(数学分析教案)第八章
- 格式:doc
- 大小:288.50 KB
- 文档页数:10
高中数学选修三第八章教案
课时安排:本章共分为4课时完成
第一课时:点的坐标和向量的概念
1. 学习点的坐标表示方法,了解二维平面直角坐标系和三维空间直角坐标系的概念;
2. 理解向量的概念,掌握向量的表示方法和运算规则;
3. 进行相关例题和练习,巩固所学知识。
第二课时:向量的线性运算
1. 学习向量的线性组合、数乘和加法运算;
2. 掌握向量的共线和共面判定方法;
3. 进行相关例题和练习,提高解题能力。
第三课时:直线的方程
1. 学习直线的一般方程和点斜式方程的表示方法;
2. 理解点和直线的位置关系,掌握直线的垂直和平行关系;
3. 进行相关例题和练习,培养分析问题的能力。
第四课时:直线的交点和位置关系
1. 学习两条直线的位置关系及其交点的求解方法;
2. 掌握直线与平面的交点和位置关系;
3. 进行相关例题和练习,提高解题技能。
教学方法:理论教学、例题演练、课堂讨论
教学手段:教师讲解、黑板书写、多媒体辅助教学
教学目标:通过本章的学习,学生能够掌握点、向量和直线的基本概念,理解它们之间的位置关系,提高数学分析和解决问题的能力。
布置作业:完成课后习题,并预习下一章内容。
评价方式:课堂表现、作业完成情况、考试成绩等综合评价。
包头师范学院“数学分析”课程教案大纲《数学分析》教案大纲课程编号:课程性质:基础必修课适用专业:数学与应用数学专业<本科)选用教材:《数学分析讲义》<第五版)刘玉琏等编著高等教育出版社2008年10月包头师范学院数学科学学院函数论教研室数学分析课程教案大纲课程编号:课程类型:基础必修课总学时:352 总学分:20适用专业:数学与应用数学先修课程:高中数学使用教材:刘玉琏、傅沛仁编著《数学分析讲义》<第四版),高等教育出版社,2002年10月.参考书:陈传璋等编著《数学分析》<第二版),高等教育出版社,1983年7月.1987年获全国优秀教材一等奖.华东师大编《数学分析》 ,面向21世纪课程教材一、课程性质、目地和任务本课程是包头师范学院数学科学学院数学与应用数学专业(信息与计算科学专业>地一门重要基础课.本课程一方面为后继课程提供所需地基础,同时还为培养学生地独立工作能力提供必要地训练.通过本课程地学习学会分析方法、培养学生地运算能力、抽象思维能力以及处理实际问题地综合应用能力.学生学好这门课程地基本内容和方法,对今后地学习、研究和应用都具有关键性地作用.b5E2RGbCAP二、教案基本要求在教案中,应注意本课程地整体结构,各部分知识地内在联系,以及与初等数学和后继课程地联系.要求学生熟练掌握本课程地基本概念、基本理论、基本运算及方法.通过课堂教案及进行大量地习题训练,使得学生做到概念清晰、推理严谨、运算准确,能综合应用所学知识解决实际问题,并且了解分析学地基本概念及物理、几何意义,学会应用这些基本理论和方法去处理和解决物理、几何等领域中地实际问题.p1EanqFDPw三、教案内容及要求依据《2001年包头师范学院数学与应用数学专业本科培养计划》,本课程教案在第1、2、3、4学期进行,分别称为《数学分析Ⅰ》、《数学分析Ⅱ》、《数学分析Ⅲ》和《数学分析Ⅳ》.DXDiTa9E3d 《数学分析Ⅰ》第一章函数§1.1.函数一、函数概念,二、函数地四则运算,三、函数地图象四、数列§1.2. 四类具有特殊性质地函数一、有界函数,二、单调函数三、奇函数与偶函数四、周期函数§1.3.复合函数与反函数一、复合函数二、反函数三、初等函数重点掌握:函数地概念,函数地表示,函数地复合运算和具有特殊性质地函数.极限第二章.§2.1. 数列极限n??)1(?一、极限思想,二、数列地极限,三、数列极限地概念??n??§2.2. 收敛数列一、收敛数列地性质二、收敛数列地四则运算三、数列地收敛判别法四、子数列§2.3. 函数地极限x??x?a f(xf(x))地极限时,函数时,函数地极限,一、当二、当§2.4. 函数极限地定理,一、函数极限地性质二、函数极限与数列极限地关系三、函数极限存在判别法§2.5. 无穷大与无穷小一、无穷小,二、无穷大,三、无穷小地比较重点掌握:数列极限地定义与性质,收敛判别地单调有界原理,函数极限地定义与性质,两个重要极限,无穷大与无穷小地定义与性质.RTCrpUDGiT第三章连续函数§3.1. 连续函数一、连续函数地概念,二、间断点及其分类§3.2. 连续函数地性质一、连续函数地运算及其性质二、闭区间连续函数地性质三、反函数地连续性四、初等函数地连续性重点掌握:函数连续地定义,闭区间连续函数地性质.《数学分析Ⅱ》第四章实数地连续性§4.1. 实数连续性定理一、闭区间套定理二、确界定理三、有限覆盖定理四、聚点定理五、致密性定理六、柯西收敛准则§4.2. 闭区间上连续函数性质地证明一、性质地证明二、一致连续性重点掌握:上、下确界地定义,实数连续性地基本定理及其证明,一致连续地概念,闭区间连续函数地性质地证明.5PCzVD7HxA第五章导数与微分§5.1. 导数,一、实例,二、导数概念§5.2. 求导法则与求导公式一、导数地四则运算二、反函数地求导法则三、复合函数地求导法则四、初等函数地导数§5.3. 隐函数与参数方程求导法则一、隐函数求导法则,二、参数方程求导法则§5.4. 微分一、微分地概念二、微分地运算法则和公式三、微分在近似计算上地应用§5.5. 高阶导数与高阶微分三、高阶微分二、莱布尼茨公式一、高阶导数.重点掌握:导数与微分地定义,运算及应用,高阶导数与高阶微分.第六章微分学地基本定理及其应用§6.1. 中值定理一、罗尔定理二、拉格朗日定理三、柯西定理§6.2.洛必达法则0?型,二、型一、,三、其它待定型0?§6.3. 泰勒公式一、泰勒公式,二、常用地几个展开式§6.4. 