人教版九年级数学上册《一元二次方程》教案
- 格式:doc
- 大小:54.50 KB
- 文档页数:2
一元二次方程教学设计【教材分析】本节内容是人民教育出版社义务教育课程标准实验教科书第二十一章第一节一元二次方程,以生活中的实际问题为背景,引出一元二次方程的概念,让学生掌握一元二次方程的特点,归纳出一元二次方程的一般形式,给出一元二次方程的根的概念。
本节内容是在前面所学方程、一元一次方程、整式的基础上进行学习,也是后面学习二次函数的一个基础,起到了承上启下的作用。
此外,二元一次方程在中考中占有一定的比重,而本节这些概念是全章后继内容的基础。
在生活中解决实际问题时一元二次方程也有着广泛的应用,充分体现着数学来源于生活,又服务于生活的基本思想。
【学情分析】从心里特征来看,我所教学的学生是我校初三学生,经过两年的学习,大部分学生知识经验丰富了许多,他们的智力发展已得到了大幅度提升,具备了较强的验算和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
从认知情况来看,在本节课之前学生已经学习了方程、一元一次方程、一元二次方程、分式方程、整式,在八年级下学期勾股定理一节中接触过一元二次方程,这都为一元二次方程概念和一般式的教学提供了基础;同时学生已有了从实际问题中找等量关系的基本能力,因此在教学中以实际问题引出,通过学生自主探究、合作交流等形式主动建构知识,体验学习数学的成就感。
【设计思想】建构主义学习理论认为,学习是学生积极主动地建构知识的过程,因此,应该让学生在具体的问题情境中经历知识的形成和发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构。
根据课标要求,本课时要让学生体验从具体情境中抽象出数学符号的过程,理解方程,并通过用方程表述数量关系的过程,体会模型的思想,建立符号意识。
因此,本课时我主要通过丰富的实例,如“年龄问题”、“如何制作方盒”、“怎样组织排球赛”等问题,建立一元二次方程,让学生通过观察归纳出一元二次方程的有关概念,从中体会方程的模型思想。
21.1 一元二次方程一、学习目标1、正确理解一元二次方程的意义,并能判断一个方程是否是一元二次方程;2、知道一元二次方程的一般形式是20(ax bx c a b c ++=、、是常数,0a ≠) ,能说出二次项及其系数,一次项及其系数和常数项;3、理解并会用一元二次方程一般形式中a ≠0这一条件;4、通过问题情境,进一步体会学习和探究一元二次方程的必要性,体会数学知识来源于生活,又能为生活服务,从而激发学习热情,提高学习兴趣。
重难点关键 1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.知识准备1、只含有_____个未知数,且未知数的最高次数是_______的整式方程叫一元一次方程2、方程2(x+1)=3的解是____________3、方程3x+2x=0.44含有____个未知数,含有未知数项的最高次数是_____,它____ (填“是”或“不是”)一元一次方程。
一、情境导入参加一次集会,如果有x个人,每两人之间都握一次手,共握了21次手,请你列出符合上述条件的方程,并判断方程是什么类型?二、合作探究探究点一:一元二次方程的概念【类型一】一元二次方程的识别下列选项中,是关于x的一元二次方程的是( )A.x2+1x2=1 B.3x2-2xy-5y2=0C.(x-1)(x-2)=3 D.ax2+bx+c=0解析:选项A中的方程分母含有未知数,所以它不是一元二次方程;选项B中的方程含有2个未知数,所以它不是一元二次方程;当a=0时,选项D中的方程不含二次项,所以它不是一元二次方程,排除A、B、D,故选C.方法总结:判断一个方程是不是一元二次方程,必须将方程化简后再进行判断.一元二次方程的三个条件:一是方程两边都是整式;二是只含有一个未知数;三是未知数的最高次数是2.上述三个条件必须同时满足,缺一不可.【类型二】利用一元二次方程的概念确定字母系数关于x 的方程(k +1)x|k -1|+kx +1=0是一元二次方程,则k 的值为________.解析:由题意得⎩⎪⎨⎪⎧|k -1|=2,k +1≠0,∴⎩⎪⎨⎪⎧k =3或k =-1,k ≠-1.∴k =3.方法总结:由一元二次方程的概念满足的条件:未知数最高次数为2,构造方程,解出字母取值,并利用二次项系数不为0排除使二次项系数为0的字母取值,从而确定字母取值.探究点二:一元二次方程的一般形式将下列方程化为一元二次方程的一般形式,并指出它们的二次项系数、一次项系数及常数项.(1)3x2-2=5x;(2)9x2=16;(3)2x(3x+1)=17;(4)(3x-5)(x+1)=7x-2.解析:先分别将各方程化为一般形式,再指出它们的各部分的名称.解:(1)方程化为一般形式为3x2-5x-2=0,二次项系数是3,一次项系数是-5,常数项是-2.(2)方程化为一般形式为9x2-16=0,二次项系数是9,一次项系数是0,常数项是-16.(3)方程化为一般形式为6x2+2x-17=0,二次项系数是6,一次项系数是2,常数项是-17.(4)方程化为一般形式为3x2-9x-3=0,二次项系数是3,一次项系数是-9,常数项是-3.方法总结:求一元二次方程的各项系数和常数项,必须先把方程化为一般形式,特别要注意确认各项系数和常数项一定要包括前面的符号.探究点三:列一元二次方程(2015·深圳一模)在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m 2.已知床单的长是2m ,宽是1.4m ,求花边的宽度.请根据题意列出方程.解析:设花边的宽度为x m ,则由图可知剩下部分的长为(2-2x )m ,剩下部分的宽为(1.4-2x )m.∵剩下部分面积为1.6m 2,∴可列方程(2-2x )(1.4-2x )=1.6.方法总结:列方程最重要的是审题,只有理解题意,才能恰当的设出未知数,准确地找出已知量和未知量之间的等量关系,正确的列出方程.探究点四:一元二次方程的解 【类型一】判断一元二次方程的解方程x 2-2x =0的解为( )A .x 1=1,x 2=2B .x 1=0,x 2=1C .x 1=0,x 2=2D .x 1=12,x 2=2解析:把各选项中未知数的值分别代入方程的左右两边,只有选项C 中的x 1=0,x 2=2都能使方程x2-2x=0的左右两边相等,所以选C.方法总结:判断一个未知数的值是否是一元二次方程的解,可以把未知数的值代入方程左右两边,能使方程左右两边相等的未知数的值就是一元二次方程的解.【类型二】利用一元二次方程的解的意义求字母或代数式的值已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是( )A.1 B.-1C.0 D.无法确定解析:根据方程的根的概念,直接代入方程,左右两边相等,但考虑到是一元二次方程,所以二次项系数不能等于0.由此得,(m-1)+1+1=0,解得m=-1,此时m-1=-2≠0,∴m=-1.故选B.方法总结:方程的根是能使方程左右两边相等的未知数的值,在涉及方程根的题目中,我们一般是把这个根代入方程左右两边转化为求待定系数的方程来解决问题.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为数学问题,体会数学建模的思想方法.达标检测1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个B.2个C.3个D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为().A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.一元二次方程的一般形式是__________.4.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.5.关于x 的方程(a-1)x 2+3x=0是一元二次方程,则a 的取值范围是________.6.方程x (4x+3)=3x+1化为一般形式为_____________,它的二次项系数是______________,一次项系数是_______________,常数项是____________________.7、(1)方程n nx x +=-72中,有一个根为2,则n 的值.(2)一元二次方程()01122=-+++m x x m 有一个解为0,试求方程210m -=的解。
21. 1 一元二次方程教课内容一元二次方程观点及一元二次方程一般式及相关观点. 教课目的认识一元二次方程的观点;一般式 ax 2+bx+c=0 ( a ≠ 0)及其派生的观点; ?应用一元二次方程观点解决一些简单 题目.1.经过设置问 题,成立数学模型, ?模拟一元一次方程观点给一元二次方程下定义. 2.一元二次方程的一般形式及其相关观点. 3.解决一些观点性的 题目. 4.态度、感情、价值观5.经过生活学习数学,并用数学解决生活中的问 题来激发学生的学习热忱.重难点要点1.?要点:一元二次方程的观点及其一般形式和一元二次方程的相关观点并用这些观点解决问 题.2.难点打破:经过提出问 题,成立一元二次方程的数学模型, ?再由一元一次方程的观点迁徙到一元二次方程的观点.教课过程 一、复习引入问题 1:( 1)什么是一元一次方程?( 2)一元一次方程的一般形式是什么?问题 2:学生议论沟通达成前言: 要设计一座 2 m 高的人体塑像, 使塑像的上部 (腰以上) 与下部(腰以下)的高度比,等于下部与所有的高度比,塑像的下部应设计为多高?设塑像下部高 x m ,于是得方程。
