(整理)多元函数的极值.
- 格式:doc
- 大小:354.50 KB
- 文档页数:8
第八节多元函数的极值及其求法教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定方法、求极值方法,并能够解决实际问题。
熟练使用拉格朗日乘数法求条件极值。
教学重点:多元函数极值的求法。
教学难点:利用拉格朗日乘数法求条件极值。
教学内容:一、多元函数的极值及最大值、最小值定义设函数z = f (x,y)在点(x。
, y o)的某个邻域内有定义,对于该邻域内异于(X0,y0)的点,如果都适合不等式f (x, y)< f (X0, y o)则称函数f(X,y)在点(X0,y0)有极大值f(X0,y0) o如果都适合不等式f (X, y)> f (X o, y o)则称函数f(X,y)在点(X0,y。
)有极小值f(X0,y o).极大值、极小值统称为极值。
使函数取得极值的点称为极值点。
-2 , 2例1函数z=3X +4y在点(0, 0)处有极小值。
因为对于点(0, 0)的任一邻域内异于(0, 0)的点,函数值都为正,而在点(0, 0)处的函数值为零。
从2 2 几何上看这是显然的,因为点(0, 0, 0)是开口朝上的椭圆抛物面z = 3X+4y的顶点。
2 2例2函数z=rx +y在点(0, 0)处有极大值。
因为在点(0, 0)处函数值为零,而对于点(0, 0)的任一邻域内异于(0, 0)的点,函数值都为负,点(0, 0, 0)是位于xOy平面下方的锥面z = r x2+y2的顶点。
例3 函数z=x y在点(0, 0)处既不取得极大值也不取得极小值。
因为在点(0, 0)处的函数值为零,而在点(0, 0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。
定理1 (必要条件)设函数z= f(x,y)在点(X0,y0)具有偏导数,且在点y。
)处有极值,则它在该点的偏导数必然为零:(x0,f x(x°, y°) = 0, f y(x0,y0) =0证不妨设z=f(x,y)在点(x0,y0)处有极大值。
(整理)多元函数的极值及其求法.第六节多元函数的极值及其求法在实际问题中,我们会大量遇到求多元函数的最大值、最小值的问题. 与一元函数的情形类似,多元函数的最大值、最小值与极大值、极小值密切的联系. 下面我们以二元函数为例来讨论多元函数的极值问题.内容分布图示★ 引例★ 二元函数极值的概念例1-3★ 极值的必要条件★ 极值的充分条件★ 求二元函数极值的一般步骤★ 例4 ★ 例5★ 求最值的一般步骤★ 例6 ★ 例7★ 例8 ★ 例9 ★ 例10 ★ 例11★ 条件极值的概念★ 拉格郎日乘数法★ 例12★ 例13 ★ 例14 ★ 例15 ★ 例 16*数学建模举例★ 最小二乘法★ 线性规划问题★ 内容小结★ 课堂练习★ 习题6-6 ★ 返回内容提要:一、二元函数极值的概念定义1 设函数),(y x f z =在点),(00y x 的某一邻域内有定义, 对于该邻域内异于),(00y x 的任意一点),(y x , 如果),,(),(00y x f y x f <则称函数在),(00y x 有极大值;如果),,(),(00y x f y x f >则称函数在),(00y x 有极小值; 极大值、极小值统称为极值. 使函数取得极值的点称为极值点.定理1 (必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数, 且在点),(00y x 处有极值, 则它在该点的偏导数必然为零,即.0),(,0),(0000==y x f y x f y x (6.1)与一元函数的情形类似,对于多元函数,凡是能使一阶偏导数同时为零的点称为函数的驻点.定理2 (充分条件) 设函数),(y x f z =在点),(00y x 的某邻域内有直到二阶的连续偏导数,又,0),(00=y x f x .0),(00=y x f y 令.),(,),(,),(000000C y x f B y x f A y x f yy xy xx === (1) 当02>-B AC 时,函数),(y x f 在),(00y x 处有极值,且当0>A 时有极小值),(00y x f ;0(2) 当02<-B AC 时,函数),(y x f 在),(00y x 处没有极值;(3) 当02=-B AC 时,函数),(y x f 在),(00y x 处可能有极值,也可能没有极值.根据定理1与定理2,如果函数),(y x f 具有二阶连续偏导数,则求),(y x f z =的极值的一般步骤为:第一步解方程组,0),(,0),(==y x f y x f y x 求出),(y x f 的所有驻点;第二步求出函数),(y x f 的二阶偏导数,依次确定各驻点处A 、 B 、C 的值,并根据2B AC -的符号判定驻点是否为极值点. 