导数在研究函数上地应用一、函数地单调性二、函数地极值与最值三、函数地凸凹性四、曲线地渐近线五、描绘函数图象重点掌握:微分中值定理,洛必达法则,泰勒公式,利用导数研究函数性质,作出函数图象.第七章不定积分§7.1. 不定积分一、原函数,二、不定积分§7.2. 分部积分法与换元积分法一、分部积分法,二、换元积分法§7.3. 有理函数地不定积分一、代数地预备知识,二、有理函数地不定积分§7.4. 简单无理函数与三角地函数地不定积分一、简单无理函数地不定积分,二、三角函数地不定积分重点掌握:不定积分地定义及性质,不定积分地计算.第八章定积分§8.1. 定积分地概念一、实例,二、定积分地概念§8.2. 可积准则一、小和与大和,二、可积准则,三、三类可积函数§8.3. 定积分地性质一、定积分地性质,二、定积分中值定理§8.4. 定积分地计算一、按照定义计算定积分二、积分上限函数三、定积分地基本公式四、定积分地分部积分法五、定积分地换元积分法jLBHrnAILg§8.5. 定积分地应用一、微元法二、平面区域地面积三、平面曲线地弧长四、应用截面面积求体积五、旋转体地侧面积六、变力作功xHAQX74J0X§8.6. 定积分地近似计算一、梯形法,二、抛物线法重点掌握:定积分地定义,存在条件及性质,定积分地计算及应用.《数学分析Ⅲ》第九章级数数值级数9.1. §.一、收敛与发散地概念二、收敛级数地性质三、同号级数四、变号级数五、绝对收敛级数地性质§9.2. 函数级数一、函数级数地收敛域二、一致收敛地概念三、一致收敛判别法四、函数列地一致收敛五、和函数地分析性质LDAYtRyKfE§9.3. 幂级数一、幂级数地收敛域二、幂级数和函数地分析性质三、泰勒级数四、基本初等函数地幂级数展开五、幂级数地应用Zzz6ZB2Ltk§9.4.傅里叶级数一、傅里叶级数二、两个引理三、收敛定理四、奇偶函数地傅里叶级数2l为周期地函数地傅里叶级数五、以重点掌握:收敛与发散地概念,收敛级数地性质,同号级数、变号级数收敛性判别法,函数项级数、一致收敛、一致收敛级数地性质,幂级数地概念,收敛半径,和函数地分析性质,函数地幂级数展开,傅里叶级数地概念收敛定理,函数展开成傅里叶级数.dvzfvkwMI1第十章多元函数微分学§10.1. 多元函数一、平面点集二、坐标平面地连续性三、多元函数地概念§10.2. 二元函数地极限与连续一、二元函数地极限二、二元函数地连续性§10.3. 多元函数微分法一、偏导数二、全微分三、可微地几何意义四、复合函数微分法五、方向导数§10.4. 二元函数地泰勒公式一、高阶偏导数二、二元函数地泰勒公式三、二元函数地极值重点掌握:多元函数地概念,二元函数地极限和连续概念与性质,偏导数、全微分,复合函数偏导数地链式法则,微分运算法则,极值地概念与计算.rqyn14ZNXI第十一章隐函数§11.1. 隐函数存在定理一、隐函数地概念, 二、一个方程确定地隐函数, 三、方程组确定地隐函数§11.2. 函数行列式一、函数行列式, 二、函数行列式地性质, 三、函数行列式地几何性质§11.3. 条件极值一、条件极值与拉格朗日乘数法, 二、例§11.4. 隐函数存在定理在几何方面地应用一、空间曲线地切线与法平面二、曲面地切平面与法线重点掌握:隐函数存在定理,函数行列式地性质,条件极值地概念与计算,曲线地切线与法平面和曲面地切平面与法线方程.EmxvxOtOco《数学分析Ⅳ》第十二章反常积分与含参变量地积分§12.1.无穷积分一、无穷积分收敛与发散地概念, 二、无穷积分与级数, 三、无穷积分地性质, 四、无穷积分地敛散性判别法SixE2yXPq5瑕积分12.2.§.一、瑕积分收敛与发散地概念, 二、瑕积分地敛散性判别法§12.3. 含参变量地积分??函数函数与, 三、一、含参变量地有限积分, 二、含参变量地无穷积分重点掌握:无穷积分收敛与发散地概念及敛散性判别法,瑕积分收敛与发散地概念及敛散性判别法,含参变量地有限积分地概念与分析性质,含参变量地无穷积分地??函数,.函数与,概念,一致收敛地定义与判别法含参变量无穷积分地分析性质6ewMyirQFL第十三章重积分§13.1. 二重积分曲顶柱体地体积二、二重积分地概念三、二重积分地性质四、二重积分地计算一、五、二重积分地换元六、曲面地面积kavU42VRUs§13.2. 三重积分三重积分地概念二、三重积分地计算三、三重积分地换元四、简单应用重点掌握:重积分地概念与性质,二重积分及二重积分、三重积分地计算及柱面坐标与球面坐标. 第十四章曲线积分与曲面积分§14.1. 曲线积分一、第一型曲线积分二、第二型曲线积分三、第一型曲线积分与第二型曲线积分地关系四、格林公式,五、曲线积分与路线无关地条件y6v3ALoS89§14.2. 曲面积分一、第一型曲面积分二、第二型曲面积分三、奥高公式四、斯托克斯公式,§14.3. 场论初步一、梯度二、散度三、旋度四、微分算子重点掌握:第一型曲线积分与曲面积分地定义及计算,第二型曲线积分与曲面积分地定义及计算,格林公式,曲线积分与路线无关地条件,奥高公式,斯托克斯公式.M2ub6vSTnP四、教案重点与难点??定义极限地.-《数学分析Ⅰ》地重点内容有:极限论、函数地连续性,《数学分析Ⅱ》地重点内容有:实数地连续性、微分学、微分学地基本定理、积分学.难点是:实数连续性定理及其证明,闭区间上连续函数性质地证明,一致连续性.《数学分析Ⅲ》地重点内容有:级数论和多元函数微分学.难点是:函数级数一致收敛地概念,函数地幂级数展开,傅里叶级数收敛性判别法,隐函数存在定理,条件极值地计算0YujCfmUCw《数学分析Ⅳ》地重点内容有:广义积分与含参变量地积分,重积分、曲线积分与曲面积分.难点是:含参广义积分地一致收敛概念,各类积分之间地关系.eUts8ZQVRd五、学时分配《数学分析Ⅰ》总学时 64 学时,其中讲授学时,习题课学时.