问题 3:如图,有一块矩形铁皮,长 100 cm ,宽 50 cm ,在它的四角各切一个相同的正方形, 而后将周围突出部分折起, 就能制作一个无盖方盒, 假如要制作的无盖方盒的底面积为 3 600cm 2,那么铁皮各角应切去多大的正方形?设切去的正方形的边长为 x cm ,则盒底的长为( 100- 2x )cm ,宽为( 50- 2x )cm ,依据方盒的底面积为3 600 cm 2,得。
问题 4:要组织一次排球邀请赛,参赛的每两个队之间都要竞赛一场,依据场所和时间等条件,赛程计划安排 7 天,每日安排 4 场竞赛,竞赛组织者应邀请多少个队参赛?设应邀请 x 个队参赛,每个队要与其余( x - 1)个队各赛 1 场,因为甲队对乙队的竞赛和乙队对甲队的竞赛是同一场竞赛,所以所有竞赛共1x x 1场.可列方程为。
课题:22.1一元二次方程一、教学目标1.经历一元二次方程概念的形成过程,知道什么是一元二次方程.2.会把一元二次方程化成一般形式,并知道各项及系数的名称.二、教学重点和难点1.重点:一元二次方程的概念.2.难点:把一元二次方程化成一般形式.三、教学过程(一)创设情境,导入新课师:(板书:3x-5=0)这是一个什么方程?(稍停)3x-5=0是一个一元一次方程(板书:一元一次方程).师:哪位同学知道什么样的方程是一元一次方程?生:……(让几名同学回答)师:(指准3x-5=0)只含有一个未知数,并且未知数的次数是1的方程,叫做一元一次方程.(指准“一元一次方程”)一元指的是含有一个未知数,一次指的是未知数的次数是1.师:一元一次方程是我们在初一已经学过的,从今天开始,我们要学习一种新的方程,叫做一元二次方程(板书:一元二次方程).(二)尝试指导,讲授新课师:什么样的方程是一元二次方程?(板书:x2-x=56)x2-x=56是一个一元二次方程,(板书:4x2-9=0)4x2-9=0也是一元二次方程,(板书:x2+3x=0)x2+3x=0也是一元二次方程,(板书:3y2-5y=7)3y2-5y=7也是一元二次方程.师:从这些一元二次方程,哪位同学能概括什么样的方程是一元二次方程?(等到有一部分同学举手再叫学生)生:……(多让几名同学回答)师:(指准x2-x=56)只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程.(师出示下面的板书)只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程.师:请大家把一元二次方程的定义读两遍.(生读)师:根据一元二次方程的定义,(指准方程)我们很容易判断x2-x=56,4x2-9=0,x2+3x=0,3y2-5y=7这些方程都是一元二次方程.(板书:3x(x-1)=5(x+2))现在请大家判断,这个方程是不是一元二次方程?为什么?(让生思考一会儿)生:……(让几名学生发表看法)师:把这个方程两边去括号,得到3x2-3x=5x+10(边讲边板书:3x2-3x=5x+10),去括号后容易看出,这个方程是一元二次方程.师:(指3x2-3x=5x+10)这个方程还可以继续整理,怎么继续整理?(指准方程)先把右边的5x和10都移到左边去,再合并,得到3x2-8x-10=0(边讲边板书:3x2-8x-10=0).师:(指原方程和3x2-8x-10=0)大家可以比较这两个方程,这个方程是这个方程经过整理得到的,这个方程的形式又简单又整齐,我们把这种形式叫做一元二次方程的一般形式(板书:一元二次方程的一般形式).师:从这个例子大家可以看到,任何一个一元二次方程,经过整理,都可以化成一般形式,一般形式就是ax2+bx+c=0这样的形式(边讲边板书:ax2+bx+c=0).师:(指准ax2+bx+c=0)在一元二次方程的一般形式中,我们把ax2叫做二次项,a 是二次项系数(板书:其中a是二次项系数);bx叫做一次项,b是一次项系数(板书:b 是一次项系数);c叫做常数项(板书:c是常数项).师:(指准3x2-8x-10=0)譬如,在这个方程中,二次项是3x2,二次项系数是3;一次项是-8x,一次项系数是-8;常数项是-10.师:(指x2+3x=0)大家看这个方程,它的二次项、二次项系数是什么?生:二次项是x2,二次项系数是1.(多让几名同学回答)师:(指x2+3x=0)它的一次项、一次项系数是什么?生:一次项是3x,一次项系数是3.(多让几名同学回答)师:(指x2+3x=0)它的常数项是什么?生:常数项是0.(多让几名同学回答,如有必要师作解释)师:(指4x2-9=0)大家再看这个方程,它的二次项、二次项系数是什么?生:二次项是4x2,二次项系数是4.师:(指4x2-9=0)它的一次项、一次项系数是什么?生:……(多让几名同学回答)师:这个方程的一次项可以写成0x(边讲边板书:0x),所以这个方程的一次项是0x,一次项系数是0.师:(指4x2-9=0)它的常数项是什么?生:常数项是-9.师:前面我们学习了一元二次方程的概念和一般形式,下面请大家利用这些知识来做几个练习.(三)试探练习,回授调节1.填空:(1)把5x2-1=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把4x2=81化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(3)把x(x+2)=15化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(4)把(3x-2)(x+1)=8x-3化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .2.填空:(1)一个一元二次方程,它的二次项系数为2,一次项系数为3,常数项为-5,这个一元二次方程是;(2)一个一元二次方程,它的二次项系数为1,一次项系数为-3,常数项为3,这个一元二次方程是;(3)一个一元二次方程,它的二次项系数为5,一次项系数为-1,常数项为0,这个一元二次方程是;(4)一个一元二次方程,它的二次项系数为1,一次项系数为0,常数项为-6,这个一元二次方程是 .(四)归纳小结,布置作业师:这节课我们学习了什么?哪位同学能帮老师小结一下?生:……(让一两名学生小结)(作业:P28习题1)四、板书设计课题:22.1一元二次方程(第2课时)一、教学目标1.知道什么是一元二次方程的解(根).2.会用直接开平方法解一元二次方程,渗透转化思想.二、教学重点和难点1.重点:一元二次方程解(根)的概念,直接开平方法.2.难点:直接开平方法.三、教学过程(一)基本训练,巩固旧知1.填空:(1)只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程;(2)ax2+bx+c=0(a≠0)这种形式叫做一元二次方程的形式,其中是二次项系数,是一次项系数,是常数项.2.填空:(1)把(x+3)(x-4)=0化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把(2x+1)2=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .(二)尝试指导,讲授新课师:(板书:2x-6=0)这是一个一元一次方程,这个方程的解是什么?生:(齐答)解是x=3.(师板书:解是x=3)师:(指准方程)2x-6=0的解是x=3,这话是什么意思?(稍停)把x=3代入方程,左边=2×3-6=0,右边=0,左边和右边恰好相等.2x-6=0的解x=3,意思是,x=3能使方程左右两边恰好相等.师:(板书:x2-x=0)这是一个一元二次方程,这个方程的解是什么?(让生思考一会儿再叫学生)生:解是x=0.(师板书:x=0)师:(指准方程)把x=0代入方程,左边和右边相等,所以x=0是这个一元二次方程的一个解.师:除了x=0,这个方程还有没有别的的解?生:x=1.(师板书:x=1)师:(指准方程)把x=1代入方程,左边和右边相等,所以x=1也是这个一元二次方程的一个解.师:可见x2-x=0有两个解,一个解x1=0(边讲边标下标),另一个解x2=1(边讲边标下标).师:一元二次方程的解也叫做一元二次方程的根(板书:(根)),所以也可以这样说,(指准板书)x2-x=0有两个根,一个根x1是0,另一个根x2是1.师:下面请同学们做一个练习.(三)试探练习,回授调节3.填空:在-4,-3,-2,-1,0,1,2,3,4这些数中,是一元二次方程x2-x-6=0的根的是 .4.填空:方程x2-36=0的根是x1= ,x2= .