超精密加工技术详解
- 格式:doc
- 大小:1.88 MB
- 文档页数:11
术工技加工与超高速加超精密一、技术概述超高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速。
技术和加工质量的现代加工度和进给速度来提高材料切除率、加工精度超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。
目前,一般认为,超高速切削各种材料的切速范围为:铝合金已超过1600m/min,铸铁为1500m/min,超耐热镍合金达300m/min,钛合金达150~1000m/min,纤维增强塑料为2000~9000m/min。
各种切削工艺的切速范围为:车削700~7000m/min,铣削300~6000m/min,钻以上等等。
削250m/s削200~1100m/min,磨超高速加工技术主要包括:超高速切削与磨削机理研究,超高速主轴单元制造技术,超高速进给单元制造技术,超高速加工用刀具与磨具等。
术在线自动检测与控制技制造技术,超高速加工-c超精密加工当前是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra 小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm 的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。
超精密加工技术主要包括:超精密加工的机理研究,超精密加工的设备制造技术研究,超精密加工工具及刃磨技术研究,超精密测量技术研究。
条件和误差补偿技术研究,超精密加工工作环境展趋势外发二、现状及国内高速加工.超1工业发达国家对超高速加工的研究起步早,水平高。
在此项技术中,意大利等。
国、主要有德国、日本、美处于领先地位的国家在超高速加工技术中,超硬材料工具是实现超高速加工的前提和先决条件,超高速切削磨削技术是现代超高速加工的工艺方法,而高速数控机床和加工中心则是实现超高速加工的关键设备。
目前,刀具材料已从碳素钢和合金工具钢,经高速钢、硬质合金钢、陶瓷材料,发展到人造金刚石及聚晶金刚石(PCD)、立方氮化硼及聚晶立方氮化硼(CBN)。
切削速度亦随着刀具材料创新而从以前的12m/min 提高到1200m/min 以上。
精密超精密加工技术精密及超精密加工对尖端技术的发展起着十分重要的作用。
当今各主要工业化国家都投入了巨大的人力物力,来发展精密及超精密加工技术,它已经成为现代制造技术的重要发展方向之一。
本节将对精密、超精密加工和细微加工的概念、基本方法、特点和应用作一般性介绍。
一、精密加工和超精密加工的界定精密和超精密加工主要是根据加工精度和表面质量两项指标来划分的。
这种划分是相对的,随着生产技术的不断发展,其划分界限也将逐渐向前推移。
1.一般加工一般加工是指加工精度在10µm左右(IT5~IT7)、表面粗糙度为R a0.2µm~0.8µm的加工方法,如车、铣、刨、磨、电解加工等。
适用于汽车制造、拖拉机制造、模具制造和机床制造等。
2.精密加工精密加工是指精度在10µm~0.1µm(IT5或IT5以上)、表面粗糙度值小于R a0.1µm的加工方法,如金刚石车削、高精密磨削、研磨、珩磨、冷压加工等。
用于精密机床、精密测量仪器等制造业中的关键零件,如精密丝杠、精密齿轮、精密导轨、微型精密轴承、宝石等的加工。
3.超精密加工超精密加工一般指工件尺寸公差为0.1µm~0.01µm数量级、表面粗糙度R a 为0.001µm数量级的加工方法。
如金刚石精密切削、超精密磨料加工、电子束加工、离子束加工等,用于精密组件、大规模和超大规模集成电路及计量标准组件制造等方面。
二、实现精密和超精密加工的条件精密和超精密加工技术是一项内容极为广泛的制造技术系统工程,它涉及到超微量切除技术、高稳定性和高净化的工作环境、设备系统、工具条件、工件状况、计量技术、工况检测及质量控制等。
其中的任一因素对精密和超精密加工的加工精度和表面质量,都将产生直接或间接的不同程度的影响。
1.加工环境精密加工和超精密加工必须具有超稳定的加工环境。
因为加工环境的极微小变化都可能影响加工精度。
