纳米材料的基本效应及应用
- 格式:doc
- 大小:68.00 KB
- 文档页数:7
纳米材料的特性及应用摘要系统阐述了纳米材料的特性,并重点介绍了纳米材料在陶瓷领域,医学上,皮革制品上,环境保护等方面的应用。
并对纳米材料未来的应用前景进行了展望。
关键词:纳米材料特性应用前言纳米,是一个物理学上的度量单位,1纳米是1米的十亿分之一,相当于万分之一头发丝粗细。
当物质到纳米尺度以后,大约是在1-100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。
这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料即为纳米材料[1]。
纳米材料处在原子簇和宏观物体交界的过渡区域,既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,即接近于分子或原子的临界状态。
在纳米材料中,纳米晶粒和由此而产生的高浓度晶界是它的两个重要特征。
纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变。
纳米相材料跟普通的金属、陶瓷,和其他固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。
由于纳米材料从根本上改变了材料的结构,使得它成为当今新材料研究领域最富有活力、对未来经济和社会发展有着十分重要影响的研究对象[2]。
近年来,纳米材料取得了引人注目的成就。
例如,存储密度达到每平方厘米400G的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世[3]。
充分显示了纳米材料在高技术领域应用的巨大应用潜力。
纳米材料诞生多年来所取得的成就及对各个领域的影响和渗透一直引人注目。
进入90年代后,纳米材料研究的内涵不断扩大,领域逐渐拓宽。
一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。
简述纳米材料的基本物理效应1. 引言嘿,朋友们,今天咱们聊聊纳米材料,这可是一块神奇的“魔法砖”!说到纳米材料,可能有人会挠挠头,觉得它离我们生活很远,但其实,它们就像那些隐形的超人,默默地改变着我们的世界。
从手机到太阳能电池,从药物到化妆品,纳米材料无处不在。
要说它们有啥特别的,那就得从它们的基本物理效应聊起了。
2. 纳米效应的秘密2.1 量子效应首先,咱们得提到量子效应,这可是纳米世界的一大特色。
简单来说,纳米材料的尺寸小到离谱,通常只有一纳米到几百纳米之间。
这种小小的尺寸让材料的行为和大块头的物体大相径庭。
就好比你看见一个大象和一只蚂蚁走路的方式完全不同,纳米材料也有自己独特的“走路”方式。
比如,电子在这些小小的材料中运动时,不再遵循传统的物理规律,而是玩起了“躲猫猫”,形成了量子限制效应。
这使得纳米材料在光学、电子学上表现得特别出色。
2.2 表面效应再说说表面效应。
这就像是你买了一块超大披萨,切成小块后,每一小块的边缘都是你味蕾的狂欢。
纳米材料的表面积相对体积大得惊人,这意味着它们和周围环境的互动也变得更加活跃。
比如,纳米颗粒在催化反应中可以大显身手,因为它们的表面能和反应物“聊得特别来”,加速反应速度。
这种表面效应使得纳米材料在化学反应、药物输送等方面表现得尤为突出。
3. 热效应与光效应3.1 热效应说到热效应,这就有趣了。
纳米材料在吸热和散热方面的能力也是一绝,仿佛有自己的温度调控器。
有些纳米材料在加热时会表现出超导性,哎,听起来有点复杂,但简单来说,就是它们能让电流流动得像风一样顺畅,几乎没有阻力。
这让它们在电子产品和能源存储中成为了新宠儿,简直是科技界的小明星。
3.2 光效应接下来,咱们聊聊光效应。
纳米材料在光的操控上也是一把好手。
它们可以调节光的传播、吸收和反射,就像调音师调节乐器音色一样,能让光线变得绚丽多彩。
比如,某些纳米材料可以在特定波长的光下发光,甚至可以用在显示屏和激光器上,给我们的视觉享受增添了一抹绚丽的色彩。