(四)尝试指导,讲授新课师:(板书:x2-36=0)刚才我们求了x2-36=0这个一元二次方程的两个根,x1=6,x2=-6.我们是怎么求的?我们是通过凑数字求的.大家可以想到,凑数字求根是有局限性的,什么局限性?(稍停)通过凑数字只能求那些很简单的一元二次方程的根,如果方程稍微复杂一点,数字就不好凑了.譬如,我们把右边的0改为2x(边讲边把x2-36=0中的0改为2x),x2-36=2x这个方程就很难用凑数字来求根.所以,求一元二次方程的根不能光靠凑数字,还需要有专门的方法.师:解一元二次方程的方法有好几种,下面我们先来介绍第一种方法,叫直接开平方法(板书:直接开平方法).师:怎么用直接开平方法解一元二次方程?(稍停)让我们来看一个例子.(师出示例题)例解下列一元二次方程:(1)4x2-9=0; (2)3(2x-1)2=15.(师边讲解边板书,解题过程如下所示)解:(1)原方程化成29x=4.开平方,得3x=2±,x1=32,x2=-32.(2)原方程化成2(2x-1)=5.开平方,得2x-1=±,x1,x2师:(指准例题)从这两个题目,哪位同学会概括用直接开平方法解一元二次方程的步骤?生:……(让一两名好生概括)师:(指准例题)用直接开平方法解一元二次方程,有三步,第一步把原方程化成x2=常数,或者含x的式子的平方=常数的形式(板书:第一步:化成什么2=常数);第二步开平方,把一元二次方程化成一元一次方程(板书:第二步:开平方);第三步解一元一次方程,得到两个根(板书:第三步:解一元一次方程).师:下面请同学们按这三步来做两个题目.(五)试探练习,回授调节5.完成下面的解题过程:(1)解方程:2x2-6=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:9(x-2)2=1.解:原方程化成 .开平方,得,x1= ,x2= .(六)归纳小结,布置作业师:(指准板书)本节课我们学习了一元二次方程根的概念,还学习了用直接开平方法解一元二次方程.用直接开平方法解一元二次方程有这么三步,第一步把原方程化成什么2=常数这种形式;第二步开平方,把一元二次方程化成一元一次方程,也就是把二次降为一次(板书:降次);第三步解一元一次方程,得到两个根.(作业:P28习题3,P42习题1)四、板书设计学-优]中。
《一元二次方程》一元二次方程是中学数学的主要内容之一在初中数学中占有重要地位学生通过一元二次方程的学习可以对已学过实数一元一次方程整式二次根式等知识加以巩固同时一元二次方程又是今后学生学习可化为一元二次方程的分式方程二次函数等知识的基础。
本节课通过实际生活出发,用数学解决生活中的问题,以此激发学生的学习热情,体会数学的严谨性以及结论的确定性,提升学生的综合能力。
【知识与能力目标】1. 通过设置问题,建立数学模型,模仿一元一次方程的概念给一元二次方程下定义;2. 一元二次方程的一般形式及其有关概念。
【过程与方法目标】1. 通过观察,归纳一元二次方程概念的教学;2. 使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式。
【情感态度价值观目标】1. 通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情;2. 感受数学的严谨性以及数学结论的确定性。
【教学重点】一元二次方程的概念及其一般形式和用一元二次方程有关概念解决问题。
【教学难点】通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。
(1)每人一份印刷练习题;(2)教师自制的多媒体课件;(3)上课环境为多媒体大屏幕环境。
1.创设情境,引入新知教师展示教科书本章的章前图,请同学们阅读章前问题,并回答:问题1.这个方程属于我们学过的某一类方程吗?师生活动:学生整理已经学过的方程类型,复习方程的概念,元与次的概念,观察新方程,分析此方程的元与次,尝试为新方程命名.【设计意图】使学生认识到一元二次方程是刻画某些实际问题的模型,体会学习的必要性,在学生已有的知识的体系中合理的构建一元二次方程这一新知识.问题2.这样的方程在其他实际问题中是否还存在呢?你能再想出一个例子吗?师生活动:学生思考二次项产生的原因,从熟悉的实际背景中,很有可能从矩形的面积出发,设计情境.【设计意图】让学生从“接受式”的学习方式中走出来,走向对一元二次方程产生的根源的探求,在编制情境的过程中,他们将加深对一元二次方程概念的理解.部分学生能够独立解决问题,自己编制情境并列出方程,部分学生可以根据同学给出的情境去列方程,或者阅读课本上的实际问题.2.拓宽情境,概括概念给出课本问题1、问题2的两个实际问题,设未知数,建立方程.问题1 如图21.1-1,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,你说组织者应邀请多少个队参赛?教师引导学生思考并回答以下几个问题:全部比赛共有______场.若设应邀请个队参赛,则每个队要与其他____个队各赛一场,全部比赛共有___ 场.由此,我们可以列出方程______________,化简得________________.问题3.这些方程是几元几次方程?师生活动:学生将实际问题中的语言转化成数学的符号语言,体会运算关系,寻找等量关系,学习建模.将列得的方程化简整理,判断出方程的次数.【设计意图】在建模的过程中不仅加强学生的数学思维能力,而且对二次项产生的根源将更加明晰,加深对一元二次方程的理解.让学生回答方程的元与次,一是让他们体会统一成一般形式的必要性,为概念的形成做铺垫,分解教学的难点;二是让他们明确教学的主线,从被动学习走向主动学习.问题4.这些方程是什么方程?师生活动:观察本课得出的一些方程,思考它们的共性,同学们尝试给出一元二次方程的定义,并且概括出一元二次方程的一般形式.(1)一元二次方程的概念:等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2(二次)的方程叫做一元二次方程.(2)一元二次方程的一般形式是.其中是二次项,a是二次项系数;是一次项,b是一次项系数;c是常数项.【设计意图】让学生自己给出定义就是对过去所学一元一次方程的定义的类比和对比,概括一般形式是对一元二次方程另一个角度的理解,是对数学符号语言的应用能力的提升.3.辨析应用,加深理解问题5.请你说出一个一元二次方程,和一个不是一元二次方程的方程.师生活动:可以由学生举手回答,也可以随机选择学生回答,调动学生广泛地参与.追问学生所举的反例为什么不是一元二次方程?是什么方程?【设计意图】学生自己举例,应用概念,从正反两个方向强化了对概念的理解,在追问的过程中,帮助学生将已有的方程梳理成比较清晰的知识体系,如下:开发学生认识的资源,激发学生从不同角度、不同形式去深入理解同一概念,让不同的学生在此过程中获得不同的收获,实现分层教学分层指导的效果.问题6.下列方程哪些是一元二次方程?例1.下列方程哪些是一元二次方程?(1);(2);(3);(4);(5);(6).答案(2)(5)(6).师生活动:用概念指导辨析,方程(3)与(4)同学们可能会产生争议,(3)帮助学生明确一元二次方程是整式方程,(4)体会化为一般形式的必要性,对a≠0条件加深认识.【设计意图】补足学生所举正反例的缺漏,追问:有二次项的一元方程就是一元二次方程吗?帮助学生进一步巩固概念,深化对一元、二次的认识.问题7.指出下列方程的二次项、一次项和常数项及它们的系数.例2.将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:(1);(2).师生活动: (1)将方程去括号得:,移项,合并同类项得:,其中二次项是,二次项系数是3;一次项是,一次项系数是,常数项是.教师应及时分析可能出现的问题(比如系数的符号问题).(2)一元二次方程的一般形式是,过程略.例3.关于x的方程,在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?答案:时此方程为一元二次方程;,时此方程为一元一次方程.【设计意图】在形式比较复杂的方程面前,通过辨析方程的元、次、项看清方程的本质,深化理解,淡化对一元二次方程概念的记忆.4.巩固概念,学以致用教科书第4页:练习【设计意图】巩固性练习,同时检验一元二次方程概念的掌握情况.5.归纳小结,反思提高请学生总结今天这节课所学内容,通过对比之前所学其他方程,谈对一元二次方程概念的认识,反思学习过程中的典型错误.6.布置作业教科书习题21.1略。
《一元二次方程》教案第一课时教学内容:一元二次方程概念及一元二次方程的一般形式及有关概念.教学目标:1. 通过设置问题,建立数学模型,•模仿一元一次方程的概念给一元二次方程下定义。
2.了解一元二次方程的概念;能熟练地把一元二次方程整理成一般形式:ax2+bx+c=0(a、b、c是常数,a≠0)。
3.通过教学,让生分清一般形式中的二次项及其系数,一次项及其系数以及常数项各是什么。