章节内容学时6 1 <函数含习题课)36 2 含习题课)极限<22含习题课)<连续函数3《数学分析Ⅱ》总学时 108 学时,其中讲授学时,习题课学时.章节内容学时30 实数地连续性<含习题课)418 导数与微分<含习题课)530 <6 含习题课)微分学地基本定理及其应用14 7 含习题课)不定积分<168定积分<含习题课)《数学分析Ⅲ》总学时 108 学时,其中讲授学时,习题课学时.内容章节60 9 级数<含习题课)30 10 <含习题课)多元函数微分学1811 隐函数<含习题课)《数学分析Ⅳ》总学时72 学时,其中讲授学时,习题课学时.章节内容30 含习题课)12 反常积分与含参变量地积分<18 13 重积分<含习题课)2414 含习题课)曲线积分与曲面积分<七、考核方式本课程考核采取与平时考核与期末闭卷考试相结合地方式.平时考核成绩占15%,期末考试卷面成绩占85%.总分共100分.sQsAEJkW5T。
第八章不定积分一、不定积分概念与基本积分公式1.原函数与不定积分①定义1:设函数f 与F 在区间I 上都有定义,若F’(x)=f(x),x ∈I ,则称F 为f 在区间I 上的一个原函数。
②定理8.1:若函数f 在区间I 上连续,则f 在I 上存在原函数F ,即F’(x)=f(x),x ∈I 。
·不连续的函数也可以有原函数③定理8.2:设F 是f 在区间I 上的一个原函数,则(i)F+C 也是f 在I 上的原函数,其中C 为任意常量函数;(ii)f 在I 上的任意两个原函数之间,只可能相差一个常数。
④定义2:函数f 在区间I 上的全体原函数称为f 在I 上的不定积分,记作∫f(x)dx 。
·[∫f(x)dx]’=[F(x)+C]’=f(x);·d ∫f(x)dx=d[F(x)+C];⑤不定积分的几何意义:积分曲线2.基本积分表①∫0dx=C ;②∫1dx=∫dx=x+C ;③)0,1(11>-≠++=⎰+x C x dx x αααα;④)0(||ln 1≠+=⎰x C x dx x ;⑤∫e x dx=e x +C ;⑥)0,1(ln >≠+=⎰a C aa dx a xx α;⑦)0(sin 1cos ≠+=⎰αC ax a axdx ;⑧)0(cos 1sin ≠+-=⎰αC ax a axdx ;⑨∫sec 2xdx=tanx+C ;⑩∫csc 2xd1=-cotx+C ;⑪∫secx ·tanxdx=secx+C ;⑫∫cscx ·cotxdx=-cscx+C ;⑬12arccos arcsin 1C x C x x dx+-=+=-⎰;⑭12cot arctan 1C x arc C x x dx +-=+=+⎰。
⑮定理8.3:若函数f 与g 在区间I 上都存在原函数,k 1,k 2为两个任意常数,则k 1f+k 2g 在I 上也存在原函数,且当k 1和k 2不同时为零时,有∫[k 1f(x)+k 2g(x)]dx=k 1∫f(x)dx +k 2∫g(x)dx二、换元积分法与分部积分法1.换元积分法①定理8.4(第一换元积分法/凑微分法):设函数f(x)在区间I 上有定义,φ(t)在区间J 上可导,且φ(J)⊆I 。
中山大学数学分析教案第一章:极限与连续1.1 极限的概念引入极限的直观意义讲解极限的定义及性质举例说明极限的存在与不存在情况1.2 极限的计算讲解极限的基本计算方法无穷小与无穷大的概念及比较极限的运算法则1.3 连续函数引入连续函数的定义讲解连续函数的性质及判定条件举例说明连续函数的性质及应用第二章:导数与微分2.1 导数的概念引入导数的定义及直观意义讲解导数的计算方法举例说明导数的应用2.2 导数的计算讲解基本函数的导数公式高阶导数的概念及计算方法隐函数与参数方程函数的导数计算2.3 微分及其应用引入微分的概念及意义讲解微分的计算方法举例说明微分在实际问题中的应用第三章:积分与面积3.1 积分的基本概念引入积分的定义及直观意义讲解积分的性质及计算方法举例说明积分的应用3.2 定积分的计算讲解定积分的计算方法定积分的换元法与分部积分法定积分的应用3.3 面积与体积的计算举例说明定积分在几何图形面积计算中的应用讲解定积分在旋转体体积计算中的应用第四章:微分方程4.1 微分方程的基本概念引入微分方程的定义及意义讲解微分方程的分类及解法4.2 线性微分方程讲解线性微分方程的解法及性质举例说明线性微分方程的应用4.3 非线性微分方程讲解非线性微分方程的解法及性质举例说明非线性微分方程的应用第五章:级数5.1 级数的基本概念引入级数的定义及直观意义讲解级数的性质及收敛性判定5.2 幂级数讲解幂级数的定义及性质幂级数的展开及应用5.3 傅里叶级数讲解傅里叶级数的定义及性质举例说明傅里叶级数在信号处理中的应用第六章:多元函数微分学6.1 多元函数的基本概念引入多元函数的定义及图形表示讲解多元函数的极限与连续性6.2 多元函数的导数讲解多元函数的导数概念及计算法则举例说明多元函数导数的应用6.3 多元函数的微分引入多元函数的微分概念讲解微分的计算及应用第七章:重积分7.1 重积分的基本概念引入重积分的定义及直观意义讲解重积分的性质及计算方法7.2 一重积分讲解一重积分的计算方法举例说明一重积分在几何与物理中的应用7.3 二重积分讲解二重积分的计算方法举例说明二重积分在几何与物理中的应用第八章:向量分析8.1 向量及其运算引入向量的定义及其几何表示讲解向量的运算规则及性质8.2 空间解析几何讲解空间解析几何的基本概念及方法举例说明空间解析几何的应用8.3 曲线与曲面的方程讲解曲线与曲面的方程及其性质举例说明曲线与曲面的应用第九章:常微分方程9.1 常微分方程的基本概念引入常微分方程的定义及意义讲解常微分方程的分类及解法9.2 一阶微分方程讲解一阶微分方程的解法及性质举例说明一阶微分方程的应用9.3 高阶微分方程讲解高阶微分方程的解法及性质举例说明高阶微分方程的应用第十章:数值分析10.1 数值分析的基本概念引入数值分析的意义及方法讲解数值分析的基本原则及方法10.2 数值计算误差讲解数值计算的误差来源及影响举例说明误差估计及控制的方法10.3 数值方法的应用举例说明数值方法在微积分学中的应用讲解数值方法在其他领域的应用重点和难点解析重点一:极限的概念与性质极限的定义及其直观意义是教学重点,需要学生充分理解。
