集合与集合的表示方法
- 格式:ppt
- 大小:297.50 KB
- 文档页数:19
集合与集合的表示方法1.集合的概念:一般地,把一些能够确定的不同的对象看成一个整体,这个整体就构成集合,构成几何的每个对象叫做这个集合的元素。
集合用大写字母表示A、B、C;元素用小写字母表示a、b、c。
2. 集合与元素的关系:如果a是集合A的元素,就说a属于集合A,记作a A∉。
∈;如果a不是集合A的元素,就说a不属于集合A,记作a A 【注】用符号∈和∉表示元素和集合的关系。
例1:用符号∈或∉填空(1)设集合A是正整数集合:则0---A ,,0----A ,(1)5-----A。
的所有实数的集合:则-----B ,(2)设集合B是小于(1------B。
(3)用符号∈或∉填空:1_____Z,-1_____R,0_____{0},0_____φ,a_____{a},π____Q,20_____N*.3集合中元素的性质(1)确定性(2)互异性(3)无序性例2:考察下列每组对象能否构成一个集合(1)不超过20的非负数;(2)方程290x-=在实数范围内的解;(3)直角坐标平面内第一象限的一些点;(4)(5)某个单位里的年轻人组成一个集合;(6)1、36,,0.5,1-组成一个集合24(7)集合{1,5}与集合{5,1}是不同的集合;(8)集合{(1,5)}与集合{(5,1)}是同一个集合;例3:(1)方程2210++=的解集中,有()个元素。
x x(2)已知集合M中有三个元素可以作为某一个三角形的边长,则此三角形一定不是()三角形。
(3)由2,2,4-组成一个集合A,A中含有三个元素,则实a a数a的取值可以是()A、1B、-2C、6D、2例4:设集合A中含有22++++这三个元素,若1Aa a a a(1),2,33∈,求实数a的值。
练习:设集合A中含有两个元素2,2k k k-,求实数k的取值范围。
4空集:不含任何元素的集合,记作∅。
【注】0∉∅。
5集合的分类:有限集、无限集。
6常用集合:(1)自然数集N(2)正整数集*N N,+(3)整数集Z(4)有理数集Q(5)实数集R例5:下列说法中正确的有:(1)集合N 中最小数为1 ;(2)若a N ∈,则a N -∈;(4) 若,a N b N ∈∈,则a b +的最小值为2;(4)所有小的正数组成一个集合。
集合的表示与分类一、引言集合是数学中的基本概念之一,它在各个学科和日常生活中都有着广泛的应用。
准确地表示和分类集合是我们研究和理解集合的重要基础。
本文将介绍集合的表示方法和分类方式。
二、集合的表示方法1. 列举法列举法是最直观、最简单的表示集合的方法。
通过将集合中的元素逐个罗列出来,用花括号{}括起来表示集合。
例如,集合A={1,2,3,4,5}表示A是包含元素1、2、3、4、5的集合。
2. 描述法描述法是通过给出集合中的元素满足的特定条件来表示集合。
一般形式为{元素 | 元素满足的条件}。
例如,集合B={x | x是正整数且x<10}表示B是包含所有小于10的正整数的集合。
3. 通用集合符号除了列举法和描述法外,通用集合符号也是表示集合的常用方法。
常见的通用集合符号有:- 空集符号:∅,表示一个不包含任何元素的集合。
- 元素属于符号:∈,表示一个元素属于某个集合。
- 元素不属于符号:∉,表示一个元素不属于某个集合。
- 子集符号:⊆,表示一个集合是另一个集合的子集。
- 真子集符号:⊂,表示一个集合是另一个集合的真子集。
三、集合的分类方式1. 有限集与无限集根据元素的个数,集合可以分为有限集和无限集。
有限集是元素个数有限的集合,例如{1,2,3,4,5};无限集是元素个数无限的集合,例如正整数集合。
2. 空集与非空集根据元素的存在情况,集合可以分为空集和非空集。
空集是不包含任何元素的集合,用符号∅表示;非空集是至少包含一个元素的集合。
3. 包含集与被包含集根据集合之间的包含关系,集合可以分为包含集和被包含集。