纳米材料四大效应及相关解释四大效应基本释义及内容:量子尺寸效应:是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。
当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。
小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应。
对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。
表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。
随着颗粒直径的变小, 比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应。
宏观量子隧道效应:当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。
近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦有隧道效应,称为宏观的量子隧道效应。
四大效应相关解释及应用:表面效应球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。
随着颗粒直径的变小比表面积将会显著地增加。
例如粒径为10nm时,比表面积为90m2/g;粒径为5nm时,比表面积为180m2/g;粒径下降到2nm时,比表面积猛增到450m2/g。
粒子直径减小到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加。
这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。
表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很大的化学活性,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加。
纳米材料的基本概念与性质纳米材料是指在尺寸范围为纳米级别的材料,即其尺寸在1到100纳米之间。
相对于常规材料,纳米材料具有特殊的性质和特点,这主要源于其尺寸效应、表面效应和量子效应等纳米尺度效应的影响。
下面将详细介绍纳米材料的基本概念和性质。
首先,纳米材料具有尺寸效应。
当材料的尺寸处于纳米级别时,与常规材料相比,纳米材料的许多物理、化学和力学性质都会有显著改变。
例如,金属纳米颗粒的熔点和磁性会发生变化,纳米薄膜表面的扩散速率会增大,高填充纳米孔隙材料的机械强度也会增加。
这些尺寸效应的改变使得纳米材料在电子、光学、催化等领域具有广泛的应用潜力。
其次,纳米材料表面效应对其性质也产生了重要影响。
相对于体积物质,纳米材料拥有更大的表面积,这意味着纳米颗粒或纳米薄膜的许多原子都处于表面状态。
表面效应的存在改变了纳米材料的电子结构、晶粒尺寸和化学反应活性等性质。
由于表面活性的提高,纳米材料能更好地催化反应、吸附和储存气体、改善电池材料性能等。
另外,量子效应也是纳米材料的重要特点之一、当纳米材料的尺寸缩小到纳米级别时,其原子和分子的量子效应开始显现。
量子效应使得纳米材料的光学、电子和磁性能等性质有显著变化。
例如,纳米发光材料的荧光强度和波长会受到量子尺寸限制的影响,纳米晶体管中的载流子行为也会发生量子限制的变化。
因此,纳米材料的量子效应使得其在量子计算、纳米电子学和纳米光学等领域具有独特的应用优势。
除了尺寸、表面和量子效应之外,纳米材料还具有其他特殊性质。
例如,纳米颗粒的表面增强拉曼散射效应可用于快速检测和分析微量物质的存在;纳米结构的多孔性使其具有大的比表面积和高的吸附能力,有利于储能、催化和环境修复等应用;一些金属纳米材料具有独特的光学性质,如银纳米颗粒的表面等离子体共振现象,可用于增强光子学器件的性能。
总之,纳米材料是在纳米尺度下制备和应用的材料,其独特的性质和特点使其在诸多领域具有广泛应用的潜力。
纳米材料的尺寸效应、表面效应、量子效应以及其他特殊性质使其成为材料科学和工程领域中的研究热点,并在电子、光学、催化、生物医学和环境等领域得到广泛应用。