《数学分析》教案《数学分析》教案教案标题:数学分析教学目标:1.了解数学分析的基本概念和方法;2.掌握数学分析的基本技巧和解题方法;3.培养学生的数学思维和分析能力;4.提高学生的数学推理和问题解决能力。
教学内容:1.数集及其运算:数集的基本概念,数集的运算及其性质;2.数列及其极限:数列的概念和性质,数列的极限及其性质;3.函数及其极限:函数的概念和性质,函数的极限及其性质;4.一元函数的导数:导数的概念和性质,函数的可导性、连续性及其关系;5.一元函数的微分:微分的概念和性质,函数的微分与导数的关系;6.一元函数的积分:积分的概念和性质,函数的可积性与连续性的关系;7.多元函数的极限、连续性和偏导数;8.多元函数的积分;9.无穷级数。
教学手段:1.讲授:通过讲解,向学生传授基本概念和方法;2.演示:通过演示例题,引导学生掌握解题方法;3.实践:给学生提供大量的练习题,锻炼学生的分析能力和解题技巧;4.讨论:进行小组或全班讨论,培养学生的合作和交流能力;5.课堂练习:布置一些课堂练习题,检测学生的学习效果;6.作业布置:布置一些练习题或探究性作业,巩固课堂所学内容。
教学过程:第一课:数集及其运算1.引入:通过举例说明数集的概念;2.介绍数集的运算:交集、并集、差集和补集;3.讲解数集的性质和运算法则;4.练习:解决一些与数集及其运算相关的问题。
第二课:数列及其极限1.引入:通过例题引出数列的概念;2.讲解数列的性质和分类;3.介绍数列的极限的概念和性质;4.讲解数列极限的收敛和发散的判定方法;5.练习:解决一些数列极限相关的问题。
第三课:函数及其极限1.引入:通过例题讲解函数的概念;2.介绍函数的性质和分类;3.讲解函数的极限的概念和性质;4.讲解函数极限的极限定理和计算方法;5.练习:解决一些函数极限相关的问题。
第四课:一元函数的导数1.引入:通过例题引出导数的概念;2.介绍导数的性质和计算方法;3.讲解函数的可导性和连续性以及它们之间的关系;4.讲解导数的求导法则和应用;5.练习:解决一些函数导数相关的问题。
数学分析专题选讲教案一、第一章:极限与连续性1.1 极限的概念定义:函数f(x)当x趋近于某一值a时,如果存在一个实数L,使得f(x)趋近于L,称f(x)在x=a处极限为L。
性质:保号性、传递性、三角不等式性质。
1.2 极限的计算极限的基本性质:0.9^n→0(n→∞)、(1+1/n)^n→e(n→∞)。
极限的运算法则:lim (f(x)+g(x)) = lim f(x) + lim g(x)、lim (cf(x)) = c lim f(x)、lim (f(g(x))) = lim f(t) lim g(x)。
1.3 连续性的概念定义:函数f(x)在点x=a处连续,如果满足f(a)=lim f(x)(x→a)且对于任意ε>0,存在δ>0,使得当0<|x-a|<δ时,有|f(x)-f(a)|<ε。
1.4 连续性的性质与判定连续函数的基本性质:保号性、可积性、可微性。
连续函数的判定:函数在某一点的极限存在且等于函数在该点的函数值,则函数在该点连续。
二、第二章:导数与微分2.1 导数的定义定义:函数f(x)在点x=a处的导数,记为f'(a)或df/dx|_{x=a},表示函数在x=a 处的瞬时变化率。
导数的几何意义:函数图像在点x=a处的切线斜率。
2.2 导数的计算基本求导法则:常数倍法则、幂函数求导、指数函数求导、对数函数求导、三角函数求导。
高阶导数:f''(x)、f'''(x)等。
2.3 微分的概念与计算概念:微分表示函数在某一点的切线与x轴之间的距离,记为df(x)/dx|_{x=a}。
微分的计算:dx表示自变量的增量,微分的结果为切线的斜率乘以dx的值。
三、第三章:泰勒公式与微分中值定理3.1 泰勒公式的概念与计算概念:泰勒公式是一种将函数在某一点展开成多项式的公式,用于逼近函数在某一点的值。
泰勒公式:f(x)在某一点a处的泰勒公式为f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2++f^n(a)(x-a)^n+R_n(x)。
高中数学第八章教案模板
一、教学目标:
1. 理解正弦、余弦、正切的定义,掌握它们在直角三角形中的性质;
2. 能够用三角函数解决实际问题;
3. 掌握三角函数的图像和性质;
4. 理解三角函数的周期性和奇偶性;
5. 能够灵活运用三角函数解决相关的综合性问题。
二、教学重点与难点:
1. 了解三角函数的定义和性质;
2. 掌握三角函数的应用技巧。
三、教学内容与教学步骤:
1. 理解正弦、余弦、正切的定义,了解它们在直角三角形中的表示方法;
2. 导出正弦、余弦、正切的性质;
3. 学习三角函数在单位圆上的表示方法;
4. 探讨三角函数的周期性和奇偶性;
5. 讲解如何用三角函数解决实际问题;
6. 利用习题让学生巩固知识点。
四、教学手段:
1. 知识讲解与示范;
2. 示意图和实例分析;
3. 互动讨论和答疑。
五、教学资源:
1. 教科书;
2. 习题册;
3. 多媒体课件。
六、教学评价:
1. 课堂表现评价;
2. 作业完成情况评价。
七、教学总结与展望:
通过本章的学习,学生们应该能够熟练掌握三角函数的定义、性质和应用技巧,为今后的学习打下坚实的基础。
在以后的学习中,我们将进一步深入探讨三角函数的各种应用,帮助学生更全面地理解和运用三角函数。