超精密切削加工技术介绍
超精密加工技术是适应现代高科技的需要而发展起来的先进制造技术, 是高科技尖端产品开发中不可或缺的关键技术, 是一个国家制造业水平重要标志, 是先进制造技术基础和关键, 也是装备现代化不可缺少的关键技术之一, 在军用和民用工业中有着十分广阔的应用前景。
金刚石超精密切削技术, 是超精密加工技术发展最早的、应用最为广泛的技术之一。
超精密切削加工技术
1、超精密切削的历史
60年代初,由于宇航用的陀螺,计算机用的磁鼓、磁盘,光学扫描用的多面棱镜,大功率激光核聚变装置用的大直径非圆曲面镜,以及各种复杂形状的红外光用的立体镜等等,各种反射镜和多面棱镜精度要求极高,使用磨削、研磨、抛光等方法进行加工,不但加工成本很高,而且很难满足精度和表面粗糙度的要求。
为此,研究、开发了使用高精度、高刚度的机床和金刚石刀具进行切削加工的方法加工。
2、超精密切削加工的应用
(1)平面镜的切削
平面度
金刚石刀具
1、金刚石刀具特点
金刚石刀具拥有很高的高温强度和硬度,而且材质细密,经过精细研磨,切削刃可磨得极为锋利,表面粗糙度值很小,因此可进行镜面切削。
金刚石刀具超精密切削主要用于加工铜、铝等有色金属,如高密度硬磁盘的铝合金基片、激光器的反射镜、复印机的硒鼓、光学平面镜,凹凸镜、抛物面镜等。
超精切削刀具材料有天然金刚石,人造单晶金刚石。
金刚石刀具磨损的常见形式为机械磨损和破损。
机械磨损——机械摩擦、非常微小;破损。
超精密加工制造技术
超精密加工制造技术
超精密加工制造技术是指采用精密加工制造技术,利用激光、电子束、水刀、高速钻以及特种机床,对零部件或组件进行加工,以达到更高精度,更优质品质的制造目的。
目前,超精密加工制造技术主要用于航空、航天、船舶、汽车、医疗设备等高端产品的制造。
它能够满足产品的精密度需求,提高制造材料的品质,并减少制造成本。
超精密加工制造技术有多种,如激光切割技术、EDM(电子束机)技术、高速钻加工技术、高压水刀技术、精密机床加工技术等。
这些技术的应用将极大地提高产品的加工精度,减少加工损耗,从而满足客户对产品加工精度的要求。
超精密加工制造技术有其特定的要求,需要选用正确的机床、加工参数、工艺条件和制造材料,以保证制造出精确的零件或组件。
因此,超精密加工制造技术对制造者具有重大意义,它为制造者提供了一种制造更精确的零件和组件的方法,从而满足客户的高要求。
而且,利用超精密加工制造技术也可以大大节省加工成本,从而提高制造的竞争力。
- 1 -。
超高速加工与超精密加工技术一、技术概述超高速加工技术是指采纳超硬材料的刃具,通过极大地提高切削速度和进给速度来提高材料切除率、加工精度和加工质量的现代加工技术。
超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。
目前,一般认为,超高速切削各种材料的切速范围为:铝合金已超过1600m/min,铸铁为1500m/min,超耐热镍合金达300m/min,钛合金达150~1000m/min,纤维加强塑料为2000~9000m/min。
各种切削工艺的切速范围为:车削700~7000m/min,铣削300~6000m/min,钻削200~1100m/min,磨削250m/s以上等等。
超高速加工技术重要包括:超高速切削与磨削机理讨论,超高速主轴单元制造技术,超高速进给单元制造技术,超高速加工用刀具与磨具制造技术,超高速加工在线自动检测与掌控技术等。
超精密加工当前是指被加工零件的尺寸精度高于0.1m,表面粗糙度Ra小于0.025m,以及所用机床定位精度的辨别率和重复性高于0.01m的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术进展。
超精密加工技术重要包括:超精密加工的机理讨论,超精密加工的设备制造技术讨论,超精密加工工具及刃磨技术讨论,超精密测量技术和误差补偿技术讨论,超精密加工工作环境条件讨论。
二、现状及国内外进展趋势1.超高速加工工业发达国家对超高速加工的讨论起步早,水平高。
在此项技术中,处于领先地位的国家重要有德国、日本、美国、意大利等。