纳米材料的四个基本效应纳米材料,听起来是不是有点高大上?这些小家伙可真是科技界的“隐形冠军”。
你知道吗,纳米的意思就是十亿分之一,简直让人觉得这些材料像微型超级英雄一样。
它们不仅体型小,还拥有一些神奇的特性,今天咱们就来聊聊这四个基本效应,听起来可能有点复杂,但咱们就轻松点儿,别让脑子冒烟!咱们得说说量子效应。
这可是纳米材料的一大法宝。
它们小到连普通物质的行为都跟着变了,真是有趣!比如,当这些材料缩小到纳米级别时,它们的电子会被限制在小空间里,这样就能引起一些奇妙的变化。
你可以想象一下,就像是小朋友在狭窄的空间里玩耍,变得更加活跃,原本懒散的态度一下子就不见了,嘿,这就是量子效应给我们带来的新奇现象。
接下来要聊的是表面效应,别看名字简单,但它可是个大事儿。
这种效应说明,纳米材料的表面积相对体积是个大赢家!想想看,表面积大了,反应速度自然快了。
就像咱们吃东西,如果吃一块大蛋糕,可能觉得有点沉闷;可是如果分成小块,哎呀,吃得可欢了!这就是表面效应的魅力所在,材料的化学反应能力直接上升。
很多时候,科学家们会用这种特性来设计新的催化剂,提高反应效率。
你说,这多像个厨师,做菜时总得让食材多接触火,才能做出美味啊。
然后,再来说说量子隧穿效应。
听起来像是科幻电影里的情节,实际上却是纳米材料中经常发生的事情。
这个效应让粒子能“穿越”原本无法逾越的障碍,就像小孩子在跳绳时,有时能做到意想不到的高跳。
科学家们利用这个特性开发了更高效的电子器件。
想象一下,手机里的芯片能更快运行,真是让人拍手称快!未来的科技大潮中,这可是一块不容小觑的“宝藏”。
咱们得提提光学效应。
纳米材料对光的反应那可真是一绝。
有些纳米材料能吸收或散射特定波长的光,这就是它们的“光学效应”。
想象一下,一块材料在不同光线下竟然能变换颜色,简直就像变魔术!这些特性在太阳能电池和传感器中都有广泛应用,给科技增添了不少“色彩”。
通过调节这些材料的结构,咱们可以打造出更高效的光电设备,未来可期啊!所以说,纳米材料可真是科技的“宝藏”,它们的四个基本效应像四位高手,各有千秋,互相辉映。
纳米材料四大效应纳米材料是一种具有特殊尺寸和结构的材料,其尺寸在纳米尺度范围内,即1纳米(nm)等于十亿分之一米。
由于其独特的性质和应用潜力,纳米材料在科学研究和工业应用中引起了广泛的关注。
纳米材料具有四大效应,包括量子效应、表面效应、尺寸效应和量子尺寸效应。
一、量子效应量子效应是指纳米材料在纳米尺度下具有与宏观材料不同的性质和行为。
由于其尺寸接近电子波长,纳米材料的电子结构和能带结构发生变化,导致其电子、光学、磁学等性质呈现出新的特性。
例如,纳米材料的能带宽度增大,带隙变窄,电子输运性质改变,导致电子在材料中的行为呈现出量子级别的效应。
这种量子效应使得纳米材料在光电、催化、传感等领域具有广泛的应用前景。
二、表面效应纳米材料与宏观材料相比,其比表面积更大。
由于纳米材料的尺寸较小,其比表面积相对较大,使得纳米材料的表面原子或分子与外界环境之间的相互作用增强。
这种表面效应使得纳米材料在催化、吸附、储能等方面具有优异的性能。
例如,纳米金属催化剂具有较高的催化活性,纳米多孔材料具有较大的吸附容量,纳米材料的电极材料具有较高的储能密度。
三、尺寸效应纳米材料的尺寸在纳米尺度范围内,相对于宏观材料,其尺寸具有明显的差异。
这种尺寸效应使得纳米材料的物理、化学和力学性质发生变化。
例如,纳米颗粒的晶格缺陷比例增加,导致其力学性能下降;纳米材料的杨氏模量和热膨胀系数随尺寸的减小而发生变化。
尺寸效应使得纳米材料在材料加工、力学强化等方面具有独特的应用潜力。
四、量子尺寸效应当纳米材料的尺寸接近或小于其准束缚半径时,量子尺寸效应将显现出来。
量子尺寸效应是指纳米材料的电子、光学和磁学性质与其尺寸有关,呈现出量子级别的效应。
例如,纳米颗粒的能带结构呈现出禁带宽度的量子化现象,导致光学性质和能带结构的变化;纳米线和纳米薄膜的电子输运性质受到限制,呈现出量子隧穿效应。
量子尺寸效应使得纳米材料在信息存储、量子计算和光电器件等领域具有巨大的应用潜力。
纳米材料四大效应
纳米材料的四大效应包括:量子效应、尺寸效应、表面效应和量子限域效应。
1. 量子效应(Quantum Effect):纳米尺度下,由于粒子的波