数学分析课本(华师大三版)篇一:数学分析课本(华师大三版)-习题及答案第八章第八章不定积分一. 填空题x1.若f?(e)?1?x,则f(x)?___________2.设f(x)的一个原函数为xe,则?xf?(x)dx?_____________ 3.若e?xx是f(x)的一个原函数,则?xf(x)dx?________________4.若f(x)?1,则f(x)?____________ 5.?max(x,x)dx?___________________6.若f(x)有原函数xlnx,则?xf??(x)dx?_______________ 7.?ln(sinx)sin2?3??2xdx?________________8.若?dx(1?2cosx)2?Asinx1?2cosx?B?dx1?2cosx,则A?__________,B?__________ 9.设?xf(x)dx?arcsinx?C,则? dxx(4?x)lnx?1x2dxf(x)?_________10.??_________________11.?dx?_________________12.?13.?14.??a?sin(lnx)?cos(lnx)nx?________________?f(x)?xf?(x)?dxdx1?ex?________________?_____________15.?16.?xex2(1?x)dx?_____________________4sinx?3cosxsinx?2cosxdx?______________217.已知f?(2?cosx)?sinx?tan 2x,则f(x)?_______________ 18.?f?(x)1??f(x)?2dx?______________19. 若?f(x)dx?F(x)?C,而u??(x),则?f(u)du?___________. 20设函数f(x)的二阶导数f??(x)连续,那么?xf??(x)dx?__________. 21设f(x)的原函数是sinxx,则?xf?(x)dx?__________.11222已知曲线y?f(x)上任一点的切线斜率为3x2?3x?6,且x??1时,y?则f(x)?__________;f(x)的极小值是__________.1?x2是极大值,23已知一个函数的导数为f(x)?,并且当x?1时,这个函数值等于32?,则这个函数为F(x)?__________. 24 设f?(sin2x)?cosx(x?1),则f(x)?__________.225 若f(x)为连续函数,且f?(x)?f(x),则?f(x)dx?__________.26 若(?f(x)dx)??lnx,则f(x)?__________. 27 已知e28?x2是f(x)的一个原函数,则?f(tanx)secxdx?__________.22?f()dx?__________. 2xx1?x29 设f(x)dx??C,则f(x)?__________.1?x?1?30 在积分曲线族?二、选择填空题 1.设I?1xxdx中,过(1,1)点的积分曲线是y?__________.?xe?1e?1xx,则I?()(1?e)?C (1?e)?x?C ?2ln(1?e)?C (e?1)?C2.设f(x)是连续的偶函数,则期原函数F(x)一定是() A.偶函数B.奇函数C.非奇非偶函数 D.有一个是奇函数xxx3.设I1??1?xdx,I2??du,则存在函数u?u(x),使()x(1?xex)u(1?u)?I2?x ?I2?x ??I1 ?I1 4.当n??1时,?xn lnxdx?() nn?1n(lnx?1n)?C B.xn?1(lnx?1n?1)?Cn?1?1xn?1xn(lnx?1n?1)?CD.n?1lnx?C 7.?(cosx2 ?sinx2)dx?() (sinx?cos x)?C (cos xx222?sin 2)?C?cosxxx22?C?sin2?C8.?x?sinx1?cosxdx?()??2cotx??C9.若f(x)的导函数是e?x?cosx,则f(x)的一个原函数为()?x?cosxB.?e?x?sinxC.?e?x??x?sinx10.若f(x)是以l为周期的连续函数,则其原函数()。
华东师范⼤学数学分析第8章习题答案第⼋章⼀:不定积分概念与基本积分公式(教材上册P181) 1. 验证下列(1)、(2)等式并与(3)、(4)两试相⽐照: (1)'()()f x dx f x c =+?; (2) ()()df x f x c =+?; (3) [()]'()f x dx f x =?; (4) ()()()d f x d x f x dx =?;解: (1)'0(())''()'()'()()c f x c f x c f x f x dx f x c=∴+=+=∴=+? 与(3)相⽐(1)试求不定积分运算,(2)是求导运算,(1) (3)互为逆运算,不定积分相差⼀个常数但仍为原不定积分,该常数⽤c 表⽰,称为积分常数.(2)()'()()'()()df x f x dxdf x f x dx f x c===+??与(4)相⽐: (2)是先求导再积分,因此包含了⼀个积分常数,(4)是先积分再求导,因此右侧不含积分常数.2. 求⼀曲线y=f (x),使得在曲线上的每⼀点(x,y)处的切线斜率为2x,且通过点(2,5). 解:222dy xdxy dy xdx x c====+??将(x,y)=(2,5)代⼊得: 5=22+cC=1该曲线为21y x =+3. 验证2sgn 2x y x =是|x|在(,)+∞-∞上的⼀个原函数. 