建筑结构弹塑性地震响应计算的等价线性化法研究
- 格式:pdf
- 大小:971.77 KB
- 文档页数:8
弹塑性分析在超高层建筑结构设计中的应用探讨摘要:在当今社会,随着社会经济的发展,建筑行业也在不断发展,并且所建设的楼层也越来越高,其中超高层建筑结构设计能够为人们提供舒适的生活环境,然而,由于超高层建筑的楼层较高,因此在对其进行设计时,对地震防御的设计显得尤为重要。
对于超高层建筑结构设计中的抗震设计而言,具体可以是静力弹塑性分析法,这种方法不仅能够关注到超高层建筑结构的抗震性,而且也能够关注到超高层建筑质量但由于我国对弹塑性分析还存在一些问题,因此,使得弹塑性分析的作用不能充分发挥。
本文则是根据谭弹塑性分析,在超高层建筑结构设计中的应用所进行的探讨,希望能够有效促进超高层建筑结构设计的发展。
关键词:弹塑性分析;超高层建筑结构;应用探讨随着社会经济的发展,城镇化水平在不断提高,因此,城市能够建设的空间也在不断减少,面对这一现象,城市在进行建设时会选择超高层建筑,这样不仅能够扩大人们的生存空间,而且也能够有效缓解土地问题。
然而,在对超高层建筑进行建设时,也存在一些问题,其中最主要的问题就是建筑结构的稳定性。
在进行建设时,不仅要保证施工技术等资源的应用质量,而且也要促进施工与设计环节的契合性,进而解决在建筑过程中所遇到的问题。
一、提升超高层建筑结构设计稳定性的重要性随着社会经济的发展,城镇化水平的发展,城市建设逐渐向超高层建筑结构设计发展。
而建筑超高层发展能够有效缓解中低层建筑的密集拥堵问题。
这也在一定程度上对建筑结构的稳定性提出了更高的要求。
如果建筑结构无法保证稳定性,那么在后期就可能会对人们的生命财产安全造成影响。
为了能够有效保证建筑结构的稳定性,施工人员可以采用弹塑性分析技术,这样不仅能够对施工技术和材料的使用进行优化,而且也能够有效促进超高层结构建设稳定性的提高。
另外,在具体的建设过程中,工作人员也要对地震灾害所产生的影响进行重视,并把其考虑到建设中,进而促进超高层建筑结构稳定性的提升。
二、弹塑性分析技术概述弹塑性分析技术从本质上来讲就是从建筑结构变化角度展开分析,通过对建筑结构施加外在应力,进而判断建筑结构是否具有稳定性。
结构抗震静力弹塑性分析方法(Pushover)的研究与改进的开题报告一、研究背景随着建筑结构设计的发展,抗震设计成为其中的重点和难点。
为了保障建筑安全,结构的抗震能力得到了越来越广泛的重视。
在结构抗震设计中,抗震静力弹塑性分析方法(Pushover)已经成为全球广泛使用的一种分析方法。
该方法根据结构某一方向施加分布荷载,通过对结构力学性能的分析,评估结构抗震能力。
二、研究目的与意义随着现代建筑的不断发展,建筑的结构形式日益复杂。
在这种情况下,传统的计算方法已经不能满足抗震设计的需求。
因此,本研究旨在对抗震静力弹塑性分析方法进行研究和改进,扩充其适用范围,提高其计算精度和效率,以更准确地评估结构的抗震能力。
三、研究内容1. 国内外相关研究的调研和综述,对Pushover分析方法的基本原理和步骤进行总结和阐述。
2. 提出一种结构抗震静力弹塑性分析方法的改进方案,探讨在模型参数、荷载模拟、材料本构关系等方面的改进思路。
3. 基于实际工程,使用所提出的改进方法对不同类型的建筑结构进行抗震分析,评估其抗震能力。
4.设计和编写Pushover分析方法改进程序,验证改进方案的正确性和有效性。
四、预期成果和考核指标本研究旨在对抗震静力弹塑性分析方法进行改进研究。
主要的预期成果包括:1.提出一种结构抗震静力弹塑性分析方法的改进方案,改进方案应能够在某些方面比传统的方法更加准确和高效。