动性质变得显著,可能出现光电效应、磁电效应和量子隧穿效应等。
纳米材料的量子效应可以使电子能级发生分裂和禁能带展宽,从而改变材料的电子结构和光学特性。
2. 尺寸效应(Size Effect):纳米材料尺寸在纳米尺度范围内,具有特殊的物理和化学性质。
纳米颗粒的尺寸效应主要体现在其形状、比表面积和热稳定性等方面。
纳米材料的尺寸效应能够影响材料的磁性、光学性质和力学性能等。
3. 表面效应(Surface Effect):纳米材料比表面积大于宏观材料,纳米颗粒的表面活性较高。
纳米材料的表面效应主要体现在材料的催化活性、界面反应速率、光敏性和生物活性等方面。
表面效应可以改变纳米材料的化学反应动力学过程和表面能,从而影响材料的性质和应用。
4. 量子限域效应(Quantum Confinement Effect):纳米材料的尺寸接近或小于电子的波长时,会引起量子限域效应。
量子限域效应使得纳米材料中的电子和光子受到限制或约束,使得纳米材料的能带结构和能级分布发生改变。
量子限域效应能够使纳米材料具有特殊的光电学、能量传输和传感等性质。
03第三章纳米材料的能带理论及基本效应纳米材料是一种具有特殊物理、化学和机械性质的材料,其在纳米尺度下的特性与传统的宏观材料有很大的差异。
因此,解释纳米材料特性的理论也需要考虑到纳米尺度下的效应。
本文将介绍纳米材料的能带理论及基本效应。
能带理论是描述材料中电子能级分布的理论模型。
它起源于量子力学和固体物理学,通过量子力学的波函数和演化方程来描述电子在固体中的运动行为。
根据能量-动量关系,能带理论将固体中的能态分为禁带、导带和价带。
这些能带的性质决定了材料的电导率、光学特性和热传导性能等。
在纳米材料中,由于尺寸的减小,量子尺寸效应和表面效应成为能带理论中需要考虑的一部分。
首先,量子尺寸效应源于纳米材料中的电子被限制在小范围内运动,通过限制电子的波长,能带结构会发生变化。
尺寸减小可以导致能带分裂,禁带宽度变大,导致更强的量子限制,从而影响材料的光谱特性。
其次,表面效应指的是材料的表面对电子运动的影响。
纳米材料相比于宏观材料拥有更大的表面积,表面原子相互作用对电子能带结构的影响变得显著。
表面效应可以导致能带结构的改变,例如表面态的出现,禁带的移动等。
另外,纳米材料的尺度效应也会对能带结构产生重要影响。
当纳米材料的尺寸较小时,由于体积的减小,材料内的晶格畸变、应力分布以及原子间相互作用会发生变化,从而导致能带结构的变化。
纳米材料的能带结构对其性质有着重要的影响。
首先,纳米材料的能带结构决定了其电导率。
由于量子限制效应,纳米材料通常具有较高的电阻率。
此外,能带结构还决定了纳米材料的光吸收和发射谱,从而影响其光学性质。
另外,纳米材料的能带结构也会影响其热传导性能。
由于尺寸减小,纳米材料中的晶格振动模式数量减少,热能的传导能力降低。
此外,纳米材料中的界面效应和散射现象也会对热传导产生重要影响。
总之,纳米材料的能带理论及基本效应描述了纳米尺度下材料电子能级分布和相关特性的理论模型。
通过研究纳米材料的能带结构和相关效应,可以揭示纳米材料的特殊性质,并为其在电子学、光学和热学领域的应用提供理论基础。
纳米材料与纳米技术Introduction纳米材料和纳米技术是当代科学和工程领域中备受关注的热门话题。
它们在许多领域都表现出了独特的性能和应用潜力,如电子、医学、材料科学等。
本文将介绍纳米材料和纳米技术的基本概念,以及它们在不同领域的应用。
I. 纳米材料的定义和特性纳米材料是材料中最小单元在纳米尺度范围内的材料。
纳米尺度范围通常定义为1到100纳米之间。
纳米材料具有以下特性:1. 尺寸效应:纳米材料的尺寸与其性能之间存在着密切的关系。
当材料的尺寸减小到纳米级别时,其性能可能会发生显著变化。
2. 表面效应:由于纳米材料具有巨大的比表面积,其与周围环境之间的相互作用增强,导致了独特的表面和界面性质。
3. 量子效应:在纳米尺度下,量子效应开始显现,电子和光子行为受到限制和调控,导致了一系列奇特的性质和现象。
II. 纳米技术的基本原理与应用纳米技术是对纳米材料进行制备、操控和应用的技术。
