从小到大排列_分数的大小
- 格式:ppt
- 大小:319.50 KB
- 文档页数:1
课后作业之青柳念文创作
1. 请选择正确答案的序号填入小括号里.
(1)将580579、4544
、16531652
这三个分数按从小到大的顺序摆列
起来是
(2)将
9999
777、999997777、99999
99997777777++三个分数按从大到小的
顺序摆列起来是
(3)将1516
、9
7、5
4、1117、87、78、3
2按从大到小的顺序摆
列起来是
2. 比较下面五个分数的大小,排在中间的是:
①51910②72514③77615④108821⑤181435
3. 比较右边两个分数的大小:5555755554
( )6667066667
4. 比较右边两个分数的大小:98764
12346
( )9876512345
5. 比较下面四个算式的大小:
6. 有8个数,•⋅
•15.0,
3
2,9
5,•
15.0,
47
24,25
13是其中的六
个,如果从小到大摆列时,第四个数是•
15.0,那末从大到小摆列时,第四个数是多少?
7. 如果
222221
111110=
A ,
888887
444443=
B ,那末A 和B 中较大的是哪
一个?
8. 求+++100099910099109 (00)
100000000099999999999+
的整数部分.。
一、 热点回顾对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:(1)分母相同的两个分数,分子大的那个分数比较大;(2)分子相同的两个分数,分母大的那个分数比较小。
(3)分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法:1、“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
2、化为小数。
3、先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4、根据倒数比较大小,倒数大的分数小5、若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
6、借助第三个数进行比较。
有以下几种情况:(1)对于分数m 和n ,若m >k ,k >n ,则m >n 。
(2)对于分数m 和n ,若m-k >n-k ,则m >n 。
(3)对于分数m 和n ,若k-m <k-n ,则m >n 。
注意:(2)与(3)的差别在于,(2)中借助的数k 小于原来的两个分数m 和n ;(3)中借助的数k 大于原来的两个分数m 和n 。
(4)把两个已知分数的分母、分子分别相加,得到一个新分数。
新分数一定介于两个已知分数之间,即比其中一个分数大,比另一个分数小。
7、交叉相乘法:如比较b d a c和的大小,交叉相乘后,如果ac bd >,那么说明a b 大. 8、基准数法:最常用的是把1选为基准数,还有常用的像1123,这样的分数. 9、两数相减法:两个分数相减,如0a b ->,则a 大;反之则b 大.两数相除法:两个分数相除,如1a b ÷>,则a 大;反之则b 大.二、典型例题例1、 比较分数3214和5316的大小例2、 将下列分数按由大到小的顺序排列。
分数和百分数的大小比较练习题在数学中,我们经常需要比较分数和百分数的大小。
分数和百分数都是用于表示某种数量或比例的方式,但它们的表达形式不同。
在本篇文章中,我们将通过练习题来进一步理解和比较分数和百分数的大小。
练习题一:1. 比较大小:将分数和百分数按从小到大的顺序排列。
a) 2/3, 0.5%, 0.2, 75%b) 3/5, 40%, 0.45, 2/32. 找出最大和最小值:确定以下分数和百分数的最大值和最小值。
a) 5/8, 3/4, 60%, 70%b) 1/3, 25%, 0.4, 2/5练习题二:1. 将分数转化为百分数:将以下分数转化为百分数。
a) 1/2b) 3/5c) 7/8d) 2/32. 将百分数转化为分数:将以下百分数转化为分数。
a) 30%b) 60%c) 10%d) 75%练习题三:1. 比较大小:将分数和百分数按从大到小的顺序排列。
a) 4/5, 60%, 9/10, 85%b) 3/4, 20%, 0.7, 1/22. 找出最大和最小值:确定以下分数和百分数的最大值和最小值。
a) 2/3, 50%, 0.45, 5/6b) 3/8, 70%, 0.6, 1/2练习题四:1. 比较大小:将分数和百分数按从小到大的顺序排列。
a) 7/8, 60%, 0.9, 80%b) 1/3, 10%, 0.35, 3/42. 找出最大和最小值:确定以下分数和百分数的最大值和最小值。
a) 5/6, 30%, 0.8, 2/3b) 1/4, 20%, 0.5, 2/5练习题五:1. 将分数转化为百分数:将以下分数转化为百分数。
a) 3/4b) 2/5c) 5/6d) 4/72. 将百分数转化为分数:将以下百分数转化为分数。
a) 80%b) 30%c) 45%d) 15%以上是一些针对分数和百分数的大小比较的练习题。
通过这些练习,我们可以加深对分数和百分数的理解,以及它们在数值大小比较中的应用。
五年级上册:分数大小的拓展练习及思维拓展作为小学数学的重要一环,分数在小学中贯穿始终。
在五年级上册,学生们学习了分数加减法、约分、化简、比较大小等知识点,掌握了基本的分数概念、分数的加减运算及特殊的分数化简技巧。
但在日常学习和应用中,学生们常常会遇到分数大小比较方面的问题,如分数大小的比较、同分母的分数大小比较、不同分母的分数大小比较等。
本篇文章将为五年级学生们提供一些分数大小拓展练习及思维拓展,帮助学生们更好地掌握分数大小比较的知识点。
一、同分母分数大小比较在同分母的分数比较中,我们可以通过比较分子的大小来确定两个分数的大小关系。
例如:$\frac{3}{5}$ 与 $\frac{2}{5}$,由于它们的分母相同,只需要比较它们的分子大小即可。
显然,$3 > 2$,$\frac{3}{5}$ 大于 $\frac{2}{5}$。
练习题1:请依次比较以下分数的大小,并按从小到大的顺序排列。
$\frac{2}{7}$,$\frac{5}{7}$,$\frac{3}{7}$,$\frac{1}{7}$,$\frac{4}{7}$思路:这道题的正确解题方法是比较分子大小。
但为了让学生们积极思考和练习,我们可以提供一些思维方法,例如:可化简分数,将所有分数通分等。
解答:对于这道练习题,我们可以通过化简分数来进行比较。
将所有分数通分,得到:$\frac{2}{7}$,$\frac{5}{7}$,$\frac{3}{7}$,$\frac{1}{7}$,$\frac{4}{7}$接着,我们可以根据分子大小依次比较它们的大小,得到排列顺序为:$\frac{1}{7}$,$\frac{2}{7}$,$\frac{3}{7}$,$\frac{4}{7}$,$\frac{5}{7}$二、异分母分数大小比较在异分母的分数比较中,我们需要将分数通分,并且选取相同的公分母进行比较。
例如:比较 $\frac{1}{3}$ 和 $\frac{2}{5}$ 的大小,我们可以将它们通分,选择公分母为 $3 \times 5 = 15$,得到:$\frac{1}{3} = \frac{5}{15}$,$\frac{2}{5} =\frac{6}{15}$我们可以比较它们的分子大小,得到 $\frac{6}{15}$ 大于$\frac{5}{15}$, $\frac{2}{5}$ 大于 $\frac{1}{3}$。