2.通过实际工程评估所提出的改进方法的优缺点,验证其适用性和实用性。
3.设计和编写Pushover分析方法改进程序,展示改进方案的正确性和有效性。
预计的考核指标包括:论文的质量、研究方法是否合理、研究成果是否能够达到预期目标、研究结果的可重复性和实用性。
五、研究步骤与进度安排1.查阅相关文献,了解国内外关于结构抗震静力弹塑性分析方法的研究现状和进展,设计改进方案。
预计用时2周。
2.对所提出的改进方案进行模拟,并对改进方案中涉及的各项参数进行详细分析研究。
0引言钢筋混凝土梁桥作为我国桥梁结构中的主要形式,具有耐久性高、可维修性强、结构整体性好等优点,因此应用最为广泛。
在地震灾害作用下,相比其上部结构,梁桥工程中的下部结构更易发生破坏且破坏程度更为严重,这些破坏可能会造成桥梁倾斜、梁体位移或弯曲等,难以维修和修复,严重时甚至导致落梁[1-2]。
从过去的地震破坏经验中可知,梁桥工程在地震灾害作用下,其下部结构发生破坏时通常已处于弹塑性阶段,因此近年来国内外学者针对梁桥结构的弹塑性开展了大量的研究。
张振浩等[3]对钢筋混凝土梁桥结构的弹塑性进行抗震研究,考虑多点非一致激励,结合桥梁结构设计基准期内抗震可靠度的计算结果和指标,对实际工程结构进行数值模拟分析,计算结果表明:采用结构可靠度理论与结构弹塑性分析相结合的方法,可有效获取设计基准期内梁桥结构在多种地震荷载作用下的结构抗震可靠度指标。
该研究为钢筋混凝土梁桥结构的抗震分析和研究提供了一定的参考。
李喜梅等[4]研究钢筋混凝土梁桥结构材料劣化对其抗震性能的影响规律,通过对比不同材料劣化程度、不同地震荷载作用下的结构应力和位移响应,提取梁桥结构不同时期的受力特性和破坏特性,明确了材料劣化和地震荷载对梁桥结构抗震性能的影响。
该研究为钢筋混凝土梁桥的安全设计和管理提供了一定的参考。
赵杰等[5]针对城市高架桥的抗震性能,利用OpenSees 有限元软件,以某六跨连续梁桥为研究对象进行静力弹塑性和动力弹塑性分析,明确了桥墩的延性系数和承载能力以及地震荷载作用结构的变形和受力特性。
不同于前人的研究角度,本文研究纤维单元模型、集中塑性铰模型和等效线弹性分析方法在梁桥结构弹塑性抗震分析中的差异,通过Midas/Civil 有限元分析软件建立全桥模型,基于增量动力分析法对比分析3种不同分析方法的墩底弯矩、墩底剪力及墩顶位移指标等梁桥的抗震性能指标,明确不同分析方法的适用性。
1工程背景和模型建立1.1工程背景本文以实际工程结构为背景,研究对象为三跨钢筋混凝土梁桥,该桥计算跨径为20m+20m+20m=60m ;桥面净空为7m+2×0.75m 人行道;桥梁等级为B 类;桥梁设计车道数为2车道。
高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究一、本文概述本文旨在探讨高层建筑结构在地震作用下的弹塑性分析方法及其抗震性能评估。
地震是自然界中常见的灾害性事件,对人类社会和建筑结构产生深远影响。
高层建筑由于其特殊的结构特点和高度,使其在地震中更容易受到破坏。
因此,研究高层建筑结构的抗震性能,特别是在弹塑性阶段的分析和评估,对于提高建筑结构的抗震能力,减少地震灾害损失具有重要意义。
本文将首先介绍高层建筑结构抗震弹塑性分析的基本理论和方法,包括弹塑性力学基础、结构分析模型、地震动输入等。
在此基础上,探讨高层建筑结构在地震作用下的弹塑性响应特点,包括结构变形、内力分布、能量耗散等。
然后,本文将重点介绍高层建筑结构抗震性能评估的方法和技术,包括静力弹塑性分析、动力弹塑性分析、易损性分析等。