如果集合A中的每个元素都是集合B中的元素,则可以称集合B是集合A 的包含集,集合A是集合B的被包含集。
4. 相等集与不相等集根据集合之间的相等关系,集合可以分为相等集和不相等集。
如果两个集合中的元素完全相同,则这两个集合相等;否则,这两个集合不相等。
四、结论本文介绍了集合的表示方法和分类方式。
集合及其表示知识要点1.集合概念(1)我们常常把能够确切指定的对象看作一个整体,这个整体就叫做集合,简称集。
集合中的各个对象叫做这个结合的元素。
集合常用大写字母A ,B ,C ……表示,集合中的元素用小写字母a b c ⋅⋅⋅、、表示。
例如:a 是集合A 中元素,记作a A ∈,a 不是A 中元素,记作a A ∉,分别读作“a 属于A ”,“a 不属于A ”。
(2)集合的分类:有限集、无限集和空集。
空集记作∅。
(3)特殊集合的表示:自然数:N ;不包括零的自然数:N *;整数:Z ;有理数:Q ;实数:R 。
2.集合的表示法(1)列举法:将集合中的元素一一列举出来(列举时不考虑元素的顺序)并且写在大括号内,这种表示集合的方法叫列举法。
(补充:比较适合个数较少的有限集)(2)描述法:在大括号内先写出这个集合的元素的一般形式,再划一条竖线,在竖线后面写上集合中元素所具有的共同特性,即{}A x x P =∈,这中表示集合的方法叫做描述法。
(3)图示法:用图形围成的区域来表示集合的方法叫做集合的图示法,通常用圆及圆内部表示集合。
3.集合元素的性质:确定性、互异性、无序性。
4.集合之间的关系(1)子集及子集相关定义:对于两个集合A 和B ,如果A 中任何一个元素都属于B ,那么集合A 叫做集合B 的子集。
记作A B ⊆或B A ⊇,读作“A 包含于B ”或“B 包含A ”。
我们规定∅是任何集合的子集。
对于集合A 、B ,如果A B ⊆,并且B 中至少有一个元素不属于A ,那么集合A 叫做集合B 的真子集,记作A B 或B A ,读作“A 真包含于B ”或“B 真包含A ”。
(2)相等的集合:两个集合A 、B ,如果A B ⊆且B A ⊆,那么叫做集合A 与集合B 相等,记作A=B 。
精选例题例1、 用适当的符号;;;;≠≠∈⊂∉=⊃填空. 3.14_______;Q {}0______0; ________;N ∅________;Z N +* 0________∅ 2;Q________;Q π {}2_______;-偶数 {}{}1________-奇数0.3_______;Q {}1________;质数{}{}21,_______21,x x k k Z t t k k Z =-∈=+∈ {}2_______20,;x x x R ∅+=∈{}{}24,_________,y y x x R z z x x R =∈=∈ 例2、用适当的方法表示下列集合:(1) 关于x 的不等式||5x <的整数的解集;(2) 所有奇数构成的集合;(3) 方程0)2)(1(22=---x x x 的解的集合;(4) 直角坐标平面上所有第三象限的点;(5) 函数3y x =- 的所有函数值组成的集合。
1.1集合与集合的表示方法导学案学习目标重点:集合概念的形成及集合的表示方法难点:理解集合的元素的确定性和互异性,理解集合的特征性质描述法 读课本P3---P9,然后合上课本,完成学案和课后练习。
1.1.1 集合的概念 集合是什么呢? 1,元素和集合的概念2,元素和集合的表示元素通常用小写字母a,b,c …表示;集合通常用大写字母A,B,C …表示。
如果a 是集合A 的元素,则称:a 属于集合A ,记作__________。
如果a 不是集合A 的元素,则称:a 不属于集合A ,记作__________。
3,常见数集表示非负整数集(自然数集)_____;正整数集_____; 整数集_______;有理数集______;实数集______。
4,集合元素的性质(1) 集合中元素的________性。