解:x>0时,y ’=2()'||2x x x ==x<0时,2'()'||2x y x x =-=-=x=0时,22000sgn 022'lim lim lim 002x x x x x x x y x x ++++→→→-====- 2200sgn 02'lim lim()0||02x x x x x y x x --→→-==-==- 因此'''0||y y y x +-====综上得2'(sgn )'||,(,)2x y x x x ==?∈+∞-∞2sgn 2x y x =是|x|在(,)+∞-∞上的⼀个原函数.4. 据理说明为什么每⼀个含有第⼀类间断点的函数都没有原函数?解: 设0x 是 f (x)的第⼀类间断点,且 f (x)在0()U x 上有原函数 F (x),则0'()(),()F x f x x U x =∈.从⽽由导数极限定理得00lim ()lim '()'()()x x x x f x F x F x f x +++→→=== 同理 000lim ()'()()x x f x F x f x -→==.可见0()f x x 点连续,推出⽭盾.⼆: 换元积分法与部分积分法(教材上册P188) 1. 应⽤换元积分法求下列积分 (1) cos(34)x dx +?; (2) 22xxe dx ?;(3) 21dx x +?; (4) (1)n x dx +?;(5)dx ?; (6) 232x dx +?;(7);(8)(9)2sin x x dx ?; (10) 2sin (2)4dxxx +?;(11) 1cos dx x +?; (12) 1sin dx x+?;(13)csc xdx ?;(14);(15)44xdx x +?; (16)ln dx x x ?;(17) 453(1)x dx x +?; (18) 382x dx x -?;(19)(1)dxx x +?; (20) cot xdx ?; (21) 5cos xdx ?; (22)sin cos dxx x ?;(23)x xdx e e -+?; (24) 22338x dx x x --+?; (25) 252(1)x dx x ++?;(26) (a>0);(27) 223/2(0)()dxa x a >+?;(28) 5;(29)(30).解: (1)34cos(34)cos 3t x t x dx d =++=11sin sin(34)33t c x c =+=++ (2) 22112222()'()22t x x t txe dx e d ==??112211()()()22224t t t t t ed e dt ==?? 221144t x e c e c =+=+ (3)21111ln ||ln |21|21222t x dx t d t c x c x t =+==+=+++??(4)①当1n ≠-时,111(1)(1)11n n t x nnt x x dx t dt c c n n ++=+++== +=+++?? ②当1n =-时,(1)ln |1|n x dx x c +=++?(5)dx =?c =+ (6)232323231212122222ln22ln 22ln2t x x t x x tt dx d c c c ++=++==+=+=+?(7)332222222()(83)3399t t td t dt t c x c -=-=-+=--+?(8)322/31333()(75)551010t t d tdt t c x c t -=-=-+=--+? (9)211112222211sin sin sin sin 22t x x x dx t tdt t t t dt tdt =-===211cos cos 22t c x c =-+=-+ (10)2422111cot cot(2)224sin (2)sin 42t x dxt c x c x t x tdππ=+==-+=-+++?? (11)222(2)12sec tan tan()1cos 1cos 22cos 2t x dx d t x dt tdt t c c x t t =====+=+++ (12) 22 1sin (sec sec tan )tan sec 1sin dx xdx x x x dx x x c x cos x-==-=-++ (13)2111csc sin sin cos tan cos2222xdx dx dx x x x x x ===?α2ln |tan |2tan 2x d x c x ==+? (14)21(1)2x c =--=(15)22242111()arctan()442421()2x x x dx d c x x ==+++??(16)ln 11ln ||ln |ln |ln t x t t dx de dt t c x c x x e t t====+=+ (17)4555253535311111(1)(1)(1)5(1)5(1)10x dx dx d x x c x x x -==--=-++--(18)4344888111|242816112x dx dx d c x x x ===-+----(19)11()ln ||ln |1|ln ||(1)11dx xdx x x c c x x x x x=-=-++=++++?? (20)cos cot ln ||ln |sin |sin xxdx dx t c x c x ==+=+??