它包括以下几个基本原理:1. 自下而上组装:纳米技术通过控制原子、分子、颗粒等基本单位的自组装来构建纳米结构和纳米材料。
2. 自上而下加工:利用传统的加工方法,如光刻、电子束曝光等,对宏观材料进行精确加工和调控,制备出具有纳米特征的结构。
3. 纳米探针与仪器:纳米技术利用纳米尺度的探针和仪器对纳米材料进行表征和分析,以了解其结构和性能。
纳米技术在各个领域都有着广泛的应用。
以下是几个常见领域的例子:1. 电子与计算机科学:纳米技术可以用于制造更小、更快的电子器件和计算机芯片,提高计算和存储能力。
2. 医学与生物学:纳米技术可以在体内进行精确的药物传递和组织修复,提供更有效的治疗方法。
3. 材料科学与工程:纳米技术可以制备出具有特殊性能的纳米材料,如超硬材料、防护涂层等。
4. 环境与能源:纳米技术可以提高太阳能电池和储能设备的效率,减少能源消耗和污染排放。
III. 纳米材料与纳米技术的挑战与前景纳米材料和纳米技术的发展还面临着一些挑战:1. 安全性:由于纳米材料和纳米技术的特殊性质,它们可能对环境和人体健康产生潜在的风险,需要加强研究和管理。
纳米材料的研究及应用纳米材料的讨论及应用纳米材料的讨论及应用魏方芳( 福建师范高校化学与材料学院重点试验室. 福建 3 0 0 ) 5 摘要: 介绍纳米材料的范围、定义、四个基本效应及应用领城。
关镶词: 纳来材并; 基本效应; 应用1 概述纳米材料是近年来进展起来的一种新型高性能材料。
纳米材料 ( 又称超微小粒) 是处在原子簇和宏观物体交界过渡区域的一种典型系统,依据其形象即为外表效应[ 。
主 1 3 要表现为熔点降低、比热增大。
超微颗粒的外表具有很高的活性,在空气中金属颗粒会快速氧化而燃烧。
如要防止自燃,可采纳外表包覆或有意识地掌握氧化速率,使其缓慢氧化生成一层极薄而致密的氧化层,确保外表稳定化。
利用外表活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料。
态分为零维、一可维、二维和三维纳米材料t 。
l纳米材料的晶粒尺寸、晶界尺寸、缺陷尺寸均在l o nm 以下,随着晶格数量大幅度增加,材料的强度、韧性和超塑性都大为提高,对材料的电学、磁学、光学等性能产生重要的影响。
目前对纳米材料的定义为: 粒径为1一100nm 的纳米粉,直径为 1一10O 的纳米线,厚度为 1一lo n 的纳米薄 m n o m 2。
小尺寸效应 2 在肯定条件下,颗粒尺寸的量变,会引起颗粒的质变。
由于颖粒尺寸变小所引起的宏观物理性质膜,且现米应材 [ 。
并出纳效的料 1 22 纳米材料的基本特性纳米材料有四个基本的效应,即小尺寸效应、外表与界面效应、量子尺寸效应、宏观量子隧道效应,因此消失常规材料所没有的一些特殊性能,如的改变称为小尺寸效应4]。
对超微颐粒而言,尺【寸变小,同时比外表积亦显著增加,从而产生一系列新颖的性质。
) 1 热学性质改变大尺寸固态物质经过超微小化后,发觉其熔点将显著降低,当颗粒小于 1 纳米量级时尤为显著。
0 例如,金的常规熔点为1 64℃,当颗粒尺寸减小 0 到 10 纳米尺寸时,则降低 27℃,2 纳米尺寸时的熔点仅为32 ℃左右; 银的常规熔点为67 ℃,而 7 0 超微银颗粒的熔点可低于100℃。
第二章纳米材料的基本效应§第一节表面效应表面效应是指纳米粒子的表面原子数与总原子数之比随着粒子尺寸的减小而大幅度的增加,粒子的表面能及表面张力也随着增加,从而引起纳米粒子物理、化学性质的变化。
纳米粒子的表面原子所处的晶体场环境及结合能与内部原子有所不同,存在许多悬空键,具有不饱和性质,因而极易与其他原子相结合而趋于稳定,具有很高的化学活性。
1、比表面积的增加比表面积常用总表面积与质量或总体积的比值表示。
质量比表面积、体积比表面积(G代表质量,m2/g)(V代表颗粒的体积;m-1) 当颗粒细化时,粒子逐渐减小时,总表面积急剧增大,比表面积相应的也急剧加大。
如:把边长为1cm的立方体逐渐分割减小的立方体,总表面积将明显增加。
随着粒径减小,表面原子数迅速增加。
这是由于粒径小,总表面积急剧变大所致。
例如,粒径为10nm时,比表面积为90m2/g,粒径为5nm时,比表面积为180m2/g,粒径下降到2nm时,比表面积猛增到450m2/g。