这些方法和技术可以用于评估高层建筑结构在地震中的安全性能和抗震能力。
本文还将对高层建筑结构抗震弹塑性分析方法和抗震性能评估的应用进行案例研究。
通过实际工程案例的分析,探讨不同分析方法和技术在实际工程中的应用效果,为高层建筑结构的抗震设计和评估提供参考和借鉴。
本文将对高层建筑结构抗震弹塑性分析方法和抗震性能评估的未来发展趋势进行展望,提出相关的研究建议和展望。
通过本文的研究,可以为高层建筑结构的抗震设计和评估提供更为科学、合理的方法和技术支持,有助于提高高层建筑结构的抗震能力,减少地震灾害损失。
二、高层建筑结构抗震弹塑性分析方法的研究高层建筑结构的抗震弹塑性分析是评估建筑在地震作用下的响应和性能的重要手段。
随着建筑高度的增加,结构的柔性和非线性特性愈发显著,因此,采用弹塑性分析方法可以更准确地模拟结构在地震中的实际行为。
材料本构关系的研究:高层建筑的抗震性能与其组成材料的力学特性密切相关。
研究材料在循环加载下的应力-应变关系、滞回特性以及损伤演化规律,是弹塑性分析的基础。
通过试验和数值模拟,可以建立更精确的材料本构模型,为结构分析提供数据支持。
建筑技术论文:建筑结构弹塑性地震响应计算的等价线性化法研究摘要: 等价线性化法是一种可借助振型分解反应谱法计算结构非线性地震峰值响应的实用方法,并且能够在设计中预设结构的损伤位置和损伤程度,是一种值得推广的、并可用于复杂结构性能化抗震设计的工程实用分析方法。
在前人研究的基础上,通过迭代计算确定结构的损伤模式,并采用更合理的等价线性化模型,完善了等价线性化法的实施流程,并采用该方法分析了一个平面规则结构与一个空间不规则结构的非线性地震峰值响应。
与动力弹塑性分析结果的比较表明,所建议的等价线性化法在预测结构整体和局部构件的非线性地震峰值响应方面均具有较好的精度,且具有计算效率高,适用性强等特点。
关键词: 建筑结构;多自由度体系;等价线性化;非线性地震响应0 引言基于经济与损失的均衡,根据现行的建筑结构抗震设防目标,在强烈地震作用下建筑结构的损伤是不可避免的,而建筑结构的诸多抗震性能,如中震下的可维修性和大震下的安全性等,都与其损伤模式与损伤程度直接相关。
为此,性能化抗震设计应首先对建筑结构在设计强震作用下的预期损伤位置和损伤程度进行设计,并通过可靠的计算分析予以保证。
在这样的设计理念指导下,线弹性结构分析手段已无法胜任,为此,动力弹塑性分析或静力弹塑性分析等更加复杂的结构非线性分析方法日益受到重视。
等价线性化法是一种适用于性能化抗震设计、计算结构非线性地震峰值响应的工程实用化方法。
该方法通过预设结构损伤模式和预期损伤程度,建立结构的等价线性化模型,如图1所示。
图中ζ0为结构的初始阻尼比,为ζe结构的等价阻尼比,K0为构件的初始刚度,K e为结构的等价刚度。
预期损伤的部位或构件在地震作用下可能发生屈服,刚度降低,且在地震反复作用下具有一定弹塑性滞回耗能能力。
在等价线性化结构模型中,这些具有非线性力学特性的构件用具有等价刚度的线弹性构件替代,并通过赋予整体结构一个附加等价阻尼比来考虑各损伤部位或构件的滞回耗能对结构整体地震响应的影响。
《建筑结构抗倒塌设计规范》第五章建筑结构抗地震倒塌设计修改稿202001075 建筑结构抗地震倒塌设计5.1 一般规定5.1.1极罕遇地震抗倒塌设计、地震倒塌风险分析和其它必要情况下,可按本章进行抗地震倒塌设计。
【5.1.1】按国家现行有关标准进行抗震设计的建筑结构,应能达到罕遇地震作用下不发生倒塌的抗震设防目标。
第五代地震区划图给出了极罕遇地震相关规定,本章的规定是对国家现行标准的补充。
