多元函数的极值及最值(参考)
- 格式:ppt
- 大小:1.76 MB
- 文档页数:26
多元函数的极值与最值1.求函数z=x3+y3−3xy的极值。
步骤:1)先求驻点(另偏导数等于0,联立)2)再求ABCA=f xx(x0, y0)B=f xy(x0, y0)C=f yy(x0, y0)3)(1)当B2-AC<0时,f(x,y)在点(x o,y o)处取得极值,且当A<0时取得极大值f(x o,y o),当A>0时取得极小值f(x o,y o),当A<0时取得极大值f(x o,y o);(2)当B2-AC>0时,f(x o, y o )不是极值;(3)当B2-AC=0时,f(x o,y o)是否为极值不能确定,需另做讨论.=3x2−3y=0解:∂z∂x∂z=3y2−3x=0∂y联立得驻点为(0,0),(1,1)A=f xx(x0, y0)=6x(对x求偏导,再对x求偏导)B=f xy(x0, y0)=-3(对x求偏导,再对y求偏导)C=f yy(x0, y0)=6y(对y求偏导,再对y求偏导)在点(0,0)处,A=0,B=-3,C=0,由B2-AC=9>0,故在此处无极值。
在点(1,1)处,A=6,B=-3,C=0, B2-AC=-27<0,又因为A>0,故在此处为极小值点,极小值为F (1, 1) =x3+y3−3xy=−12.求函数f(x, y)=x2+(y−1)2的极值。
解:f x’=2x=0F y’=2y-2=0联立得驻点为(0,1)A=f xx(x0, y0) =2B=f xy(x0, y0) =0C=f yy(x0, y0) =2在点(0,1)处A=2,B=0,C=2由B2-AC=-4<0,又因为A>0,故在此处为极小值点,极小值为F (0, 1) = 03.制造一个容积为a的无盖长方体,使之用料最少,则长宽高为多少?解:另长宽高分别为x, y, z故xyz=a, z=axyS=xy+2(x axy +y axy)=xy+2(ay+ax)S x’=y+2(−ax2)=0S y ’= x+2(−ay2)=0解得当X=Y=Z=3√2a的时候用料最少。
多元函数的极值与最值多元函数是在多个自变量的基础上建立起来的函数,其中每个自变量可以取不同的取值范围。
函数中的每个自变量都有可能对因变量产生影响,因此在寻找该类函数的极值和最值时,需要使用二元函数求导以及极值的方法进行研究分析。
本文将详细阐述多元函数的极值与最值的相关概念和定理,并探讨如何应用这些方法进行问题解决。
一、多元函数的极值和最值1. 极值极值是指一个函数在可定义范围内的自变量取值中,使得该函数取得最大值或者最小值的某个特定点。
当函数在该点处的导数为0时,这个点被称为函数的驻点;如果在该点处导数变号,那么该点就是函数的极值点。
因此,求多元函数的极值就需要用到多元函数求导的技巧,从而找到导函数为0的点。
2. 最值最值是指一种特殊的极值,它是多元函数在所有可定义自变量取值范围内所取得的最大值或最小值。
一般来说,函数的最值不一定是在驻点处取得,而是可能在该函数的可定义区间的极点或边界处取得。
二、多元函数的求导方法多元函数的求导方法一般可以通过偏函数求导的方式实现。
即,将多元函数转化为一组由每个自变量为变量的一元函数,再对每个一元函数分别求导。
由于多元函数的求导方法较为复杂,因此需要有以下几个步骤:1. 将多元函数转化为一系列一元函数可以将多元函数按照自变量分别取值范围确定的函数写成形如f(x1,x2,...,xn) = y的形式。
其中,x1,x2,...,xn表示自变量,y为因变量。
2. 对每一个自变量求偏导数在多元函数中,并不是所有自变量对函数的影响都是一样的。
因此,我们必须分别计算每个自变量的导数,即偏导数。
在对每个自变量求偏导数时,其他变量都被视为常量,只对当前变量进行求导操作。
3. 求出最终导数表达式在求出所有的偏导数之后,需要根据求导规则求出最终的导数表达式。
为了求出多元函数的驻点,需要将各个偏导数求出的结果联立,并得到所有自变量为未知数的方程组。