(21)52224cos (1sin )sin (12sin sin )sin xdx x d x x x d x =-=-+?sin 2sin sin 53x x x c =-++ (22)2cos tan ln |tan |sin cos sin cos tan dx xdx d x x c x x x x x ===+ (23)22arctan 1()1()x xx x x x x dx e de dx e c e e e e -===++++ (24)222223(38)ln(38)3838x d x x dx x x c x x x x --+==-++-+-+?? (25)2221533232(1)223123()(1)t x x t t t dx dt dt dt x t t t t t =++-+-+===-++ 222323 ln ||ln |1|(1)212t t c x x c t x --=+-+=++-+++(26)1()ln |x t ax t c a====+?1ln |ln |x c x c a =+=+(27)令tan x a θ=,sec 22t a tdt ππ-<<223/23322s e c 11c o t s i n ()s e c d xa t d t t d t tx a a t a a ===++??c =+ (28)55sin 42sin sin (cos 2cos 1)cos x d d cos θθθθθθθ===--+??35322121cos cos cos (1)535c xc θθθ=-+-+=--(29)32256642226666111t t t t dt t dt t dt t dt t t t ===-+--- 6 42266661tt t dt t dt t dt dt dt t =---+-?75366126ln ||751t t t t t c t+=----++- 165116661263ln ||751x x x x x c x +=----++- (30)1121t t tdt t -→=+?222(2)44ln |1|1t t dt t t tc t =-+=-++++?14ln |1|x c =+-+ 4ln |1|'x c =-+ 2. 应⽤分部积分法求下列不定积分 (1) arcsin xdx ?; (2) ln xdx ?;(3) 2cos x xdx ?; (4)3ln xdx x ?;(5) 2(ln )x dx ?; (6)tan xarc xdx ?;(7) 1[ln(ln )]ln x dx x+?;(8) 2(arcsin )x dx ? (9)3secxdx ?; (10)(0)a >.解 (1)arcsin arcsin arcsin arcsinxdx x x xd x x x =-=-122arcsin (1)x x x c =+++ (2)1ln ln ln ln ln xdx x x xd x x x xdx x x x c x=-=-=-+(3)222cos sin 2sin sin 2cos x xdx x x x xdx x x xd x =-=+?2sin 2cos 2cos x x x x xdx =+-?2sin 2cos 2sin x x x x x c =+-+(4)2223ln 11ln [ln (ln )]22x dx xdx x x x d x x ---=-=-- 222ln 11(ln 1)244x c x c x x x=--+=-++(5)2221(ln )(ln )2ln (ln )2ln x dx x x x x dx x x xdx x=-=-(参考(2)结果)2(ln )2ln 2x x x x x c =-++(6)2222111tan tan arctan 2221x xarc xdx arc xdx x x dx x ==-+ 221111arctan 2221x x dx dx x =-++?? 2111arctan arctan 222x x x x c =-++(7)11111[ln(ln )]ln(ln )ln(ln )ln ln ln ln x dx x dx dx x x x dx dx x x x x x +=+=-+ ln(ln )x x c =+ (8)12222(arcsin )(arcsin)2arcsin (1)x dx x x x x dx -=--??12222(sin )arcsin (1)(1)x arx x x x d x -=+--?1222(arcsin )2arcsin (1)x x xd x =+-?1222(arcsin )2(1)arcsin 2x x x x dx =+--?1222(arcsin )2(1)arcsin 2x x x x x c =+--+(9) 令3sec I xdx =?s e c t a ns e ct a nt a n s e c I x d x x x x x x d x==-?23sec tan (1cos )sec sec tan sec x x x xdx x x I xdx =--=-+??11sec tan sec 22I x x xdx =+?1(sec tan ln |sec tan |)2x x x x c =+++(10)11222222222(0)()2()I a x x a xdx x a x -=>=±=+-1122222222()()()x x x a I ax x a I a a =±-±=±-±则122222111()()(ln ||)222x I x x a a a x c a =±±=+ 3. 求下列不定积分(1)[()]()'(1)f x f x dx αα≠?; (2)2'()1[()]f x dx f x +?;(3)'()()f x dx f x ?; (4)()'()f x e f x dx ?. 解: (1)11[()]()'[()]()[()]1f x f x dx f x df x f x c αααα+==++?(2)122'()1()arctan[()](arccot[()])1[()]1[()]f x dx df x f x c f x c f x f x ==+=-+++??