在超高速加工技术中,超硬材料工具是实现超高速加工的前提和先决条件,超高速切削磨削技术是现代超高速加工的工艺方法,而高速数控机床和加工中心则是实现超高速加工的关键设备。
目前,刀具材料已从碳素钢和合金工具钢,经高速钢、硬质合金钢、陶瓷材料,进展到人造金刚石及聚晶金刚石(PCD)、立方氮化硼及聚晶立方氮化硼(CBN)。
切削速度亦随着刀具材料创新而从以前的12m/min提高到1200m/min以上。
超精密加工制造技术
超精密加工制造技术
超精密加工技术是指采用高精度机床加工超精密零件的技术,其中包括超精密磨削、超精密磨珩、超精密切削和超精密冲压等技术。
超精密加工技术可以减少零件的误差,使零件具有较小的尺寸和高精度的表面粗糙度,以及较大的精度和可靠性。
超精密加工技术的主要应用领域包括机械制造、电子信息、航天航空、船舶制造、汽车制造等,其主要用于生产超小型、精密度高的微型零件。
超精密加工技术的应用需要具备一定的技术要求,例如,机床要具有良好的稳定性、精度和加工速度;刀具要经过特殊处理,以提高切削效率和精度;切削液要经过特殊处理,以提高切削效果,减少加工时间;加工过程中要进行完善的程控制和检测,以保证加工的精度和可靠性等。
此外,在超精密加工技术中,还需要采用计算机支持的精密测量、数控技术以及激光切削、电子束加工技术等新技术来提高精密零件的加工精度和可靠性。
- 1 -。
现代超精密加工技术机械制造技术从提高精度与生产率两个方面同时迅速发展起来。
在提高生产率方面,提高自动化程度是各国致力发展的方向,近年来,从C N C到C I M S发展迅速,并且在一定范围内得到了应用。
从提高精度方面,从精密加工发展到超精密加工,这也是世界各主要发达国家致力发展的方向。
其精度从微米到亚微米,乃至纳米,其应用范围日趋广泛,在高技术领域和军用工业以及民用工业中都有广泛应用。
如激光核聚变系统、超大规模集成电路、高密度磁盘、精密雷达、导弹火控系统、惯导级陀螺、精密机床、精密仪器、录象机磁头、复印机磁鼓、煤气灶转阀等都要采用超精密加工技术。
它与当代一些主要科学技术的发展有密切的关系,是当代科学发展的一个重要环节,超精密加工技术的发展促进了机械、液压、电子、半导体、光学、传感器和测量技术以及材料科学的发展。
1.超精密加工技术概述超精密加工目前就其质来说是要实现以现有普通精密加工手段还达不到的高精度加工,就其量来说是要加工出亚微米乃至毫微米级的形状与尺寸赖皮并获得纳米级的表面粗糙度,但究竟多少精度值才算得上超精密加工一段要视零件大小、复杂程度以及是否容易变形等因素而定。
超精密加工主要包括超精密切削(车、铣) 超精密磨削、超精密研磨(机械研磨、机械化学研磨、研抛、非接触式浮动研磨、弹性发射加工等)以及超精密特种加工(电子束、离子束以及激光束加工等)。
上述各种方法均能加工出普通精密加工所达不到的尺寸精度、形状精度和表面质量。
每种超精密加工方法都是针对不同零件的要求而选择的。
1.1超精密切削加工超精密切削加工的特点是采用金刚石刀具。
金刚石刀具与有色金属亲和力小,其硬度、耐磨性以及导热性都非常优越,且能刃磨得非常锋利(刃口圆弧半径可小于ρ0.01 μm,实际应用一般ρ0,05 μm) 可加工出优于Ra0.01 μm的表面粗糙度。
此外,超精密切削加工还采用了高精度的基础元部件(如空气轴承、气浮导轨等)、高精度的定位检测元件(如光栅、激光检测系统等)以及高分辨率的微量进给机构。
超精密加工技术——试论述AFM,接触式粗糙度测量仪及白光干涉仪对表面粗糙度的测试原理及应用范围1.1 AFM对表面粗糙度的测试原理AFM 是一种类似于STM 的微观技术,它的许多元件和STM是共同的,如用于三维扫描的电压陶瓷系统以及反馈控制器等。
它和STM 最大的不同是用一個对微弱作用力极其敏感的微观臂针尖代替了STM隧道针尖,并以探测原子间的微小作用力(Vander Walls’ Force)代替了STM 的微小穿透电流。
因为这样所以AFM 不在像STM 局限于样品必须为导体才行,AFM 适用于导体和非导体,它的应用范围比STM 广泛的多,因此AFM为目前最被广泛应用在工业界的扫描探针式显微术。
但值得注意的是AFM 的解析度并沒有STM 来的的好!AFM的探针,一般是利用半导体工业的平面制程方法一体成行的。