问题:下列元素能否构成集合①08北京奥运会的正式比赛项目; ②方程0342=+-x x 的所有实根; ③我国比较富裕的省份; ④我们班上性格开朗的同学 ⑤和π接近的所有实数; ⑥所有的质数(2) 集合中元素的________性。
(一个给定集合中元素是互不相同,没有重复的)例1, 若一个集合中只有两个元素a 和3,求a 的取值范围。
例2, 若一个集合中有三个元素:232x x x -,,,求x 的取值范围。
例3,(3) 集合中元素的________性。
(集合中的元素没有先后顺序)集合A={1,4,0,9}和集合B={4,9,1,0}的关系是______________。
5,集合的分类根据集合中元素的个数可以分两类,是_________和___________。
6,完成课本P4---P5 中的练习A 和练习B 。
(写在课本上)1.1.2 集合的表示方法如何表示一个集合?集合的表示方法有_____________,______________,_______________。
1, 列举法:把集合中的元素一一的列举出来,写在“{}”内的表示集合的方法叫列举法。
集合与集合的表⽰⽅法第1章集合1.1 集合与集合的表⽰⽅法1.1.1 集合的概念⼀、概念与能⼒聚焦1、集合的概念集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些指定的且不同的对象集在⼀起就成为⼀个集合。
组成集合的对象叫元素,集合通常⽤⼤写字母A 、B 、C 、…来表⽰。
元素常⽤⼩写字母a 、b 、c 、…来表⽰。
集合是⼀个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的⼀个集合。
例题1:考察下列每组对象能否组成⼀个集合?(1)2010年上海世博会上展出的所有展馆;(2)2010年辽宁⾼考数学试卷中所有的难题;(3)清华⼤学2010级的新⽣;(4)平⾯直⾓坐标系中,第⼀象限内的⼀些点;(5)2的近似值的全体.2、元素与集合的关系元素与集合的关系有属于和不属于两种:元素a 属于集合A ,记作A a ∈;元素a 不属于集合A ,记作A a ?。
例题 2:已知321-=a ,}{Z n m n m x x A ∈+==,,3,则a 与A 之间是什么关系?3、集合中元素的特性(1)确定性:设A 是⼀个给定的集合,x 是某⼀具体对象,则x 或者是A 的元素,或者不是A 的元素,两种情况必有⼀种且只有⼀种成⽴。
例如}{4,3,1,0=A ,可知A A ?∈6,0。
(2)互异性:“集合中的元素必须是互异的”,就是说“对于⼀个给定的集合,它的任何两个元素都是不同的”。
如⽅程0)4(2=-x 的解集记为}{4,⽽不能记为}{4,4。
(3)⽆序性:集合与其中元素的排列次序⽆关,如集合}{c b a ,,与集合}{a b c ,,是同⼀个集合。
例题3:已知集合A 中含有两个元素3-a 和12-a ,若A ∈-3,试求实数a 的值。
4、集合的分类集合可根据它含有的元素个数的多少分为两类:有限集:含有有限个元素的集合。
如“⽅程013=+x 的解组成的集合”,由“8,6,4,2组成的集合”,它们的元素个数是可数的,因此这两个集合是有限集。
集合的表⽰⽅法集合的表⽰⽅法⼀.集合的表⽰法:列举法、描述法和图⽰法列举法:将所给集合中的元素⼀⼀列举出来,写在⼤括号⾥,元素与元素之间⽤逗号分开,常⽤于表⽰有限集.描述法:将所给集合中全部元素的共同特性和性质⽤⽂字或符号语⾔描述出来.常⽤于表⽰⽆限集.使⽤描述法时,应注意六点:①写清集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使⽤“且”,“或”;⑤所有描述的内容都要写在⼤括号内;⑥⽤于描述的语句⼒求简明、确切.图⽰法:画⼀条封闭的曲线,⽤它的内部来表⽰⼀个集合,常⽤于表⽰⼜需给具体元素的抽象集合,对已给出了具体元素的集合当然也可⽤图⽰法来表⽰.