)。 这是发电的基本过程,但是实际情况要复杂得多。让我们来深入研究一个光伏电池的示例:单晶硅电池。

太阳能系统计算公式

太阳能系统计算公式 Xzczxc119 太阳能系统计算中需要知道的参数: 1)总负载功率:W 2)设备使用电压:V 3)每天的光照时间:H光 4)每天放电时间:H放 5)连续阴雨天数:D 6)太阳能电池板转换功率、逆变器转换功率、蓄电池转换功率:80%(默认) 7)线缆损耗:100%+20%(默认) 8)蓄电池放电预留:20%(默认) 下面开始计算: 1)设备使用总电流I=W/V 2)蓄电池容量mAh=I×H放×(D+1)÷80%【蓄电池放电预留】×120%【线缆损耗】 3)蓄电池组数量n=V/12【蓄电池电压】 4)蓄电池总容量mAh总=mAh×n 5)太阳能电池板功率WP÷18V【太阳能电池板充电电压】=(I×H放×120%【电池板 功率】)÷H光 6)太阳能电池板实际WP实际=WP×120%【线缆损耗】 7)电池板数n电池板=V/12【电池板电压】 8)电池板总功率WP总功率=WP实际×n电池板 40瓦备选方案配置 1、LVD灯,单路、40W,24V系统; 2、当地日均有效光照以4h计算; 3、每日放电时间10小时,(以晚7点-晨5点为例) 4、满足连续阴雨天5天(另加阴雨前一夜的用电,计6天)。

电流=40W÷24V =1.67 A 计算蓄电池=1.67A ×10h ×(5+1)天=1.67A ×60h=100 AH 蓄电池充、放电预留20%容量;路灯的实际电流在2A以上(加20%损耗,包括恒流源、线损等) 实际蓄电池需求=100AH 加20%预留容量、再加20%损耗100AH ÷80% ×120% =150AH 实际蓄电池为24V /150AH,需要两组12V蓄电池共计:300AH 计算电池板: 1、LVD灯40W、电流:1.67 2、每日放电时间10小时(以晚7点-晨5点为例) 3、电池板预留最少20% 4、当地有效光照以日均4h计算 WP÷17.4V =(1.67A ×10h ×120%)÷4 h WP =87W */一般太阳能电池板为18伏充电电压,这里选用了17.4/* 实际恒流源损耗、线损等综合损耗在20%左右 电池板实际需求=87W ×120%=104W 实际电池板需24V /104W,所以需要两块12V电池板共计:208W

太阳能电池板日发电量计算方法

太阳能电池板日发电量简易计算方法 太阳能交流发电系统是由太阳电池板、充电控制器、逆变器和蓄电池共同组成;太阳能直流发电系统则不包括逆变器。为了使太阳能发电系统能为负载提供足够的电源,就要根据用电器的功率,合理选择各部件。太阳能发电系统的设计需要考虑如下因素: Q1、太阳能发电系统在哪里使用?该地日光辐射情况如何? Q2、系统的负载功率多大? Q3、系统的输出电压是多少,直流还是交流? Q4、系统每天需要工作多少小时? Q5、如遇到没有日光照射的阴雨天气,系统需连续供电多少天? 下面以(负载)100W输出功率,每天使用6个小时为例,介绍一下计算方法: 1.首先应计算出每天消耗的瓦时数(包括逆变器的损耗): 若逆变器的转换效率为90%,则当输出功率为100W时,则实际需要输出功率应为100W/90%=111W;若按每天使用6小时,则耗电量为111W*6小时=666Wh,即0.666度电。 2.计算太阳能电池板: 按每日有效日照时间为5小时计算,再考虑到充电效率和充电过程中的损耗,太阳能电池板的输出功率应为666Wh÷5h÷70%=190W其中70%是充电过程中,太阳能电池板的实际使用功率。 3.180瓦组件日发电量180×0.7×5=567WH 即0.63度 1MW日发电量=1000000×0.7×5=3500,000=3500度 例2:安10w灯,每天照明6小时,3个连雨天,如何计算太阳能电池板wp?以及12V蓄电池ah? 每天的用电量:10WX6H=60WH,计算太阳能电池板: 假设你安装点的平均峰值日照时数为4小时.则:60WH/4小时=15WP太阳能电池板. 再计算充放电损耗,以及每天需要给太阳能电池板的补充:15WP/0.6=25WP, 也就是一块25W的太阳能电池板就够了. 再计算蓄电池.60WH/12V=5AH. 每天要用12V5AH的电量.三天则为12V15AH. 蓄电池配置需要设计成每天的用电量不超过20%,或连续阴雨天内用电量不超过50%.以达到蓄电池最长寿命要求这样我们得出此系统的蓄电池为26AH-30AH足够. 例3:用6小时要充满12V45安的蓄电池要多少瓦的太阳能电池板? 12V45安的蓄电池为648瓦时(?)6小时要充满的话太阳能电池板理论上只要108瓦但实际因为日照强度温度光伏控制器效率整体效率等因素影响108瓦的电池板6小时是冲不满12V45安蓄电池的将整体效率按0.8计算你需要选择135瓦的太阳能电池组件,顺便说一句铅酸蓄电池的最佳充电电流是1/10电池容量电流也就是4.5A过大的充电电流将加快电池极板硫化影响电池寿命。最简单计算方法:电池:12V×45A=540WH 太阳能板功率=540/6/0.8(损耗)=112.5W 例4:请问2块20瓦(36片)太阳能电池板给12伏17安蓄电池充电需几个小时?一块普通的12v4AH的蓄电池,那用那两块太阳能电池板给它充电需要几小时呀? 1.20W的太阳能板工作电压一般是17.2V,电流是1.15A。如果板子质量不错,实测电流一般在1.1A(本人测试过)。 2.假设你说的6小时光照是中午到下午这段时间,那么可以算4小时全功率发电,也就是说2块20W的板子每天可以发电2*1.1*4=8.8A 3.这样17AH的电瓶,2天可以充满;4AH的只要2小时就差不多了或者太阳能电池板总w数为20+5=25W蓄电池总w数为12v*17A=204w充满时长为204/25=8小时,4A的电池:4A*12=48w 48w/25w=1.92小时或者因为日照强度和电池容量不准的关系,精算是没必要的繁琐,估算吧,太阳能电池电流:20/12=1.7A 充电时间1:17/1.7*1.5充电常数=15小时,充电时间2:4/1.7*1.5充电常数=3.5小时, 其实你可以把两块电池和两块太阳能电池板并起来充也是一样的,充电时间3:(17AH+4AH)/(1.7*2块)*1.5充电常数=9小时,你那地方日光好的话差不多充两天。 充电没什么注意的,如果你有万用表的话,充电时常测测蓄电池两端电压,不超过14V就行放电时记得也

相关主题
文本预览
相关文档 最新文档