4. 解方程组求得极值或最值最后,我们可以使用解线性方程组的方法,从而求得多元函数的极值或最值点。
多元函数的极值点与最值问题一、引言在数学中,多元函数的极值点与最值问题是一个重要且常见的研究课题。
通过寻找函数取得极值的点以及确定函数的最值,可以帮助我们更好地理解和分析多元函数的特性。
本文将介绍多元函数的极值点与最值问题的基本概念和方法。
二、多元函数的极值点1. 极值点的定义对于一个多元函数而言,极值点是指在定义域内存在的局部极大值或局部极小值点。
具体地说,设函数f(x₁, x₂,..., xₙ)在点(a₁, a₂,..., aₙ)处有定义,如果存在一个邻域N(a₁, a₂,..., aₙ),对于任意点(x₁, x₂,..., xₙ)∈N(a₁, a₂,..., aₙ),有f(x₁, x₂,..., xₙ)≤f(a₁, a₂,..., aₙ)或f(x₁, x₂,..., xₙ)≥f(a₁, a₂,..., aₙ),则称点(a₁, a₂,..., aₙ)是函数f(x₁, x₂,..., xₙ)的一个极值点。
2. 寻找极值点的方法(1)求偏导数为了确定函数的极值点,我们可以先求出函数的偏导数。
对于一个具有n个自变量的函数,可以分别对每个自变量求偏导数,将得到的偏导数方程组称为梯度向量。
(2)解偏导数方程组接下来,我们需要解偏导数方程组,即找到梯度向量的零点。
这些零点就是函数可能的极值点。
3. 极值点的分类根据二阶偏导数的符号,可以将极值点分为以下几种情况:(1)二阶偏导数恒正:该点为局部极小值点;(2)二阶偏导数恒负:该点为局部极大值点;(3)二阶偏导数存在正负交替:该点即可能为局部极小值点,也可能为局部极大值点;(4)二阶偏导数不存在:需要通过额外的分析判断。
三、多元函数的最值问题1. 最值的定义对于一个多元函数而言,最大值和最小值是函数在定义域内取得的极值中的特殊点。
具体地说,设函数f(x₁, x₂,..., xₙ)在定义域D内有定义,如果对于任意(x₁, x₂,..., xₙ)∈D,有f(x₁, x₂,..., xₙ)≤f(a₁,a₂,..., aₙ),则称函数f(x₁, x₂,..., xₙ)在点(a₁, a₂,..., aₙ)处取得最大值。
多元函数极值与最值在微积分中,我们学习了一元函数的极值与最值问题。
而在现实生活中,很多问题涉及到多个变量的函数,即多元函数。
对于多元函数来说,我们也需要研究其极值与最值问题。
本文将介绍多元函数的极值与最值的求解方法,并通过几个例子进行说明。
1. 极值与最值的定义在进行多元函数的极值与最值问题的求解之前,首先需要了解各种极值与最值的定义。
(这里插入合适的图表和示意图)1.1 局部极值:若对于一个给定的多元函数,存在某个点使得在该点的某个邻域内,函数值在该点之上或之下都小于等于(或大于等于)该点的函数值,那么称该点是该函数的一个局部极值点。
1.2 全局极大值与极小值:若对于一个给定的多元函数,如果函数的取值在定义域上的每个点上都大于等于(或小于等于)其它点,那么称该函数在该定义域上有全局极大值或极小值。
1.3 最大值与最小值:若对于一个给定的多元函数,对于其定义域上的每个点,函数值都小于等于(或大于等于)某个常数,那么称该常数为该函数在定义域上的最小值或最大值。
2. 求解方法接下来,我们将介绍两种常用的方法来求解多元函数的极值与最值问题。
2.1 梯度法梯度法是一种常用的用于求解多元函数极值的方法。
它利用函数在某个点的梯度方向可以指示函数值增大或减小的趋势。
具体步骤如下:(这里插入梯度法求解极值的算法步骤)2.2 拉格朗日乘子法拉格朗日乘子法是另一种常用的求解多元函数极值与最值的方法。
它适用于含有约束条件的优化问题,即在满足一定条件下求取函数的极值或最值。
具体步骤如下:(这里插入拉格朗日乘子法求解极值的算法步骤)3. 实例分析为了更好地理解多元函数的极值与最值问题的求解方法,我们将通过几个实例来进行分析。
3.1 示例一:二元函数我们考虑一个二元函数示例,如下所示:(这里插入具体示例的函数表达式和图形展示)通过梯度法和拉格朗日乘子法,我们可以求解该函数的极值与最值,并得出结果。