如:A={1,2,3,4}例1、设集合A={a,a+b, a+2b},B={a,ac,ac2} ,且A=B,求实数c值.分析:欲求c值,可列关于c的⽅程或⽅程组,根据两集合相等的意义及集合元素的互异性,有下⾯两种情况:(1)a+b=ac且a+2b= ac2,(2)a+b= ac2且a+2b=ac 两种情况.解:(1)a+b=ac且a+2b= ac2,消去b得:a+ ac2-2ac=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴c2-2c+1=0,即c=1,但 c=1时,B中的三个元素也相同,舍去c=1,此时⽆解.(2)a+b= ac2且a+2b=ac,消去b得: 2ac2-ac-a=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴2c2-c-1=0,即c=1或,但 c=1时,B中的三个元素也相同,舍去c=1,∴.点评:两集合相等的意义是两集合中的元素都相同,在求集合中元素字母的值时,可能产⽣与互异性相⽭盾的增解,这需要解题后进⾏检验,去伪存真.(5)常⽤数集及专⽤记号(1)⾮负整数集(或⾃然数集)N={0,1,2,……}(2)正整数集N*(或N+)={1,2,3,……}(3)整数集Z={0,±1,±2,……}(4)有理数集Q={整数与分数}(5)实数集R={数轴上的点所对应的数}.强调:实数集不可记为{R}或{实数集},0≠≠{} ,≠{0},≠{空集}.强调:排除0和负数的数集也可表⽰为R*、Z*、Q*或R+、Z+、Q+.⼆.基本运算1.交集(1)定义:由所有属于集合A且属于集合B的元素所组合的集合叫A与B的交集.记作,即{,且}(2)交集的图⽰上图阴影部分表⽰集合A与B的交集.(3)交集的运算律,,,2.并集(1)定义:由所有属于集合A或属于集合B的元素所组成的集合,记作,即{,或}(2)并集的图⽰以上阴影部分表⽰集合A与B的并集.(3)并集的运算律,,,3、补集(1)定义:设S是⼀个集合,A是S的⼀个⼦集,由S中所有不属于A的元素组成的A=集合,叫做S中⼦集A的补集(或余集).记作,即 CS(2)补集的图⽰4、常⽤性质A A=A,AΦ=Φ,A B=B A,A B A, A B B.A A=A,AΦ=A,A B=B A,A B A,A B B.,,例2、集合{,且},A U,B U,且{4,5},{1,2,3},{6,7,8},求集合A和B.分析:利⽤集合图⽰较为直观.解:由{4,5},则将4,5写在中,由{1,2,3},则将1,2,3写在集A中,由{6,7,8},则将6,7,8写在A、B之外,由与中均⽆9,10,则9,10在B中,故A={1,2,3,4,5},B={4,5,9,10}.5、容斥原理:有限集A的元素个数记作card(A).对于两个有限集A,B,有card(A∪B)= card(A)+card(B)- ca rd(A∩B).。
1.1 集合与集合的表示方法(一)教学目标1.知识与技能(1)初步理解集合的含义,知道常用数集及其记法.(2)初步了解“属于”关系的意义.理解集合相等的含义.(3)初步了解有限集、无限集的意义,并能恰当地应用列举法或描述法表示集合.2.过程与方法(1)通过实例,初步体会元素与集合的“属于”关系,从观察分析集合的元素入手,正确地理解集合.(2)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(3)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).(4)通过实例体会有限集与无限集,理解列举法和描述法的含义,学会用恰当的形式表示给定集合掌握集合表示的方法.3.情感、态度与价值观(1)了解集合的含义,体会元素与集合的“属于”关系.(2)在学习运用集合语言的过程中,增强学生认识事物的能力.初步培养学生实事求是、扎实严谨的科学态度.