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键:1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程:一、复习引入学生活动:列方程.问题(1)绿苑小区规划设计时,准备在每两幢楼房之间,安排面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?如果假设长方形的宽为x•米,•那么,•这个的长为_______•米,•根据题意,•得________.整理、化简,得:__________.问题(2)如图,如果AC CBAB AC,那么点C叫做线段AB的黄金分割点.如果假设AB=1,AC=x,那么BC=______,根据题意,得:________.整理得:_________.问题(3)学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册。
求这两年的年平均增长率。
如果假设这两年的年平均增长率为x。
则今年年底的图书数是__________万册。
同样,明年年底的图书数又是今年的_________倍,即____________万册。
由此可得方程____________________________,整理得:________________________。
老师点评并分析如何建立一元二次方程的数学模型,并整理.二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)•(•5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.解:去括号,得:40-16x-10x+4x2=18移项,得:4x2-26x+22=0其中二次项系数为4,一次项系数为-26,常数项为22.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:去括号,得:x2+2x+1+x2-4=1移项,合并得:2x2+2x-4=0其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.三、巩固练习教材P19练习题:(1)、(2)、(3)、(4).四、应用拓展例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.五、归纳小结(学生总结,老师点评)本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业1.教材P19习题23.1 : 1、2、3.2.选用作业设计.作业设计一、选择题1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个 B.2个 C.3个 D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为(). A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1 B.p>0 C.p≠0 D.p为任意实数二、填空题1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.2.一元二次方程的一般形式是__________.3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值X围是________.三、综合提高题1.a满足什么条件时,关于x的方程a(x2+x)x-(x+1)是一元二次方程?2.关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么?3.一块矩形铁片,面积为1m2,长比宽多3m,求铁片的长,小明在做这道题时,•是这样做的:设铁片的长为x,列出的方程为x(x-3)=1,整理得:x2-3x-1=0.小明列出方程后,想知道铁片的长到底是多少,下面是他的探索过程:第一步:所以,________<x<__________第二步:所以,________<x<__________(1)请你帮小明填完空格,完成他未完成的部分;(2)通过以上探索,估计出矩形铁片的整数部分为_______,十分位为______.。
《一元二次方程》教案教学内容本节课主要学习一元二次方程概念及一元二次方程一般式及有关概念.教学目标知识技能 探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识。
数学思考 在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系。
解决问题培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养。
情感态度通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.重难点、关键重点:一元二次方程的定义、各项系数的辨别,根的作用.难点:根的作用的理解.关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程 一、 情境引入【问题情境】问题1 如图,有一块矩形铁皮,长100 cm ,宽50 cm .在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm 2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为xcm,则盒底的长为 ,宽为 .根据方盒的底面积为3600cm2,得方程为 _______________ ,,整理, 得问题 2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?分析:全部比赛共4×7=28场350752=+-x x 0350752=+-x x设应邀请x 个队参赛,每个队要与其他 _____ 个队各赛1场,由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共 ______________场.得方程____________________________整理, 得【活动方略】 教师演示课件,给出题目.学生根据所学知识,通过分析设出合适的未知数,列出方程回答问题.【设计意图】由实际问题入手,设置情境问题,激发学生的兴趣,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型.二、 探索新知【活动方略】学生活动:请口答下面问题.(1)上面两个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x ;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.归纳:像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.【设计意图】主体活动,探索一元二次方程的定义及其相关概念.三、范例点击 例1 将方程3(1)5(2)x x x -=+化成一元二次方程的一般形式,并指出各项系数. 解:去括号得233510x x x -=+,移项,合并同类项,得一元二次方程的一般形式238100x x --=.其中二次项系数是3,一次项系数是-8,常数项是-10.【活动方略】学生活动:学生自主解决问题,通过去括号、移项等步骤把方程化为一般形式,然后指出各项系562=-x x 562=-x x数.教师活动:在学生指出各项系数的环节中,分析可能出现的问题(比如系数的符号问题).【设计意图】进一步巩固一元二次方程的基本概念.例2 猜测方程2560x x --=的解是什么?【活动方略】学生活动:学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x =1、2、3、4、5等,发现x =8时等号成立,于是x =8是方程的一个解,如此等等.教师活动:教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结: 使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫作根).【设计意图】探究一元二次方程根的概念以及作用.四、跟踪训练。
人教版数学九年级上册21.1 一元二次方程教学设计一、内容和内容解析1.内容一元二次方程的概念;根据实际问题中的数量关系建立方程模型.2.内容解析一元二次方程是在一元一次方程基础上“次”的推广,它是解决诸多实际问题的桥梁。
本节课以实际问题为背景,建立数学模型,列出一元二次方程,引导学生观察这些方程的共同特点,并类比一元一次方程,归纳得出一元二次方程的概念,体现了研究代数学问题的一般方法;一元二次方程一般形式也是对具体方程从“元”(未知数的个数)、“次数”和“项数”等角度进行归纳的结果.这样编排有利于学生理解并接收新知识,有充分地反映出一元二次方程以及有关概念来源于现实世界,是刻画现实世界的一个有效数学模型.一元二次方程的学习是一次方程、方程组及不等式知识的延续和深化,也是函数等重要数学思想方法的基础。