最后求出函数),(y x f 在极值点处的极值.二、二元函数的最大值与最小值求函数),(y x f 的最大值和最小值的一般步骤为:(1)求函数),(y x f 在D 内所有驻点处的函数值;(2)求),(y x f 在D 的边界上的最大值和最小值;(3)将前两步得到的所有函数值进行比较,其中最大者即为最大值, 最小者即为最小值. 在通常遇到的实际问题中,如果根据问题的性质,可以判断出函数),(y x f 的最大值(最小值)一定在D 的内部取得,而函数),(y x f 在D 内只有一个驻点,则可以肯定该驻点处的函数值就是函数),(y x f 在D 上的最大值(最小值).三、条件极值拉格朗日乘数法前面所讨论的极值问题,对于函数的自变量一般只要求落在定义域内,并无其它限制条件,这类极值我们称为无条件极值. 但在实际问题中,常会遇到对函数的自变量还有附加条件的的极值问题. 对自变量有附加条件的极值称为条件极值.拉格朗日乘数法设二元函数),(y x f 和),(y x ?在区域D 内有一阶连续偏导数,则求),(y x f z =在D 内满足条件0),(=y x ?的极值问题,可以转化为求拉格朗日函数),(),(),,(y x y x f y x L λ?λ+=(其中λ为某一常数)的无条件极值问题.于是,求函数),(y x f z =在条件0),(=y x ?的极值的拉格朗日乘数法的基本步骤为:(1) 构造拉格朗日函数),(),(),,(y x y x f y x L λ?λ+=其中λ为某一常数;(2) 由方程组===+==+=0),(,0),(),(,0),(),(y x L y x y x f L y x y x f L y y y x x x ?λ?λ?λ解出λ,,y x , 其中x , y 就是所求条件极值的可能的极值点.注:拉格朗日乘数法只给出函数取极值的必要条件, 因此按照这种方法求出来的点是否为极值点, 还需要加以讨论. 不过在实际问题中, 往往可以根据问题本身的性质来判定所求的点是不是极值点.拉格朗日乘数法可推广到自变量多于两个而条件多于一个的情形:四、数学建模举例例题选讲:二元函数极值的概念例1(讲义例1)函数2232y x z +=在点(0, 0)处有极小值. 从几何上看,2232y x z +=表示一开口向上的椭圆抛物面,点)0,0,0(是它的顶点.(图7-6-1).例2(讲义例2)函数22y x z +-=在点(0,0)处有极大值. 从几何上看,22y x z +-=表示一开口向下的半圆锥面,点)0,0,0(是它的顶点.(图7-6-2). 例3(讲义例3)函数22x y z -= 在点(0,0)处无极值. 从几何上看,它表示双曲抛物面(马鞍面)(图7-6-3)例4(讲义例4)求函数x y x y x y x f 933),(2233-++-=的极值.例5 证明函数y y ye x e z -+=cos )1(有无穷多个极大值而无一极小值.二元函数的最大值与最小值例6(讲义例5)求函数y xy x y x f 22),(2+-=在矩形域 |),{(y x D =}20,30≤≤≤≤y x上的最大值和最小值.。
第八节 二元函数的极值 一、 二元函数的极值 1. 定义2. 极值存在的必要条件:定理:如果函数()y x f ,在点()00,y x 处有极值,且两个一阶偏导数存在,则有()0,00='y x f x()0,00='y x f y驻点:满足()0,00='y x f x()0,00='y x f y 的点注:驻点可能是极值点,极值点不一定是驻点,极值点有可能是偏导数不存在的点。
例1求()22,y x y x f +=的极值例2求()222,yx R y x f --=的极值例3讨论()1,22+-=x y y x f 是否有极值。
注:驻点不一定是极值点。
3. 极值存在的充分条件:定理 如果函数()y x f ,在点()00,y x 的某一邻域内有连续的二阶偏导数,且()00,y x 是它的驻点,设()A y x f xx=''00, ()B y x f xy=''00,()C y x f yy=''00,ACB -=∆2①00<<∆A 且,则()00,y x f 是极大值。
②00><∆A 且,则()00,y x f 是极小值。
③0>∆,则()00,y x f 不是极值。
④0=∆ ,需另法判断。
例4求函数()5126,23+-+-=y x x y y x f 的极值。
注:极值的一般求法: ①解方程组()()⎩⎨⎧='='0,0,y x f y x f y x求出一切驻点;②对每一个驻点,求出()A y x f xx=''00, ()B y x f xy=''00,()C y x f yy=''00,③对每一驻点,由判别式法判断。
4.多元函数最值的求法:在实际应用中,只有一个驻点,即为所求的点。
