矩阵秩重要知识点总结_考研必看
- 格式:docx
- 大小:39.86 KB
- 文档页数:3
矩阵秩重要知识点总结_考研必看一.矩阵等价行等价:矩阵A经若干次初等行变换变为矩阵B列等价:矩阵A经若干次初等列变换变为矩阵B矩阵等价:矩阵A经若干次初等行变换可以变为矩阵B,矩阵B经若干次初等行变换可以变成矩阵A,则成矩阵A和B等价矩阵等价的充要条件1. 存在可逆矩阵P和Q,PAQ=B2. R(A)=R(B)二.向量的线性表示Case1:向量b能由向量组A线性表示: b=λ1α1+λ2α2+λ3α3+⋯+λmαm充要条件:1.线性方程组Ax=b有解2.R(A)=R(A,b)Case2:向量组B能由向量组A线性表示充要条件:R(A)=R(A,B)推论∵R(A)=R(A,B),R(B) ≤R(A,B) ∴R(B) ≤R(A)Case3:向量组A能由向量组B线性表示充要条件:R(B)=R(B,A)推论∵R(B)=R(A,B),R(A) ≤R(A,B) ∴R(A) ≤R(B)Case4:向量组A和B能相互表示,即向量组A和向量组B等价充要条件:R(A)=R(B)=R(A,B)=R(B,A)Case5:n维单位坐标向量组En能由矩阵A的列向量组线性表示充要条件是:R(A)=R(A,E)n=R(E)=n,所以R(A)=n=R(A,E)三.线性方程组的解1. 非齐次线性方程组(1) R(A)=R(A,B),方程有解.(2) R(A)=R(A,B)=n,解唯一.(3) R(A)=R(A,B)(4)R(A) ≠R(A,B)2.齐次线性方程组(1)一定有解(2)有非零解的充要条件R(A)四.向量组线性相关性向量组线性相关:存在不全为0的实数λ1、λ2,λ3…λn,满足λ1α1+λ2α2+λ3α3+⋯+λnαn=0充要条件:(1) R(A)(2)向量组中至少有一个向量能由其余n-1个向量线性表示(3) n 元齐次线性方程组 Ax = 0 有非零解.Case1:向量组A要么线性相关,要么线性无关,两者必居其一Case2:向量组A只包含一个向量α,α是零向量,向量组A线性无关; α是非零向量,向量组A线性无关。
第一章 矩阵的秩矩阵理论是高等代数的主要内容之一, 在数学及其它科学领域中有着广泛的应用.在矩阵理论中, 矩阵的秩是一个重要的概念. 它是矩阵的一个数量特征, 而且是初等变换下的不变量. 本文归纳了矩阵的秩与向量的线性关系; 线性方程组的求解; 空间中点面位置关系; 二次型; 线性变换等问题的密切的联系.1 矩阵的秩的定义及简单的公式1.1 矩阵的秩的定义定义1一个向量组的极大线性无关组所含向量的个数称为这个向量组的秩. 所谓矩阵的行秩就是矩阵的行向量组的秩, 矩阵的列秩就是矩阵的列向量组的秩. 矩阵的行秩等于矩阵的列秩, 并统称为矩阵的秩. 另外, 矩阵的秩等于它的不为零的子式的最高阶数, 这是矩阵的秩的行列式定义.定义2设()n m a A ij ⨯=有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 , 称r 为矩阵A 的秩,记作()A R 或。
定义3 矩阵A 经过初等变换所化成的阶梯型中非零行的个数称为矩阵A 的秩. 矩阵A 的秩为r ,记为()r A R =.特别,零矩阵的秩()00=R1.2 矩阵的秩的几个简单性质性质1 ()0=A r , 当且仅当A 是零矩阵 性质2 ()n A r =, 当且仅当|A |≠0性质3 设A 是m ×n 矩阵, 则()}{n m A r ,min 0≤≤ 性质4 ()()()B r A r B A r +≤+性质5 ()()TA rank A rank =1.3矩阵秩的求法(1)定义法找出矩阵A 中不为零的最高子式,算出它的阶数. (2)初等变换法用初等变换(行、列均可)将矩阵A 化为标准形r E O O O ⎛⎫⎪⎝⎭,即可得出()R A r =;或化成阶梯形矩阵,其非零行的个数即为秩.例设6117404112901316124223A ⎛⎫ ⎪ ⎪⎪=- ⎪--- ⎪ ⎪-⎝⎭, 求秩(A) 解 A →1290404161171316124223-⎛⎫ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪-⎝⎭→1290084010115570525108403-⎛⎫⎪- ⎪⎪- ⎪-- ⎪ ⎪-⎝⎭→12900151015711015150153-⎛⎫ ⎪-- ⎪ ⎪-- ⎪-- ⎪ ⎪--⎝⎭→12900151000458800034000014-⎛⎫ ⎪-- ⎪ ⎪- ⎪- ⎪ ⎪-⎝⎭所以()3R A =.第二章 矩阵的秩的相关问题1 矩阵的秩在向量组线性相关性问题中的应用向量组的线性相关性是线性代数中一个较为抽象的概念, 它既是线性代数的重点, 又是一个难点。
考研数学矩阵知识点总结一、矩阵的基本概念矩阵是一个二维的数组,由m行n列的元素组成。