本节课是研究一元二次方程的导入课,它为进一步学习一元二次方程的解法及简单应用起到铺垫作用。
基于以上分析,本节课的重点是:由实际问题列出一元二次方程和形成一元二次方程的概念.二、教学目标与解析1.教学目标(1)体会一元二次方程是刻画实际问题的重要数学模型,初步理解一元二次方程的概念.(2)使学生理解并能够掌握一元二次方程的一般形式以及确定项和系数.(3)了解一元二次方程根的概念.2.目标解析(1)通过建立一元方程解决相关的实际问题,让学生体会到未知数相乘导致方程的次数升高,继而产生一元二次方程.学生能了解一元二次方程存在的实际背景,感受一元二次方程是重要的数学模型,培养学生分析问题和解决问题的能力及用数学思维的意识.(2)将不同形式的一元二次方程统一为一般形式,让学生从数学符号的角度,完善一元二次方程的概念.学生能够将一元二次方程整理成一般形式,准确的说出方程的各项系数.(3)会判断一个数是否是一元二次方程的根.三、教学问题诊断分析我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学生学习可化为一元二次方程的分式方程、二次函数等知识的基础。
初三数学一元二次方程教案优秀5篇数学《一元二次方程》教案设计篇一教学目标1、了解整式方程和一元二次方程的概念;2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。
教学建议:1、教材分析:1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。
2)重点、难点分析理解一元二次方程的定义:是一元二次方程的重要组成部分。
方程,只有当时,才叫做一元二次方程。
如果且,它就是一元二次方程了。
解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程( ),把它化成一般形式为,由于,所以,符合一元二次方程的定义。
(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。
如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。
如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。
元二次方程的应用篇二12.6 一元二次方程的应用(三)一、素质教育目标(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题。
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识。
二、教学重点、难点1.教学重点:学会用列方程的方法解决有关增长率问题。
2.教学难点:有关增长率之间的数量关系。
下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了。
三、教学步骤(一)明确目标。
九年级数学一元二次方程教案5篇一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法。
今天在这里整理了一些,我们一起来看看吧!九年级数学一元二次方程教案1教学目标1。
知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题。
2。
过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型。
根据数学模型恰如其分地给出一元二次方程的概念。
(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等。
(3)通过掌握缺一次项的一元二次方程的解法──直接开方法, 导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程。
九年级数学一元二次方程教案2【主体知识归纳】1.整式方程方程的两边都是关于未知数的整式,这样的方程叫做整式方程.2.一元二次方程只含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程.3.一元二次方程的一般形式为ax2+bx+c=0(a≠0),其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.4.直接开平方法形如x2=a(a≥0)的方程,因为x是a的平方根,所以x=±,即x1= ,x2=-.这种解一元二次方程的方法叫做直接开平方法.5.配方法将一元二次方程ax2+bx+c=0(a≠0)化成(x+ )2=的形式后,当b2-4ac≥0时,用直接开平方法求出它的根,这种解一元二次方程的方法叫做配方法.用配方法解已化成一般形式的一元二次方程的一般步骤是:(1)将方程的两边都除以二次项的系数,把方程的二次项系数化成1;(2)将常数项移到方程右边;(3)方程两边都加上一次项系数一半的平方;(4)当右边是非负数时,用直接开平方法求出方程的根.6.公式法用一元二次方程ax2+bx+c=0(a≠0)的求根公式x= (b2-4ac≥0),这种解一元二次方程的方法叫做公式法.【基础知识讲解】1.一元二次方程的概念包涵三个条件:(1)整式方程;(2)方程中只含有一个未知数;(3)未知数的最高次数是2”.一元二次方程的概念中“只含有一个未知数,并且未知数的最高次数是2”是对化成一般形式之后而言的.例如,判断方程2x2+2x-1=2x2是否是一元二次方程?应先整理方程,得2x-1=0,所以此方程不是一元二次方程.2.在求二次项、一次项和常数项时,要先整理方程,把方程化成一般形式,即ax2+bx+c=0,再确定所求.方程ax2+bx+c=0只有当a≠0时,才是一元二次方程,例如a=0,b≠0时,它就是一元一次方程,因此,如果明确指出ax2+bx+c=0是一元二次方程,那么就一定包括a≠0这个条件.3.直接开平方法适用于解化为x2=a形式的方程,当a≥0时,方程有实数解;当a0时,方程没有实数解.4.配方法是先把方程的常数项移到方程的右边,再把左边配成一个完全平方式,如果右边是非负数,就可以进一步通过直接开平方法来求出它的解;如果右边是负数时,方程无实数解.5.求根公式是针对一元二次方程的一般形式来说的,使用求根公式时,必须先把方程化成一般形式,才能正确地确定各项系数,在应用公式之前,先计算出b2-4ac的值,当b2-4ac≥0时,代入公式求出方程的根;当b2-4ac0时,方程没有实数根,这时就不必再代入公式了.【例题精讲】例1:指出下列方程中哪些是一元二次方程:(1)5x2+6=3x(2x+1);(2)8x2=x;(3)y3-y-1=0;(4)4x2-3y=0;(5)-x2=0;(6)x(5x-1)=x(x+3)+4x2.剖析:判断一个方程是不是一元二次方程,首先要对方程进行整理,化成一般形式,然后再根据条件:①整式方程;②只含有一个未知数;③未知数的最高次数为2.只有当这三个条件缺一不可时,才能判断为一元二次方程.解:(1)去括号,得5x2+6=6x2+3x,移项、合并同类项,得x2+3x-6=0,∴此方程是一元二次方程.(2)移项,得8x2-x=0,∴此方程是一元二次方程.(3)因为未知数的最高次数是3,∴此方程不是一元二次方程.(4)∵方程中含有两个未知数,∴它不是一元二次方程.(5)∵a=-1≠0,∴它是一元二次方程.(6)整理,得4x=0∴它不是一元二次方程.例2:写出下列一元二次方程的二次项系数、一次项系数及常数项:(1)2x2=3x+5;(2)(x+1)(x-1)=1;(3)(x+2)2-4=0.剖析:虽然该题没有要求把方程化成一般形式,但在做题时,也要先把方程化成一般形式.因为方程的.二次项系数、一次项系数及常数项是在方程为一般形式下的,所以必须先整理方程.解:(1)整理,得2x2-3x-5=0.二次项系数是2,一次项系数是-3,常数项是-5.(2)整理,得x2-2=0.二次项系数是1,一次项系数是0,常数项是-2.(3)整理,得x2+4x=0.二次项系数是1,一次项系数是4,常数项是0.例3:关于x的整式方程(m-1)x2+(2m-1)x+4=0是一元二次方程吗?剖析:要判别原方程是否是一元二次方程,易想到用定义,满足条件:(1)整式方程;(2)方程中只含有一个未知数;(3)未知数的最高次数是2.原方程显然满足(1)、(2).由于不知m是怎样的实数,所以不一定满足(3).因此,需分类探讨.解:当m-1≠0,即m≠1时,原方程是一元二次方程.当m-1=0,即m=1时,原方程是x+4=0是一元一次方程.说明:在移项、合并同类项时,易出现符号错误,需格外小心,要认真区别题目要求是指出方程的各项还是各项系数.特别要小心当某项的系数为负数时,指出各项时千万不要丢负号.例4:用直接开平方法解下列方程:(1)3x2-27=0;(2)(3x-5)2-7=0.解:(1)3x2-27=0,3x2=27,x2=9,∴x=±,即x=3或x=-3.∴x1=3,x2=-3.(2)(3x-5)2-7=0,(3x-5)2=7,∴3x-5=±,即3x-5= 或3x-5=- .∴x1= ,x2= .