5.1.2抗震设防的建筑结构应按国家现行有关标准进行抗震设计,并建议采用下列设计原则:1 避开发震主断裂带;2 避开地质灾害影响区域;3 采取有效的抗震、隔震措施;4 采用消能减震装置;5 减小结构自重及非结构构件的重量。
【5.1.2】地震及地震引发的地质灾害是不可避免的自然灾害,建筑选址避开发震主断裂带及地质灾害影响区域,可以有效避免地震引起的建筑倒塌。
隔震可以减小主体结构的地震作用,消能减震可以减小地震作用输入到结构构件上的能量。
减小结构自重及非结构构件的重量,可以减小结构的地震作用,减轻非结构构件的破坏。
5.1.3 抗震设防的建筑结构在地震作用下其结构构件应有合理的屈服次序。
【5.1.3】地震作用下结构构件合理的屈服次序对于结构抗地震倒塌十分重要,所谓“合理的屈服次序”是指先屈服的构件应为消能构件,比其他构件具有更大的弹塑性变形能力和消能能力,且重要性程度相对较低的构件,该类构件屈服不致引起结构倒塌。
一般而言,首先屈服的构件应为弯曲破坏的水平构件及消能构件,然后是支撑杆件、普通竖向构件,最后才是关键竖向构件。
5.1.4 非结构构件的布置及其与主体结构之间的连接构造,不应影响地震作用下主体结构预期的屈服耗能机制。
【5.1.4】如钢筋混凝土框架结构的窗间墙采用砌体墙,且砌体墙与主体结构连接不当时,框架柱在窗高范围内易发生极短柱的剪切破坏,不能形成预期的弯曲屈服耗能机制;装配式混凝土建筑中部分非结构构件与主体结构均采用普通钢筋混凝土预制,且连接未采用合理的构造措施,会改变主体结构屈服耗能机制。
弹塑性反应谱及其在抗震设计中的应用
丁建国
【期刊名称】《南京理工大学学报(自然科学版)》
【年(卷),期】2007(031)006
【摘要】由于当采用抗震规范中的弹性反应谱估算结构弹塑性变形时有许多局限性,该文提出了在抗震设计中直接使用弹塑性反应谱计算在罕遇地震作用下结构的弹塑性反应.该文利用弹性反应谱和Vindic模型中的R-μ-T关系,通过理论分析,推导了弹塑性反应谱的一般表达式,并且提出了弹塑性反应谱在地震作用计算中的应用方法.根据算例分析,延性系数越大,楼层地震剪力越小,但延性系数对层间位移的影响很小.另外,在罕遇地震作用下根据该文提出的方法计算而得到的层间弹塑性位移比根据抗震规范中所提出方法得到的层间弹塑性位移小.
【总页数】4页(P780-783)
【作者】丁建国
【作者单位】南京理工大学,理学院,江苏,南京,210094
【正文语种】中文
【中图分类】TU311.3
【相关文献】
1.反应谱法在桥梁抗震设计中的应用 [J], 刘洪亮
2.高架桥梁抗震设计的弹塑性反应谱法 [J], 韩鹏;王君杰;何剑;王再荣
3.梁式桥抗震设计的弹塑性位移反应谱 [J], 李宇;王森;车艳阳;武芳文
4.振型分解反应谱法在抗震设计中的应用 [J], 岳小吉
5.考虑我国场地土类型的弹塑性反应谱法在高层混合结构中的应用 [J], 周颖;卜一;吕西林;黄志华
因版权原因,仅展示原文概要,查看原文内容请购买。
高层支撑钢框架弹塑性地震反应简化分析模型
李国强;谢卫兵;沈祖炎
【期刊名称】《建筑结构》
【年(卷),期】1996()11
【摘要】本文首先将高层支撑钢框架结构分解成纯框架和纯支撑体系两部分,并与一列受载铰接刚性杆并联,以考虑几何非线性的影响;然后将框架部分简化为半刚架,将支撑体系部分简化为铰接桁架,以此进行结构弹塑性地震反应分析.在前人试验和理论研究成果的基础上,本文还提出了能准确反映钢支撑主要滞回特征的支撑恢复力模型,便于工程实用.通过算例对比分析,表明采用本文提出的高层支撑钢框架简化模型进行弹塑性地震反应分析,具有计算精度高、计算自由度少、计算时间省的优点,是一种有效的近似方法.