例 5 要造一个容量一定的长方体箱子,问选择怎样的尺寸,才能使所用的材料最省?例6 某工厂生产两种产品I 与II ,出售单价分别为10元与9元,生产x 单位的产品I 与y 单位的产品II 的总费用是:())(3301.03240022元y xy x y x +++++求取得最大利润时,两种产品的产量各多少?二、 条件极值与拉格朗日乘数法 无条件极值:自变量x 与y 相互独立 条件极值:有约束条件 ()0,=y x g拉格朗日乘数法 (一)()()⎩⎨⎧→=→=约束条件函数0,,y x g y x f z①构造拉格朗日函数()()()y x g y x f y x F ,,,,λλ+=②解方程组()⎪⎩⎪⎨⎧=='='+'='='+'='0,00y x g F g f F g f F y y y x x x λλλ解出的()y x ,可能为极值。
实验六 多元函数的极值【实验目的】1. 多元函数偏导数的求法。
2. 多元函数自由极值的求法 3. 多元函数条件极值的求法.4. 学习掌握MATLAB 软件有关的命令。
【实验内容】求函数32824-+-=y xy x z 的极值点和极值【实验准备】1.计算多元函数的自由极值对于多元函数的自由极值问题,根据多元函数极值的必要和充分条件,可分为以下几个步骤:步骤1.定义多元函数),(y x f z =步骤2.求解正规方程0),(,0),(==y x f y x f y x ,得到驻点步骤3.对于每一个驻点),(00y x ,求出二阶偏导数,,,22222yzC y x z B x z A ∂∂=∂∂∂=∂∂= 步骤4. 对于每一个驻点),(00y x ,计算判别式2B AC -,如果02>-B AC ,则该驻点是极值点,当0>A 为极小值, 0<A 为极大值;,如果02=-B AC ,判别法失效,需进一步判断; 如果02<-B AC ,则该驻点不是极值点.2.计算二元函数在区域D 内的最大值和最小值设函数),(y x f z =在有界区域D 上连续,则),(y x f 在D 上必定有最大值和最小值。
求),(y x f 在D 上的最大值和最小值的一般步骤为:步骤1. 计算),(y x f 在D 内所有驻点处的函数值;步骤2. 计算),(y x f 在D 的各个边界线上的最大值和最小值;步骤3. 将上述各函数值进行比较,最终确定出在D 内的最大值和最小值。
3.函数求偏导数的MATLAB 命令MATLAB 中主要用diff 求函数的偏导数,用jacobian 求Jacobian 矩阵。
可以用help diff, help jacobian 查阅有关这些命令的详细信息【实验方法与步骤】练习1 求函数32824-+-=y xy x z 的极值点和极值.首先用diff 命令求z 关于x,y 的偏导数>>clear; syms x y; >>z=x^4-8*x*y+2*y^2-3; >>diff(z,x) >>diff(z,y)结果为ans =4*x^3-8*y ans =-8*x+4*y 即.48,843y x yz y x x z +-=∂∂-=∂∂再求解正规方程,求得各驻点的坐标。
一般方程组的符号解用solve 命令,当方程组不存在符号解时,solve 将给出数值解。
求解正规方程的MATLAB 代码为:>>clear;>>[x,y]=solve('4*x^3-8*y=0','-8*x+4*y=0','x','y')结果有三个驻点,分别是P(-2,-4),Q(0,0),R(2,4).下面再求判别式中的二阶偏导数:>>clear; syms x y;>>z=x^4-8*x*y+2*y^2-3; >>A=diff(z,x,2) >>B=diff(diff(z,x),y) >>C=diff(z,y,2)结果为A=2*x^2 B =-8 C =4由判别法可知)2,4(--P 和)2,4(Q 都是函数的极小值点,而点Q(0,0)不是极值点,实际上,)2,4(--P 和)2,4(Q 是函数的最小值点。
当然,我们可以通过画函数图形来观测极值点与鞍点。
>>clear;>>x=-5:0.2:5; y=-5:0.2:5; >>[X,Y]=meshgrid(x,y);>>Z=X.^4-8*X.*Y+2*Y.^2-3;>>mesh(X,Y,Z)>>xlabel('x'),ylabel('y'),zlabel('z')结果如图6.1图6.1 函数曲面图可在图6.2种不容易观测极值点与鞍点,这是因为z的取值范围为[-500,100],是一幅远景图,局部信息丢失较多,观测不到图像细节.可以通过画等值线来观测极值.>>contour(X,Y,Z, 600)>>xlabel('x'),ylabel('y')结果如图6.2图6.2 等值线图由图6.2可见,随着图形灰度的逐渐变浅,函数值逐渐减小,图形中有两个明显的极小值点-P和)2,4(Q.根据提梯度与等高线之间的关系,梯度的方向是等高线的法方向,且指(-,4)2Q周围没有等高线环绕,不向函数增加的方向.