(二)教学重点、难点重点是集合的概念及集合的表示.难点是集合的特征性质和概念以及运用特征性质描述法正确地表示一些简单集合.(三)教学方法尝试指导与合作交流相结合.通过提出问题、观察实例,引导学生理解集合的概念,分析、讨论、探究集合中元素表达的基本要求,并能依照要求举出符合条件的例子,加深对概念的理解、性质的掌握.通过命题表示集合,培养运用数学符合的意识.例1(1)利用列举法表法下列集合:①{15的正约数};②不大于10的非负偶数集.(2)用描述法表示下列集合:①正偶数集;②{1,–3,5,–7,…,–39,41}.【分析】考查集合的两种表示方法的概念及其应用.【解析】(1)①{1,3,5,15}②{0,2,4,6,8,10}(2)①{x | x = 2n,n∈N*}②{x | x = (–1) n–1·(2n–1),n∈N*且n≤21}.【评析】(1)题需把集合中的元素一一列举出来,写在大括号内表示集合,多用于集合中的元素有有限个的情况.(2)题是将元素的公共属性描述出来,多用于集合中的元素有无限多个的无限集或元素个数较多的有限集.例2 用列举法把下列集合表示出来:∈N};(1)A = {x∈N |9-9x∈N | x∈N };(2)B = {99x-(3)C = { y = y = –x2 + 6,x∈N,y∈N };(4)D = {(x,y) | y = –x2 +6,x∈N };(5)E = {x |pq= x ,p + q = 5,p ∈N ,q ∈N *}. 【分析】先看五个集合各自的特点:集合A 的元素是自然数x ,它必须满足条件99x -也是自然数;集合B 中的元素是自然数99x-,它必须满足条件x 也是自然数;集合C 中的元素是自然数y ,它实际上是二次函数y = – x 2 + 6 (x ∈N )的函数值;集合D 中的元素是点,这些点必须在二次函数y = – x 2 + 6 (x ∈N )的图象上;集合E 中的元素是x ,它必须满足的条件是x =pq,其中p + q = 5,且p ∈N ,q ∈N *.【解析】(1)当x = 0,6,8这三个自然数时,99x-=1,3,9也是自然数. ∴ A = {0,6,9}(2)由(1)知,B = {1,3,9}. (3)由y = – x 2 + 6,x ∈N ,y ∈N 知y ≤6. ∴ x = 0,1,2时,y = 6,5,2 符合题意. ∴ C = {2,5,6}.(4)点 {x ,y }满足条件y = – x 2 + 6,x ∈N ,y ∈N ,则有:0,1,2,6,5,2.x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩∴ D = {(0,6) (1,5) (2,2) }(5)依题意知p + q = 5,p ∈N ,q ∈N *,则0,1,2,3,4,5,4,3,2, 1.p p p p p q q q q q =====⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨=====⎩⎩⎩⎩⎩ x 要满足条件x =P q, ∴E = {0,14,23,32,4}.【评析】用描述法表示的集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义.例3 已知–3∈A = {a –3,2a – 1,a 2 + 1},求a 的值及对应的集合A . –3∈A ,可知–3是集合的一个元素,则可能a –3 = –3,或2a – 1 = –3,求出a ,再代入A ,求出集合A .【解析】由–3∈A,可知,a –3 = –3或2a–1 = –3,当a–3 = –3,即a = 0时,A = {–3,–1,1}当2a– 1 = –3,即a = –1时,A = {– 4,–3,2}.【评析】元素与集合的关系是确定的,–3∈A,则必有一个式子的值为–3,以此展开讨论,便可求得a.11/ 11。