这样高的比表面,使处于表面的原子数越来越多,同时表面能迅速增加。
2. 表面原子数的增加由于粒子尺寸减小时,表面积增大,使处于表面的原子数也急剧增加.3.表面能由于表层原子的状态与本体中不同。
表面原子配位不足,因而具有较高的表面能。
如果把一个原子或分子从内部移到界面,或者说增大表面积,就必须克服体系内部分子之间的吸引力而对体系做功。
在T和P组成恒定时,可逆地使表面积增加dA所需的功叫表面功。
颗粒细化时,表面积增大,需要对其做功,所做的功部分转化为表面能储存在体系中。
因此,颗粒细化时,体系的表面能增加.。
由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。
例如金属的纳米粒子在空气中会燃烧,无机的纳米粒子暴露在空气中会吸附气体,并与气体进行反应。
下面举例说明纳米粒子表面活性高的原因。
图所示的是单一立方结构的晶粒的二维平面图,假设颗粒为圆形,实心团代表位于表面的原子。
纳米材料的特异效应及应用摘要:介绍了纳米材料所独有的小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效以及介电限域效应,这些效应使得它们在磁、光、电、敏感等方面呈现出常规材料不具备的特性。
综述了纳米材料在催化、传感、磁性、食品、化妆品、生物医学等方面的应用,叙述了纳米材料在科学技术发展和社会进步中所起到的重要作用,并说明了它还将有更广阔的应用前景。
关键词:纳米材料;基本效应;应用Nanostructured material’s special effects andits applicationsAbstract:The particular small size effect,surface effect,quantum size effect, macroscopic quantum tunneling effect and dielectric confinement effect with nanometer materials are presented . As a result of these effects,nanometer materials possess some special properties which normal materials do not have as far as magnetics ,optics ,electronics ,and sensitivity,ect . are concerned . The application of nanometer in the catalytics ,sensitivity ,magnetics,food ,cosmetics and biomedicine,and so on are summarized . And t he important role of nanometer material in science and technology development and social progress is described. The application prospect of nanometer materials is also illustrated.Key words:nanometer materials ;basic effect ;application1984年德国科学家Gleiter首先制成了金属纳米材料,同年在柏林召开了第二届国际纳米粒子和等离子簇会议,使纳米材料成为世界性的热点之一;1990年在美国巴尔的摩召开的第一届NST会议,标志着纳米科技的正式诞生;1994年在德国斯图加特举行的第二届NST会议,表明纳米材料已成为材料科学和凝聚态物理等领域的焦点。
纳米材料是指由纳米粒子构成的固体材料,其中纳米颗粒的尺寸最多不超过100nm,在通常情况下,应不超过l0nm。
即这种材料是指其基本颗粒在l~100nm 范围内的材料。
纳米粒子是处在原子簇和宏观物质交界的过渡区域,是一种典型的介观系统,包括金属、非金属、有机、无机和生物等多种颗粒材料。