3.2 示例二:三元函数我们再考虑一个三元函数示例,如下所示:(这里插入具体示例的函数表达式和图形展示)同样地,我们可以利用梯度法和拉格朗日乘子法来求解该函数的极值与最值。
大学数学多元函数的极值与最值多元函数是数学领域中的重要概念之一,研究多元函数的极值与最值对于优化问题的解决具有重要作用。
在本文中,将介绍多元函数的极值与最值的概念、计算方法以及应用。
一、多元函数的极值与最值概念多元函数是指涉及多个自变量和依赖变量的函数。
对于多元函数而言,极值即为函数在某个特定点上取得的最大值或最小值。
最值则是指函数在整个定义域上取得的最大值和最小值。
二、求多元函数的极值与最值的方法1. 隐函数求导法当函数无法直接表示为显式解析式时,可以通过隐函数求导的方法来求解极值。
该方法主要依靠链式法则来计算导数,进而确定极值的位置。
2. 梯度法梯度法是一种常用的优化算法,可以用来求解多元函数的极值问题。
其基本思想是沿着函数值下降最快的方向进行搜索,直到找到极值点。
3. 条件极值对于多元函数在一定条件下的极值问题,可以利用拉格朗日乘数法求解。
该方法通过引入约束条件,将多元函数的极值问题转化为带约束条件的无条件极值问题。
三、多元函数极值与最值的应用1. 经济学中的应用多元函数的极值与最值在经济学中有着广泛的应用。
以生产成本函数为例,通过求取其极小值可以得到最低成本的生产方案,帮助企业提高效益。
2. 工程优化问题在工程领域中,多元函数的极值与最值的求解能够帮助工程师找到最优设计方案,减少资源的浪费,提高整体效益。
3. 金融学中的投资问题在金融学中,多元函数的极值与最值的计算可以被应用于投资组合方面。
通过求取最大收益或最小风险的投资组合,可以帮助投资者制定合理的投资策略。
四、总结通过本文对大学数学多元函数的极值与最值的介绍,我们了解了多元函数极值的概念以及求解方法。
多元函数的极值与最值在实际问题中有着广泛应用,对于优化问题的解决具有重大意义。
因此,学好多元函数的极值与最值的相关知识,对于我们深入理解数学的应用和发展具有重要意义。
多元函数的极值与最值多元函数是指含有多个变量的函数。
在数学中,多元函数的极值和最值是研究函数在定义域内取得的最大值或最小值的问题。
本文将探讨多元函数的极小值与极大值,以及如何确定极值的方法。
1. 极值的定义和判断方法多元函数的极大值和极小值定义如下:对于函数f(x1, x2, ..., xn),若存在一个点P(x1, x2, ..., xn)使得在点P的某个邻域内,对于任意(x1', x2', ..., xn'),f(x1', x2', ..., xn') ≤ f(x1, x2, ..., xn),则称f(x1, x2, ..., xn)在点P取得极小值;若存在一个点Q(x1, x2, ..., xn)使得在点Q的某个邻域内,对于任意(x1', x2', ..., xn'),f(x1', x2', ..., xn') ≥ f(x1, x2, ..., xn),则称f(x1, x2, ..., xn)在点Q取得极大值。
判断函数极值的方法常用的有以下几种:- 一阶导数法:求出函数的所有一阶偏导数,并解方程组求出所有临界点,再通过二阶偏导数或利用一阶导数的符号变化判断临界点的性质(极大值或极小值)。
- 二阶导数法:计算函数的所有二阶偏导数,并判断二阶导数的符号确定临界点的性质。
- 极值判别法:利用Hessian矩阵来判断函数的极值,若Hessian矩阵是正定的,则函数取得极小值;若Hessian矩阵是负定的,则函数取得极大值。
2. 寻找多元函数的最值寻找多元函数的最值的方法有以下几种:- 符号法:将函数在定义域边界上的取值代入函数,通过比较得到最大值和最小值。
- 拉格朗日乘数法:当函数的自变量受到一定的限制条件时,可以利用拉格朗日乘数法来求解函数的最值。
- 最优化算法:通过迭代计算的方式,利用数值优化算法来求解函数的最值,例如梯度下降法、牛顿法等。