集合概念、表示方法、分类以及集合之间的关系一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。
通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
元素与集合的关系有“属于∈”及“不属于∉两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
非负整数集(或自然数集),记作N;;N内排除0的集.正整数集,记作N*或N+整数集,记作Z;有理数集,记作Q;实数集,记作R;⑴确定性:⑵互异性:⑶无序性:1:判断以下元素的全体是否组成集合,并说明理由:⑴某班个子较高的同学⑵长寿的人⑷倒数等于它本身的数⑸某校2011级新生;⑹血压很高的人;⑺著名的数学家;⑻平面直角坐标系内所有第三象限的点7.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
例如,我们A 表示“1~20以内的所有质数”组成的集合,则有3∈A ,4∉A ,等等。
练:A={2,4,8,16},则4A ,8 A ,32 A.巩固练习分析:练1.已知集合P 的元素为21,,3m m m --, 若2∈P 且-1∉P ,求实数m 的值。
练2下面有四个命题:①若-a ∉Ν,则a ∈Ν ②若a ∈Ν,b ∈Ν,则a +b 的最小值是2③集合N 中最小元素是1 ④ x 2+4=4x 的解集可表示为{2,2}其中正确命题的个数是( )3求集合{2a ,a 2+a }中元素应满足的条件?4若t 1t 1+-∈{t},求t 的值.⒈列举法:把集合中的元素一一列举出来, 并用花括号“{}”括起来表示2.用列举法表示下列集合:(1) 小于5的正奇数组成的集合;(2) 能被3整除而且大于4小于15的自然数组成的集合;⒉描述法:用集合所含元素的共同特征表示集合的方法,称为描述法。
集合的初步了解集合的概念和表示方法集合是数学中一个重要的概念,它是由一些特定对象组成的整体。
在集合论中,集合是由无序、互异的元素组成的。
本文将从初步了解集合的概念和表示方法两个方面进行讨论。
一、集合的概念集合是数学中一个基本的概念,它是由一些确定的对象组成的。
这些对象被称为元素,而元素的种类可以是任意的,可以是数字、字母、词语或者复杂的结构。
集合中的元素通常是无序排列的,即不考虑元素的顺序。
同时,一个集合中的元素是互异的,即集合中的元素各不相同。
集合的基本概念包括空集、有限集和无限集。
空集是不包含任何元素的集合,通常用符号∅表示。
有限集是包含有限个元素的集合,而无限集则是包含无穷个元素的集合。
二、集合的表示方法集合的表示方法有三种主要形式,包括列举法、描述法和集合运算法。
1. 列举法列举法是最简单直接的表示方法。
它通过列举集合中的元素来表示整个集合。
例如,集合A中包含元素1、2和3,可以表示为A={1, 2, 3}。
这种表示方法通常适用于元素个数较少的集合。
2. 描述法描述法是通过描述集合中元素的共同特征或满足的条件来表示集合。
例如,集合B表示所有正整数,可以表示为B={x|x是正整数}。
这种表示方法适用于元素个数无限的集合,它能够简洁地表达集合中元素的规律。
3. 集合运算法集合运算法是通过集合之间的运算来表示新的集合。
常见的集合运算包括并集、交集、差集和补集。
并集表示包含两个集合中所有元素的集合,交集表示两个集合中共有的元素组成的集合,差集表示从一个集合中去除另一个集合中的元素得到的集合,补集表示相对于一个全集中的另一个集合的差集。
三、总结本文初步介绍了集合的概念和表示方法。
集合是由一些特定对象组成的整体,包括空集、有限集和无限集。
集合的表示方法有列举法、描述法和集合运算法,分别通过列举元素、描述共同特征和进行集合运算来表示集合。
在数学中,集合是进行许多其他数学概念和推理的基础,深入理解和掌握集合的概念与表示方法对于数学学习和应用具有重要意义。