随着物质的超细化,其表面电子结构和晶体结构发生变化,产生了宏观物质材料所不具有的小尺寸效应、表面效应、量子尺寸效应、量子隧道效应和介电限域效应,从而使超细粉末与常规颗粒材料相比较具有一系列特异的物理、化学性质,使之作为一种新材料在国防、电子、化工、轻工、航天航空、生物和医学等领域中开拓了广阔的应用前景。
1纳米材料的特异效应1.1小尺寸效应由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应. 当超细微粒的尺寸与光波波长、德布罗意波长,以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面层附近原子密度减小,导致声、光、电、磁、热力学等特性呈现新的小尺寸效应。
这种特异效应为纳米材料的应用开拓了广阔的新领域。
例如,随着纳米材料粒径的变小,其熔点不断降低,烧结温度也显著下降,从而为粉末冶金工业提供了新工艺;而金属超微颗粒对光的反射率通常低于1%,且尺寸越小,金属颜色越黑,利用该特性可作为高效率的光热、光电等转换材料,高效率地将太阳能转变为热能、电能。
1.2表面效应表面效应是指纳米粒子表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。
或者说,表面效应是指表面原子占总原子数的百分数随粒子半径的变化而变化,造成纳米粒子性质的变化。
由图1可见,随着粒子半径的减小,表面原子数迅速增加,这是由于粒子粒径的减小,粒子的表面积急剧增大所造成。
表面原子或分子的比例大致和a/r成正比(a 为原子半径,r 为粒子半径)。
如图1所示,10nm的粒子表面原子占原子总数20%,2nm时占80%,1nm 时占90%。
由于表面原子增多,原子配位不足及高的表面能,使表面原子有很高的化学活性,极不稳定,很容易与其他原子结合。
配位越不足的原子,越不稳定,极易转移到配位数多的位置上,表面原子遇到其他原子很快结合,使其稳定化,这就是活性原因。
这种表面原子的活性,使其在催化、吸附等方面具有常规材料无法比拟的优越性。
例如,金属纳米粒子在空气中会燃烧;暴露的无机纳米粒子会吸附气体,并与气体进行反应。
1.3量子尺寸效应当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级,纳米半导体微粒存在不连续的最高被占分子轨道和最低末被占分子轨道能级,以及能隙变宽等现象均称为量子尺寸效应。
量子尺寸效应导致纳米微粒的光、电、磁、力、热、声以及超导电性与宏观特性有显著的不同。
例如,纳米微粒对于红外吸收表现出灵敏的量子尺寸效应;共振吸收的峰比普通材料尖锐得多;比热容与温度的关系也呈非线性关系;金属普遍是良导体,而纳米金属在低温下都是呈现电绝缘体。
1.4宏观量子隧穿效应微观粒子具有贯穿势垒的能力称为隧道效应。
纳米粒子的磁化强度等宏观量也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,被称为纳米粒子的宏观量子隧道效应。
它限定了磁带、磁盘进行信息贮存的时间极限。
量子尺寸效应、隧道效应将会是未来微电子器件的基础,它确立了现存微电子器件进一步微型化的极限。
当微电子器件进一步细微化时,必须要考虑上述的量子效应。
1.5介电限域效应随着粒径的不断减小,其比表面积不断增大,微粒的性质将受到表面状态的强烈影响。
当在半导体超微粒表面上修饰某种介电常数较小的材料时,他们的光学性质与裸露的超微粒相比,发生了较大的变化,这种差别就来自介电限域效应。
这种效应使屏蔽效应减弱,同时带电粒子间的库仑作用力增强,结果增强了粒子的结合能和振子强度。
2 纳米材料的应用2.1在催化领域中的应用由于纳米粒子尺寸小、表面占有的体积百分数较大、表面原子配位不全导致表面的活化中心增多,这就提供了其作为催化剂的必要条件。
纳米粒子作为催化剂可大大提高反应速度和反应效率;决定反应路径,有优良的选择性;降低反应温度。
纳米材料稀土氧化物/氧化锌可作为二氧化碳选择性氧化乙烷制乙烯的催化剂。
它是以为载体担载稀土氧化物作为活性组分,载体ZnO是平均粒度为5-80nm 的超细纳米粒子,所用稀土氧化物为镧、铈、钐等稀土元素中的一种或几种混合氧化物,含量为10%-80%。