例5:用配方法解方程2x2+7x-4=0.剖析:此题考查对配方法的掌握情况.配方法最关键的步骤是:(1)将二次项系数化为1;(2)将常数项与二次项、一次项分开在等式两边;(3)方程两边都加上一次项系数一半的平方,即可化为(x+a)2=k的形式,然后用开平方法求解.解:把方程的各项都除以2,得x2+ x-2=0.移项,得x2+ x=2.配方,得x2+ x+( )2=2+( )2= ,即(x+ )2= .解这个方程,得x+ =±,x+ =±.即x1= ,x2=-4.说明:配方法是一种重要的数学方法,除了用来解一元二次方程外,还在判断数的正、负,代数式变形、恒等式的证明中有着广泛的应用,例如证明不论x为何实数,代数式2x2-4x+3的值恒大于零,可以做如下的变形:2x2-4x+3=2x2-4x+2+1=2(x-1)2+1.例6:用公式法解下列方程:(1)2x2+7x=4;(2)x2-1=2 x.解:(1)方程可变形为2x2+7x-4=0.∵a=2,b=7,c=-4,b2-4ac=72-4×2×(-4)=810,∴x= .∴x1= ,x2=-4.(2)方程可变形为x2-2 x-1=0.∵a=1,b=-2 ,c=-1,b2-4ac=(-2 )2-4×1×(-1)=160.∴x= .∴x1= +2,x2= -2.说明:在用公式法解方程时,一定要先把方程化成一般形式.例7:一元二次方程(m-1)x2+3m2x+(m2+3m-4)=0有一根为零,求m的值及另一根.解:因为方程有一根为零,所以它的常数项m2+3m-4=0,解得m1=1,m2=-4,又因为此方程是一元二次方程,所以m-1≠0,即m≠1,所以m=-4.把m=-4代入方程,得-5x2+48x=0,解得:x1=0,x2=9.6,所以方程的另一根为9.6.说明:方程有一根为零时,常数项必须为零;求解字母系数的一元二次方程的问题中,二次项系数的字母必须保证二次项系数不等于零,这是解此类问题的先决条件.【同步达纲练习】1.选择题(1)下列方程中是一元二次方程的是( )A. =0B. =0C.x2+2xy+1=0D.5x=3x-1(2)下列方程不是一元二次方程的是( )A. x2=1B.0.01x2+0.2x-0.1=0C. x2-3x=0D. x2-x= (x2+1)(3)方程3x2-4=-2x的二次项系数、一次项系数、常数项分别为( )A.3,-4,-2B.3,2,-4C.3,-2,-4D.2,-2,0(4)一元二次方程2x2-(a+1)x=x(x-1)-1的二次项系数为1,一次项系数为-1,则a的值为( )A.-1B.1C.-2D.2(5)若方程(m2-1)x2+x+m=0是关于x的一元二次方程,则m的取值范围是( )A.m≠0B.m≠1C.m≠1且m≠-1D.m≠1或m≠-1(6)方程x(x+1)=0的根为( )A.0B.-1C.0,-1D.0,1(7)方程3x2-75=0的解是( )A.x=5B.x=-5C.x=±5D.无实数根(8)方程(x-5)2=6的两个根是( )A.x1=x2=5+B.x1=x2=-5+C.x1=-5+ ,x2=-5-D.x1=5+ ,x2=5-(9)若代数式x2-6x+5的值等于12,那么x的值为( )A.1或5B.7或-1C.-1或-5D.-7或1(10)关于x的方程3x2-2(3m-1)x+2m=15有一个根为-2,则m的值等于( )A.2B.-C.-2D.2.把下列方程化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数及常数项:(1)4x+1=9x2; (2)(x+1)(x-3)=2x-3;(3)(x+3)(x-3)=2(x-3)2; (4) y2- y= y2- y+ .3.当m满足什么条件时,方程(m+1)x2-4mx+4m-2=0是一元二次方程?当x=0时,求m的值.4.用直接开平方法解下列方程:(1)x2= ;(2)x2=1.96;(3)3x2-48=0;(4)4x2-1=0;(5)(x-1)2=144;(6)(6x-7)2-9=0.5.用配方法解下列方程:(1)x2+12x=0; (2)x2+12x+15=0 (3)x2-7x+2=0;(4)9x2+6x-1=0; (5)5x2-2=-x; (6)3x2-4x=2.6.用公式法解下列方程:(1)x2-2x+1=0; (2)x(x+8)=16; (3)x2- x=2; (4)0.8x2+x=0.3;(5)4x2-1=0; (6)x2=7x; (7)3x2+1=2 x; (8)12x2+7x+1=0.7.(1)当x为何值时,代数式2x2+7x-1与4x+1的值相等?(2)当x为何值时,代数式2x2+7x-1与x2-19的值互为相反数?8.已知a,b,c均为实数,且+|b+1|+(c+3)2=0,解方程ax2+bx+c=0.9.已知a+b+c=0.求证:1是关于x的一元二次方程ax2+bx+c=0的根.10.用配方法证明:(1)3y2-6y+11的值恒大于零;(2)-10x2-7x-4的值恒小于零.11.证明:关于x的方程(a2-8a+20)x2+2ax+1=0,不论a为何实数,该方程都是一元二次方程.九年级数学一元二次方程教案3教学目标1. 了解整式方程和一元二次方程的概念;2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
21.1《一元二次方程》教学设计一、教学内容一元二次方程的概念,一元二次方程的一般形式及一元二次方程的解(根)的概念.二、教学目标(1)体会一元二次方程是刻画实际问题的重要数学模型,并理解一元二次方程的概念.(2)了解一元二次方程的一般形式,会将一元二次方程化成一般形式.(3)会判定一个数是否是方程的根及解决一些概念性的题目.(4)通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.三、教学重、难点重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题. 难点1. 通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.2. 判定一个数是否是方程的根.课时安排1课时.四、教学过程设计(1)复习回顾1、什么叫做方程?2、我们都学过哪些方程?3、我们如何定义方程的“元”和“次”?(2)探究新知1、集思广益方程 2240+-=x x 属于什么方程?其他实际问题中是否也能列出这一类方程呢?分析:设切去的正方形的边长为x cm ,则盒底的长为(100―2x ) cm ,宽为(50―2x ) cm .根据方盒的底面积为3600 cm 2,得(100―2x )(50―2x )=3 600.整理,得 4x 2―300x +1 400=0.化简,得 x 2―75x +350=0问题一、如图,有一块矩形铁皮,长100 cm ,宽50 cm .在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600 2cm ,那么铁皮各角应切去多大的正方形? 问题二、要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,你说组织者应该邀请多少个队参赛? 分析: 全部比赛共有28场. 若设应邀请x 个队参赛,则每个队要与其他x-1个队各赛一场,比赛共有x(x-1)/2场,由此,我们可以列出方程x(x-1)/2=28,化简得x 2―x=56.042)2(22=-++-m x x m 【设计意图】使学生认识到一元二次方程是刻画某些实际问题的模型,体会学习的必要性,在学生已有的知识的体系中合理的构建一元二次方程这一新知识.学生活动:思考交流以上三个方程有什么共同点?老师点评:(1)等号两边都是整式;(2)只含一个未知数x ;(3)未知数的最高次数是2;二元一次方程的概念:像这样,等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.【设计意图】让学生自己给出定义就是对过去所学一元一次方程的定义的类比和对比。
21.1一元二次方程(一)教学目标(1)知识技能:1.通过类比方程,了解一元二次方程的定义及一般形式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念。
2.了解一元二次方程的解的定义,会检验一个数是不是一元二次方程的解。
(2)过程与方法:通过实例,列出一元二次方程,让学生体会一元二次方程是实际问题数量关系的有效模型,培养学生初步形成“模型思想”,增强学生应用数学知识解决实际问题的意识。
(3)情感态度使学生经历类比方程得到一元二次方程定义的过程,减少学生对新知识的陌生感,提高学生学习数学的兴趣。
(二)教学重点难点重点:通过类比方程,了解一元二次方程的定义及一般形式ax2+bx+c= 0(a≠0)和一元二次方程的解等定义,并能使用定义解决简单问题。
难点:一元二次方程、二次项及其系数、一次项及其系数与常数项的分别。
教学方法:教学准备:课件(三)教学过程:一、复习引入:同学们我们已经学习了一元一次方程,二元一次方程组和可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是非常常见的一种数学方法。