【总页数】4页(P3-6)
【关键词】高层结构;支撑钢框架;弹塑性;地震反应;模型
【作者】李国强;谢卫兵;沈祖炎
【作者单位】同济大学
【正文语种】中文
【中图分类】TU973.15;TU973.212
【相关文献】
1.高层偏心支撑钢框架弹塑性地震反应分析 [J], 曹洪涛
2.多层钢-混凝土核芯筒混合结构弹塑性地震反应简化分析模型 [J], 柴硕;潘振宇;
伍雪南
3.高层钢-混凝土混合结构弹塑性地震反应简化分析模型 [J], 周向明;李国强;丁翔
4.钢框架弹塑性地震反应简化分析方法 [J], 李国强;沈祖炎
5.高层钢框架弹塑性地震反应简化分析模型 [J], 沈祖炎;李国强;吴亦茜
因版权原因,仅展示原文概要,查看原文内容请购买。
高层建筑结构的地震响应分析高层建筑是当代城市化发展的重要组成部分,由于其特殊的结构特点,地震对其影响是不可忽视的。
本文将对高层建筑结构的地震响应进行分析。
一、引言地震是地壳运动引起的自然灾害,其对高层建筑的影响往往是最为显著的。
鉴于高层建筑在地震中所受到的巨大力学作用,对其地震响应进行准确分析具有重要意义。
二、高层建筑结构的地震响应机理高层建筑结构的地震响应主要通过以下几个方面体现:1. 震感传递路径:地震波在地壳传播过程中,会通过地基、框架结构、楼板等路径传递到高层建筑的结构系统中。
2. 动力特性影响:高层建筑的固有周期、阻尼比等动力特性对地震响应起着重要作用,这些参数会直接影响结构的振动情况。
3. 弹塑性行为:高层建筑结构在地震作用下会出现弹性和塑性变形,其中塑性变形会对结构产生更大的影响。
4. 结构非线性:高层建筑的结构系统存在着非线性行为,例如钢结构的屈曲等,这些非线性现象会对地震响应产生重要影响。
三、高层建筑结构的地震响应分析方法对于高层建筑结构的地震响应分析,常用的方法主要包括以下几种:1. 静力分析法:即利用静力平衡原理,假定地震作用与结构受力时间相比较长,结构处于静力平衡状态的方法。
这种方法适用于刚性结构或者对地震反应较不敏感的情况。
2. 动力弹性响应分析法:该方法假设结构是线性弹性的,通过求解结构的频率和振型,利用输入地震波的振幅谱与结构的响应谱进行对比,得到结构的地震响应。
3. 时程分析法:通过数值方法对结构进行时程分析,考虑结构的非线性行为和地震波的时程特性,得到结构在地震过程中的时变响应。
四、高层建筑结构抗震设计原则为了提高高层建筑结构的地震抗力,应该遵循以下原则:1. 刚度控制:通过增加结构的刚度,减小结构的位移,在地震中减小结构的变形和应力。
2. 强度控制:通过增加结构的强度,提高其承载能力,使结构能够在地震中承受较大的力学作用。
3. 韧性设计:提高结构的韧性能力,使结构在地震中具有一定的塑性变形能力,能够吸收地震能量并减缓地震波的作用。