为了使探针有原子级的解析度,探针乃呈角锥形,使顶端只具有一颗或数颗稳定原子;为使探针具高灵敏的原子力感应度,角锥形探针底部乃连接与一杠杆的前缘,此杠杆弯曲程度将反映出原子力的大小。
为测量弯曲度的大小,常用的方法是打一雷射光与悬臂上,而反射回來的雷射光則利用一能区分光点位置的感光二极体来接收,如此便能得到悬臂受原子力弯曲的程度,进而得到原子力图像。
(AFM工艺由美国与萨诸塞州Dynetics公司开发的Dynaflow磨料流加工工艺(AFM)是一种强迫含磨料的介质在工件表面或孔中往复运动的金属精加工工艺, 它具有广泛的应用前景。
AFM当最先出现时, 它主要用于清除金属件中难于到达的内通道及相交部位的毛刺。
它特别适用于加工难加工合金材料制成的结构复杂的航空元件。
近年来, 它已被用于精加工流体动力元件中表面粗糙度要求达0.127µm的不能接近的内表面。
AFM的基本原理:介质速度最大时, 磨光的能力也最大。
这里, 夹具的结构起着重要作用, 它决定着介质速度在何处最大。
夹具用于使工件定位和建立介质流动轨迹, 是精加工所选择部位而不触及相邻部位的关键所在。
超精密加工技术
——试论述AFM,接触式粗糙度测量仪及白光干涉仪对表面粗糙度的测试原理及应用范围
1.1 AFM对表面粗糙度的测试原理
AFM 是一种类似于STM 的微观技术,它的许多元件和STM是共同的,如用于三维扫描的电压陶瓷系统以及反馈控制器等。
它和STM 最大的不同是用一個对微弱作用力极其敏感的微观臂针尖代替了STM隧
道针尖,并以探测原子间的微小作用力(Vander Walls’ Force)代替了STM 的微小穿透电流。
因为这样所以AFM 不在像STM 局限于样品必须为导体才行,AFM 适用于导体和非导体,它的应用范围比STM 广泛的多,因此AFM为目前最被广泛应用在工业界的扫描探针式显微术。
但值得注意的是AFM 的解析度并沒有STM 来的的好!AFM的探针,一般是利用半导体工业的平面制程方法一体成行的。
为了使探针有原子级的解析度,探针乃呈角锥形,使顶端只具有一颗或数颗稳定原子;为使探针具高灵敏的原子力感应度,角锥形探针底部乃连接与一杠杆的前缘,此杠杆弯曲程度将反映出原子力的大小。
为测量弯曲度的大小,常用的方法是打一雷射光与悬臂上,而反射回來的雷射光則利用一能区分光点位置的感光二极体来接收,如此便能得到悬臂受原子力弯曲的程度,进而得到原子力图像。
(AFM工艺由美国与萨诸塞州Dynetics公司开发的Dynaflow磨料流加工工艺(AFM)是一种强迫含磨料的介质在工件表面或孔中往复运动的金属精加工工艺, 它
具有广泛的应用前景。
AFM当最先出现时, 它主要用于清除金属件中
难于到达的内通道及相交部位的毛刺。
它特别适用于加工难加工合金材料制成的结构复杂的航空元件。
近年来, 它已被用于精加工流体动力元件中表面粗糙度要求达0.127µm的不能接近的内表面。
AFM的基本原理:介质速度最大时, 磨光的能力也最大。
这里, 夹具的结构起着重要作用, 它决定着介质速度在何处最大。
夹具用于使工件定位和建立介质流动轨迹, 是精加工所选择部位而不触及相邻部位的关键所在。
AFM的分类﹕
(1)接触式﹕利用探针和待测物表面之原子力交互作用(一定要接触),此作用力(原子间的排斥力)很小,但由于接触面积很小,因此过大的作用力仍会损坏样品,尤其对软性材质,不过较大的作用力可得较佳分辨率,所以选择较适当的作用力便十分的重要。
由于排斥力对距离非常敏感,所以较易得到原子分辨率。
(2) 非接触式﹕为了解决接触式之AFM 可能破坏样品的缺点,便有非接触式之AFM 被发展出来,这是利用原子间的长距离吸引力来运
作,由于探针和样品没有接触,因此样品没有被破坏的问题,不过此力对距离的变化非常小,所以必须使用调变技术来增加讯号对噪声比。
在空气中由于样品表面水模的影响,其分辨率一般只有50nm,而在超高真空中可得原子分辨率。
(3)轻敲式﹕将非接触式AFM 改良,将探针和样品表面距离拉近,增大振福,使探针再振荡至波谷时接触样品由于样品的表面高低起伏,使的振幅改变,再利用接触式的回馈控制方式,便能取得高度影像。
分辨率界于接触式和非接触式之间,破坏样品之机率大为降低,且不受横向力的干扰。
不过对很硬的样品而言,针尖仍可能受损。