从这节课开始学习一元二次方程知识,先来回忆一下方程的有关概念.1.什么是方程?什么的一元一次方程?2.指出下面哪些方程是已经学过的方程?分别是什么方程?(1)3x+2=0;(2)2x−3y=8;(3)25x +3y=0;(4)13y=4;(5)x2−2x+1=0;(6)y(y−8)=24;(7)5+1x−3=1;(8)2x3−y2=2.3.什么的元?什么的次?二、探究新知:1.课件出示教材问题1、2,要求学生列出方程,思考下列问题。
问题1 有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角各切去一个相同的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600 cm2,那么铁皮各角应切去多大的正方形?问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?提问:(1)问题1中列方程的等量关系是,所列的方程为,化简后为。
21.2 解一元二次方程21.2.3 因式分解法一、教学目标【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度与价值观】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.二、课型新授课三、课时1课时四、教学重难点【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.五、课前准备课件六、教学过程(一)导入新课1.解一元二次方程的方法有哪些?(出示课件2)学生答:直接开平方法:x2=a (a≥0),配方法:(x+m)2=n (n≥0),公式法:x=2ba-±(b2-4ac≥0).2. 什么叫因式分解?学生答:把一个多项式分解成几个整式乘积的形式叫做因式分解,也叫把这个多项式分解因式.3.分解因式的方法有那些?(出示课件3)学生答:(1)提取公因式法:am+bm+cm=m(a+b+c).(2)公式法:a²-b²=(a+b)(a-b), a²±2ab+b²=(a±b) ².(3)十字相乘法.教师问:下面的方程如何使解答简单呢?x2+25x=0.出示课件5:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)教师问:你能根据题意列出方程吗?学生答:设物体经过x s 落回地面,这时它离地面的高度为0m ,即10x -4.9x 2=0.教师问:你能想出解此方程的简捷方法吗?(二)探索新知探究 因式分解法的概念学生用配方法和公式法解方程10x -4.9x 2=0.(两生板演)配方法解方程10x -4.9x 2=0. 解:2100049x x -=,22210050500494949x x ⎛⎫⎛⎫-+-=+- ⎪ ⎪⎝⎭⎝⎭2250504949x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭50504949x -=±50504949x =±+110049,=x 20.=x公式法解方程10x -4.9x 2=0.解:24.9100x x -=,a=4.9,b=-10,c=0.b 2-4ac= (-10)2-0=100,a acb b x 242-±-=()10102 4.9--±=⨯110049,=x20. =x教师引导学生尝试找出其简洁解法为:(出示课件7)x(10-4.9x)=0. ∴x=0或10-4.9x=0, ∴x1=0,x2=10049≈2.04.这种解法是不是很简单?教师问:以上解方程的方法是如何使二次方程降为一次方程的?x(10-4.9x)=0,①x=0或10-4.9x=0,②通过学生的讨论、交流可归纳为:(出示课件8)可以发现,上述解法中,由①到②的过程,不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫做因式分解法.教师提示:(出示课件9)1.用因式分解法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的方法;3.理论依据是“ab=0,则a=0或b=0 ”.师生共同归纳:(出示课件10)分解因式法解一元二次方程的步骤是:1.将方程右边化为等于0的形式;2.将方程左边因式分解为A×B;3.根据“ab=0,则a=0或b=0”,转化为两个一元一次方程;4.分别解这两个一元一次方程,它们的根就是原方程的根.例1 解下列方程:(出示课件11)(1)x(x-2)+x-2=0; (2)5x 2-2x-14=x 2-2x+34. 师生共同解答如下: 解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x 1=2,x 2=-1;(2)原方程整理为4x 2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x 1=-12,x 2=12. 想一想 以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.学生思考后,教师总结如下:(出示课件12)一.因式分解法简记歌诀:右化零,左分解;两因式,各求解.二.选择解一元二次方程的技巧:1.开平方法、配方法适用于能化为完全平方形式的方程.2.因式分解法适用于能化为两个因式之和等于0的形式的方程.3.配方法、公式法适用于所有一元二次方程.出示课件13:解下列方程:2222221 +=0; (2) -=0; (3) 3-6=-3;(4) 4-121=0; (5) 3(2+1)=4+2; (6) (-4)=(5-2).()x x x x x x x x x x x 学生自主思考并解答.(六生板演)解:⑴因式分解,得x(x+1)=0.于是得x=0或x+1=0,x 1=0,x 2=-1.⑵因式分解,得x (x)=0于是得x=0或x-2=0x1=0,x2=2.⑶将方程化为x2-2x+1 = 0. 因式分解,得(x-1)(x-1)=0.于是得x-1=0或x-1=0,x1=x2=1.⑷因式分解,得(2x+11)(2x-11)=0.于是得2x+11=0或2x-11=0,x1=-5.5,x2=5.5.⑸将方程化为6x2-x-2=0. 因式分解,得(3x-2)(2x+1)=0. 于是得3x-2=0或2x+1 = 0,x1=23,x2=12.⑹将方程化为(x-4)2-(5-2x)2=0.因式分解,得(x-4-5+2x)(x-4+5-2x)=0.(3x-9)(1-x)=0.于是得3x-9=0或1-x=0,x1=3,x2=1.出示课件16:用适当方法解下列方程:−x)2;(2)x2-6x-19=0;(3)3x2=4x+1;(4)y2-15=2y;(5)5x(x-3)-(x-3)(x+1)=0;(6)4(3x+1)2=25(x-2)2.教师提示:根据方程的结构特征,灵活选择恰当的方法来求解.四种方法的选择顺序是:直接开平方法→因式分解法→公式法→配方法.师生共同解答如下.(出示课件17,18,19)解:(1)(1-x)2=3,∴(x-1)2=3,x-1∴x1=1x2=1.(2)移项,得x2-6x=19.配方,得x2-6x+(-3)2=19+(-3)2.∴(x-3)2=28.∴x-3=±.∴x1=3+,x2=3-.(3)移项,得3x2-4x-1=0.∵a=3,b=-4,c=-1,∴x=−(−4)±√(−4)2−4×3×(−1)2×3=2±73.∴x1=2+73,x2=2-73.(4)移项,得y2-2y-15=0.把方程左边因式分解,得(y-5)(y+3)=0. ∴y-5=0或y+3=0.∴y1=5,y2=-3.(5)将方程左边因式分解,得(x-3)[5x-(x+1)]=0. ∴(x-3)(4x-1)=0.∴x-3=0或4x-1=0.∴x1=3,x2=1 4 .6)移项,得4(3x+1)2-25(x-2)2=0.∴[2(3x+1)]2-[5(x-2)]2=0.∴[2(3x+1)+5(x-2)]·[2(3x+1)-5(x-2)]=0. ∴(11x-8)(x+12)=0.∴11x-8=0或x+12=0.∴x1=811,x2=-12.出示课件20,21:用适当的方法解下列方程:(1)x2-41=0;(2) 5(3x+2)2=3x(3x+2).学生自主思考并解答.解:(1)∵x2-14=0,∴x2=14,即x=±14.∴x1=12,x2=-12.⑵原方程可变形为5(3x+2)2-3x(3x+2)=0,∴(3x+2)(15x+10-3x)=0.∴3x+2=0或12x+10=0.∴x1=-23,x2=-56.(三)课堂练习(出示课件22-30)1.已知x=2是关于x的一元二次方程kx²+(k²﹣2)x+2k+4=0的一个根,则k的值为.2. 解方程:2(x﹣3)=3x(x﹣3).3.解下列方程:(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12.4.