用这种纳米催化剂,乙烷和二氧化碳反应可高选择性地转化为乙烯,乙烷转化率可达60%,乙烯选择性可达90%。
2.2在传感器方面的应用由于纳米材料具有大的比表面积,高的表面活性及与气体相互作用强等原因,纳米微粒对周围环境十分敏感,如光、温、气氛、湿度等,因此可用作各种传感器,如温度、气体、光、湿度等传感器。
用纳米金沉积在基板上形成的膜可用作红外线传感器。
金纳米薄膜的特点是对可见光到红外光整个范围的光吸收率很高,当薄膜厚度达500 g/cm2以上时,可吸收95%的光。
大量红外线被金膜吸收后转变成热,由膜与冷接点之间的温差可测出其温差势电势,据此就可制成辐射热测量仪。
2.3在磁性材料中的应用磁记录是信息储存与处理的重要手段,随着信息化的高速发展,要求记录密度日益提高.磁性纳米材料因具有单磁畴结构,矫顽力很高,故用它作磁记录材料可以提高信噪比,改善图象质量。
晶粒尺寸为30-80nm的Fe、Co、Ni磁性合金可用于制造高速视频磁带复制装置用的原版磁带和计算机用磁带,其寿命约为γ-Fe203磁带的两倍。
高矫顽力的强磁性纳米材料还可以制成磁性信用卡、磁性票证及磁性钥匙等。
将磁性纳米微粉通过界面活性剂均匀分散于溶液中制成的磁流体,在宇航、磁制冷、显示及医药中已广泛应用。
2.4在食品及化妆品中的应用将天然花粉超细粉碎后,营养物质得以释放,作为添加剂可以制成高价值保健品。
被废弃的虾蟹壳、蛋壳及各类动物骨头等超细粉碎后,是良好的有机钙添加剂。
在防晒护肤品中添加纳米级ZnO、TiO2有很好的护肤美容作用,其防紫外线效果优于有机防晒剂。
目前日本已开发出了化妆品用紫外线屏蔽剂;用Ag等纳米粒子制成的抗菌、除臭复合剂粉,具有光谱杀菌、除臭功能,并可长时间使用。
2.5在生物医学上的应用纳米微粒尺寸与生物体内细胞、红血球相近,从而为生物医学研究提供了一个新的研究途径。
可将纳米机器人注入人体血管内,随血液流动可对人体各部位进行全身健康检查,例如,疏通血管中的血栓,清除动脉脂肪淀积物,吞噬病毒,杀死癌细胞等。
还可以和机器人进行对话,使其能按人们的意图去进行基因的装配,对人体器官进行修复。
纳米Fe粒子作为显影剂可发现微小癌变,有利于癌症的早期诊断和治疗。
磁性超微粒子还可用于癌细胞分离技术,如英国伦敦的儿科医院已利用磁性超微粒子分离癌细胞,成功地进行了人体骨髓液癌变细胞的分离。
一些具有生物活性的纳米材料,还可用于人造骨、人造牙、人造人体器官等。
除上述用途外,纳米材料在光学材料、工程材料、润滑技术、纺织领域等方面的应用也有良好的发展前景。
3 结语纳米材料是上世纪80 年代中期发展起来的新型材料,它所具有的独特结构使它显示出独特而优异的性能。
科学家预言,纳米时代的到来不会太久,它在未来的应用将远远超过计算机工业,并成为未来信息时代的核心。
尽管纳米材料的研究已取得了很大的的进展,但仍有许多问题有待进一步探索和解决。
如纳米材料的微观结构特征还需深入细致的研究与确证;纳米材料制备过程中的结构控制及其性能稳定方面也有许多工作要做,这些都是纳米材料实现工业化应用的基础。
可以相信,纳米材料作为一门新兴的科学,必将对人类社会的发展和进步产生重大而深远的影响。
参考文献:[1]孙丽丽,盖轲.纳米材料的特性及用途[期刊论文]-锦州师范学院学报(自然科学版).2002,23(3)[2]高新,李稳宏,王锋,杨清翠.纳米材料的性能及其应用领域[期刊论文]-石化技术与应用.2002,20(3)[3]张敬畅,刘慷,曹维良.纳米粒子的特性、应用及制备方法[期刊论文]- 石油化工高等学校学报.2001,14(3)[4]王天赤,路嫔,车丕智,辛显双,周百斌.纳米材料的特性及其在催化领域的应用[期刊论文]- 哈尔滨商业大学学报(自然科学版).2003,19(4)[5]冯异,赵军武,齐晓霞,高芬.纳米材料及其应用研究进展-[期刊论文]-工具技术.2006,40(10)[6]高春华.纳米材料的基本效应及其应用[期刊论文]-江苏理工大学学报(自然科学版).2001,22(6)[7]陈月辉,赵光贤.纳米材料的特性和制备方法及应用[期刊论文]-橡胶工业.2004,51(3)[8]程晨.纳米材料的特异效应及应用[期刊论文]-安徽建筑工业学院学报(自然科学版).2005,13(4)。