由此可知,极值点应该有等高线环绕,而点)0,0(是极值点,是鞍点.练习2 求函数xy z =在条件1=+y x 下的极值..构造Lagrange 函数)1(),(-++=y x xy y x L λ求Lagrange 函数的自由极值.先求L 关于λ,,y x 的一阶偏导数>>clear; syms x y k >>l=x*y+k*(x+y-1); >>diff(l,x) >>diff(l,y) >>diff(l,k)得,1,,-+=∂∂+=∂∂+=∂∂y x L x y L y x L λλλ再解正规方程 >>clear; syms x y k>>[x,y,k]=solve('y+k=0','x+k=0','x+y-1=0','x','y','k')得,21,21,21-===λy x 进过判断,此点为函数的极大值点,此时函数达到最大值.练习3 抛物面22y x z +=被平面1=++z y x 截成一个椭圆,求这个椭圆到原点的最长与最短距离.这个问题实际上就是求函数222),,(z y x z y x f ++=在条件22y x z +=及1=++z y x 下的最大值和最小值问题.构造Lagrange 函数)1()(),,(22222-+++-++++=z y x z y x z y x z y x L μλ求Lagrange 函数的自由极值.先求L 关于μλ,,,,z y x 的一阶偏导数>>clear; syms x y z u v>>l=x^2+y^2+z^2+u*(x^2+y^2-z)+v*(x+y+z-1); >>diff(l,x) >>diff(l,y) >>diff(l,z) >>diff(l,u) >>diff(l,v)得μλμλμλ+-=∂∂++=∂∂++=∂∂z zL y y y L x x x L 2,22,221,22-++=∂∂-+=∂∂z y x L z y x L μλ 再解正规方程>>clear;>>[x,y,z,u,v]=solve('2*x+2*x*u+v=0','2*y+2*y*u+v=0','2*z-u+v=0', 'x^2+y^2-z=0','x+y+z-1=0','x','y','z','u','v')得.32,231,33117,3353 =±-==±-=±-=z y x μλ 上面就是Lagrange 函数的稳定点,求所求的条件极值点必在其中取到。
由于所求问题存在最大值与最小值(因为函数f 在有界闭集}1,:),,{(22=++=+z y x z y x z y x ,上连续,从而存在最大值与最小值),故由359.)32,231,231(=±-±-f 求得的两个函数值,可得椭圆到原点的最长距离为359+,最短距离为359-。
练习4 求函数72422+--+=y x y x z 在上半圆0,1622≥≤+y y x 上的最大值和最小值。
首先画出等高线进行观测,相应的MATLAB 程序代码为:>>clear;>>x=-4:0.1:4; y=-4:0.1:4; >>[X,Y]=meshgrid(x,y); >>Z=X.^2+Y.^2-4*X-2*Y+7; >>contour(X,Y,Z,100) >>xlabel('x'),ylabel('y')结果如图6.3观测图6.3可看出,在区域D 内部有唯一的驻点,大约位于)1,2(在该点处汉书趣的最小值。
在圆弧与直线的交点处取得最大值,大约位于)2,4(-。
下面通过计算加以验证。
求函数在区域D 内的驻点,计算相应的函数值。
求z 关于x,y 的偏导数>>clear; syms x y; >>z=x^2+y^2-4*x-2*y+7; >>diff(z,x) >>diff(z,y)结果得,22,42-=∂∂-=∂∂y yz x x z 解正规方程 >>clear; [x,y]=solve('2*x-4=0','2*y-2=0','x','y')得驻点为(2,1),相应的函数值为2。
求函数在直线边界44,0≤≤-=x y 上的最大值和最小值。
将0=y 代入原函数,则二元函数变为一元函数.44,742≤≤-+-=x x x z首先观测此函数图形,相应的MATLAB 程序代码为:>>x=-4:0.01:4; y=x.^2-4*x+7; >>plot(x,y);>>xlabel('x'),ylabel('z')结果如图6.4所示由图6.4可看出,当4-=x 时函数取得最大值,2=x 时函数取得最小值。
下面用计算验证。
对函数求导>>clear; syms x ; >>z=x^2-4*x+7; diff(z,x) 得42-=x dxdz,可知驻点为2=x ,而边界点为4±=x ,计算着三个点上的函数值可得当4-=x 时函数取得最大值39,2=x 时函数取得最小值3。
求函数在圆弧边界线上0,1622≥≤+y y x 的最大值和最小值。
此边界线可用参数方程π≤≤==t t y t x 0,sin 4,cos 4表示。