小华在解一元二次方程x2-x=0 时,只得出一个根x=1,则被漏掉的一个根是()A.x=4 B.x=3C.x=2 D.x=05.我们已经学习了一元二次方程的四种解法:直接开平方法、配方法、公式法和因式分解法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x2-3x+1=0;②(x-1)2=3;③x2-3x=0;④x2-2x=4.我选择______________________.6.解方程:(x2+3)2-4(x2+3)=0.参考答案:1.-32.解:2(x﹣3)=3x(x﹣3),移项得2(x﹣3)﹣3x(x﹣3)=0,因式分解得(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3,x2=32.3.解:⑴x2+2x+2=0,(x+1)2=-1.此方程无解.⑵x2-4x-12=0,(x-2)2=16.x1=6,x2=-2.4.D5.解:答案不唯一.若选择①,①适合公式法,x2-3x+1=0,∵a=1,b=-3,c=1,∴b2-4ac=9-4=5>0.∴x=3±5 2.∴x1=3+52,x2=3-52.若选择②,②适合直接开平方法,∵(x-1)2=3,x-1=±3,∴x1=1+3,x2=1- 3. 若选择③,③适合因式分解法,x2-3x=0,因式分解,得x(x-3)=0.解得x1=0,x2=3.若选择④,④适合配方法,x2-2x=4,x2-2x+1=4+1=5,即(x-1)2=5.开方,得x-1=± 5.∴x1=1+5,x2=1- 5.5.提示:把(x2+3)看作一个整体来提公因式,再利用平方差公式,因式分解.解:设x2+3=y,则原方程化为y2-4y=0.分解因式,得y(y-4)=0,解得y=0,或y=4.①当y=0 时,x2+3=0,原方程无解;②当y=4 时,x2+3=4,即x2=1.解得x=±1.所以原方程的解为x1=1,x2=-1.(四)课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?⑴公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法).⑵方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法.(五)课前预习预习下节课(21.2.4)的相关内容。
数学,是一门有趣而又很有学问的学科。
生活中存在着无穷的数学故事,与你我的生活息息相关,也是一个游戏的宝塔。
2022中考数学知识点有哪些你知道吗?一起来看看2022中考数学知识点,欢迎查阅!以下是人见人爱的小编分享的九年级数学上一元二次方程的解法教案【优秀3篇】,在大家参照的同时,也可以分享一下白话文给您最好的朋友。
数学《一元二次方程》教案设计篇一教材分析1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。
2.书中的定义是以未知数的个数和次数为标准,用文字的形式给出的。
一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。
3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。
学情分析1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。
2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的`难度,解决这问题要以多练为主。
3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。
教学目标1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。
2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。
教学重点和难点1、重点:概念的形成及一般形式。
2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。
元二次方程的应用篇二第一课时教学目标一、教学1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
一元二次方程(第1课时)教学内容:一元二次方程概念及一元二次方程一般形式及有关概念。
教学目标:了解一元二方程的概念,一元二次方程一般形式及有关概念。
教学重点:一元二方程的概念;一元二次方程一般形式。
教学难点与关键:…提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次的概念。
教具、学具准备:小黑板。
教学过程:一、回顾知识(复习引入,学生活动):1、什么叫做方程2、一元一次方程的概念怎样其一般形式怎样3、你能说出下列方程是几元几次方程吗;(1) 2x + 3 = 0 (2) 3x – 8 = 0 (3) 3x + y = 7(4)二、新课(探索新知):1、由回顾知识第3题引出:一元二方程的概念一元二次方程一般形式2、分析:一元二次方程一般形式中各部分概念(即认识:二次项及二次系数、一次项及一次项系数、常数项)3、举例:课本第31页的例题(抄于小黑板备用)。
三、训练(巩固练习):课本第32页的练习题(抄于小黑板备用)。
—四、归纳总结(学生归纳,教师点评)1、一元二次方程的概念2、一元二次方程的一般形式怎样五、布置作业:课本第34页的复习巩固第1大题六小题。
六、板书设计:1、一元二次方程的概念2、一元二次方程的一般形式怎样~七、教学后记:一元二次方程(第2课时)教学内容:1、一元二次方程根的概念;2、根据题判定一个数是否是方程的根及其利用它们解决一些具体题。
教学目标:1、了解一元二次方程根的概念;}2、会判定一个数是否是一元二次方程的根及其利用它们解决一些具体题。
教学重点:判定一个数是否是一元二次方程的根教学难点与关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根。
教学过程:一、顾知识(复习引入,学生活动):1、你知道怎样情况下方程的解可叫做根呢/2、x = 3是一元一次方程2x – 6 = 0的根吗3、x = 1及x = -3是一元一次方程的根吗二、新课(探索新知):1、由回顾知识第3题引出:一元二方程根的概念讲述判定一个数是否是一元二次方程的根步骤2、举例子:x = 1及x = -3是一元一次方程的根吗(教师略提示做法,由学生板书过程)。
《一元二次方程》教案
情境引入
(方程在生活中有着广泛的应用,古人对其也有深入的研究,在《九章算术》的“勾股章”中有这样一题:)
问题1“今有户高多于广2,•两隅相去为10,问户高、广各几何?”大意是说:已知长方形门的高比宽多2,门的对角线长10,•那么门的高和宽各是多少?
(思考一下,谁能来替古人解决这个问题,列出方程即可)
x2+(x+2)2=102
(我们再来看下题)
问题2如图,有一块矩形铁皮,长100cm,宽50cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600cm2,那么铁皮各角应切去多大的正方形?
(谁能给大家分析一下,你是如何理解的?)
(100-2x)(50-2x) =3600
(这么厉害!再来个难点的)
问题3要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?
(这个谁来?)
x(x-1)=56
探索新知
(根据以上三个方程请口答下面问题)
(1)等号两端都是整式吗?
(2)几个方程整理后含有几个未知数?
(3)未知数的最高次数是几次?
学生活动:指导学生正确答题
老师点评:(1)等号两端都是整式(2)都只含一个未知数x(3)它们的最高次数都是2次(我们给这样的方程叫做一元二次方程.)(给出标题)
(谁能给出一元二次方程的定义)
学生活动:找学生归纳出定义:
定义:方程两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程.
老师总结:
一般地,任何一个关于x 的一元二次方程,•都能化成如下形式ax 2+bx +c =0(a ≠0).这种形式叫做一元二次方程的一般形式.
其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项. 学生活动:找学生找出以上三个方程的各项:
范例点击
例:2米的人体雕像,上半身长与下半身长的比等于下半身长与全身的比,求下半身长是多少?
例:将方程3(1)5(2)x x x -=+化成一元二次方程的一般形式,并指出各项系数. 能力提升
ax 2+bx +c =0中,为什么规定a ≠0?一元二次方程中,必须有哪一项?
小结
(本节课你学到了什么知识?从中得到了什么启发?)
(1)一元二次方程的概念;
(2)一元二次方程的一般形式ax 2+bx +c =0(a ≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.。