通常用大写字母A、B、C等表示矩阵,元素用小写字母a_ij、b_ij、c_ij等表示。
例如,一个3行2列的矩阵可以写成:A = [a11 a12][a21 a22][a31 a32]矩阵具有一些基本的性质,包括矩阵的相等、相加、相乘等。
两个矩阵A和B相等,当且仅当它们的对应元素相等,即a_ij=b_ij (i=1,2,…,m;j=1,2,…,n)。
两个矩阵A和B的和是一个矩阵C,其元素c_ij等于a_ij+b_ij。
两个矩阵A和B的乘积是一个矩阵C,其元素c_ij等于a_i1*b1_j+a_i2*b2_j+…+a_in*bn_j。
二、矩阵的运算矩阵的加法和乘法是矩阵运算中的基本操作,它们有一些基本的性质。
矩阵A、B和C满足结合律、分配律、交换律等。
具体的运算规则和性质如下:1. 矩阵的加法设A、B是相同阶数的矩阵,则矩阵的加法满足交换律和结合律,即A+B=B+A,(A+B)+C=A+(B+C)。
矩阵的加法还满足分配律,即A(B+C)=AB+AC。
同时,零矩阵是矩阵加法的单位元素。
2. 矩阵的乘法设A是m行n列的矩阵,B是n行p列的矩阵,则矩阵的乘法满足结合律和分配律,即A(BC)=(AB)C,A(B+C)=AB+AC。
但矩阵的乘法不满足交换律,即AB≠BA。
同时,单位矩阵是矩阵乘法的单位元素。
三、特征值和特征向量特征值和特征向量是矩阵理论中的重要概念,它们在研究矩阵的性质和应用中具有重要的作用。
1. 特征值设A是一个n阶矩阵,如果存在数λ和非零向量x,使得Ax=λx成立,则λ称为矩阵A的特征值,x称为对应于特征值λ的特征向量。
矩阵A的特征值可以通过求解矩阵的特征方程det(A-λE)=0来得到。
特征值和特征向量在矩阵的对角化、矩阵的相似性等方面有重要的应用。
2. 特征向量设A是一个n阶矩阵,如果存在数λ和非零向量x,使得Ax=λx成立,则λ称为矩阵A的特征值,x称为对应于特征值λ的特征向量。
有关矩阵秩的重要结论
矩阵的秩是用来描述矩阵的重要性的重要工具。
秩可以用来确定矩阵的可解性,因此
矩阵的秩与矩阵的可解性有关,这是矩阵的一个重要的结论。
矩阵的秩也可以用来分析方程组的特殊性质。
举例来说,如果给定方程组的矩阵的秩
小于行数或列数,则说明所给方程组是没有唯一解的,可能会拥有无穷多个解。
矩阵的秩也可以用来计算方程组的自由变量的个数。
一般地,一个n阶方程组有n个
变量,但是如果该方程组的矩阵的秩小于n,则说明方程组的自由变量的个数为n减去矩
阵的秩。
矩阵的秩也可以用来分析矩阵的特殊性质。
如果一个矩阵可以分解为两个矩阵的乘积,则结果矩阵的秩小于或者等于两个矩阵的秩的和。
从以上几点可以看出,矩阵的秩是一个非常强大的工具——让我们能够更清楚的了解
矩阵的性质,以及使用矩阵来解决天文数学和实际应用上的问题。
1/浅析秩的一些相关公式在线性代数这门学科里,秩是非常关键也是常用的一个工具,要深刻理解和掌握秩这个武器,必须还要熟记与秩有关的一些公式,这样才能在考试中得心应手,下面对秩的公式进行了总结,也方便同学们掌握这部分内容。
1.()()()Tr r r k ==A A A ,0k ≠;前一篇笔者讲到了,矩阵的秩等于其行秩也等于其列秩,所以将矩阵转置了之后秩是没有改变的,数乘也是不改变秩的。
2.()min{,}m n r m n ⨯≤A ;矩阵形式:结合矩阵秩的概念,非零子式的最高阶数即为矩阵的秩,矩阵最高阶子式为min{,}m n ,故其非零子式最高阶应小于等于min{,}m n ;向量形式:若将矩阵m n ⨯A 写成向量组的形式,即1[,...,]m n n αα⨯=A ,矩阵的秩等于向量组的秩,则有的向量组的秩1(,...,)min{,}n r m n αα≤。
3.若向量组1,...,n αα可由向量组1,...,m ββ表出,则11(,...,)(,...,)n m r r ααββ<。
这个推导过程上一篇文章笔者已经介绍了,就不在这介绍过多了,若将向量组组成矩阵的形式,有()min{(),()}r r r ≤AB A B ,这个矩阵形式的公式是最常用的,关于这个公式还有如下几点推论:推论1:若n n ⨯P 可逆,则()()r r =AP A ,()()r r =PB B ;这条推论的用法就是乘以可逆矩阵不改变矩阵的秩,那么可逆矩阵的本质就是若干个初等矩阵相乘,乘以可逆矩阵相当于做了若干次初等变换,初等变换是不改变秩的。
推论2:若m n m n ⨯⨯≅A B ,等价于()()m n m n r r ⨯⨯=A B ;两个同型矩阵等价的充要条件 版权所有翻印必究是其秩相同。
推论3:若向量组1,...,n αα与向量组1,...,m ββ等价,则11(,...,)(,...,)n m r r ααββ=,这条推论两个向量组等价的必要条件是这两个向量组的秩相同,这只是一个必要条件,而非充要条件,要和推论2区别开。