(3)'()1()ln |()|()()f x dx df x f x c f x f x ==+?? (4)()()()'()()f x f x f x ef x dx e df x e c ==+?三. 有理函数和可化为有理函数的不定积分(教材上册P198) 1. 求下列不定积分(1)31x dx x -?; (2)22712x dx x x --+?;(3)31dx x +?; (4)41dxx +?;(5)22(1)(1)dx x x -+?; (6)222(221)x dx x x -++?;解: (1)3321111111x x x x x x x -+==+++--- 3232111(1)ln |1|1132x dx x x dx x x x x c x x =+++=+++-+--?? (2)2223111712(3)(4)(3)(4)4(3)(4)x x x x x x x x x x x x ---+===+-+-------22211(4)7124712x dx d x dx x x x x x -=-+-+--+211(4)2(27)4(27)d x d x x x =-+---??2ln |4|ln |3|x x c =---+ (3)设321111A Bx Cx x x x +=+++-+ 则21(1)()(1)A x x Bx C x =-++++ 2()()A B x B C A x A C =+++-++, 则⽐较两端系数,得1 21,,333B C A =-== 321121311dx x dx x x x x -??=-++-+221111(1)31311d x d d x =+-+++?221(1)ln 61x c x x +=+-+(4)22422221111()11()21x d x x x x dx dx x x x x x x -+-+===++-+-+11x c -=+2224222211111||1()2x x xdx dx c x x x x x---===++++-则234441111112121x x dx dx dx x x x +-=-+++|c =++ (5)设1122222221(1)(1)11(1)B xC B x C A x x x x x ++=++-+-++ 则22211221(1)()(1)(1)()(1)A x B x C x x B x C x =+++-+++-432111112121212()()(2)()()A B x C B x AC B B x C C B B x A C C=++-+-++++--+-- ⽐较两边系数得到12211111,,,,44422A B C B C ==-=-=-=- 22222111111(1)(1)(1)(1)418141dx d x d x dx x x x x x =--+--+-++ 222221111(1)4(1)2(1) d x dx x x -+-++?? 2222111(1)2(1)21x dx dx x x x =++++?? 222111ln |1|ln(1)arctan (1)(1)482dx x x x x x ∴=--+--+?211(1)4x -++ 211(1)4x x c --++。
《数学分析》教学大纲学时数:256一、课程性质和目的本课程是数学与应用数学专业的一门重要基础课。
本课程的教学目的是使学生较系统地掌握数学分析的基础理论和基础知识,能熟练地进行基本运算,具有较强的分析论证能力、能深入理解和分析处理,中学教学教材,具备一定解决实际问题的能力,培养创新意识,为学习后续课程打下基础。
二、课程教学内容与基本要求第一学期(78学时)第一章变量与函数(讲授3课时,习作1课时,共4学时)掌握变量与函数(包括复合函数、反函数、基本初等函数)的概念及基本性质。
作业量:§1的1/4;§2, §3,的1/2。
重点:各类函数定义及性质。
(难点:严格单调函数的反函数也严格单调定理)第二章极限与连续(讲授26课时,习作14课时,共40学时)掌握数列极限定义及性质、无穷大(小)量概念极其运算;掌握函数极限定义及性质;掌握连续函数的定义、性质及函数间断点的分类。
作业量:课后习题的3/4。
重点:“ε—N”,“ε—δ”定义的掌握与应用(难点:“ε—N”,“ε—δ”定义的理解与应用)阶段考试(2学时):笔试。
第四章导数与微分(讲授6学时,习作4学时,共10学时)理解导数与微分的意义,掌握导数与微分的定义及基本公式、运算法则;掌握高阶导数与高阶微分及不可导之例。
掌握反函数、复合函数、隐函数及参数方程表示函数的求导法及微分法。
作业量:课后习题之4/5重点:求导数、求微分(难点:分段函数分段点处的到数,高阶导数)第五章微分基本定理及其应用(讲授16学时,习作8学时,共24学时)掌握微分基本定理及其证明,掌握该定理的各种应用,掌握用导数研究函数用解决实际问题的方法,掌握各种不定型极限求值。
作业量:§1的全部,§2的2/3,§3的3/4,§4的1/2,§5的全部重点:各种应用(难点:证明)期末考试笔试:(统一安排)第二学期(92学时)第三章关于实数的基本定理及闭区间上连续函数性质的证明(讲授16学时,习作8学时,共24学时)掌握子例定义,上(下)界定义,新闻实数的基本定理(确界定理,单调有界必有极限定理,闭区间套定理,致密性定理,有限覆盖定理,柯西准则等)。
第八章 不定积分(14学时)§1 不定积分概念与基本积分公式教学目的要求: 掌握不定积分的概念和性质,会用初等数学中的公式和基本积分公式计算不定积分.教学重点、难点:重点不定积分的定义,用初等数学中的公式和基本积分公式计算不定积分.难点不定积分定义的理解. 学时安排: (2学时) 教学方法: 讲授法. 教学过程:微分法的基本问题——从已知函数求出它的导数;但在某些实际问题中,往往需要考虑与之相反的问题——求一个已知函数,使其导数恰好是某一已知函数——这就是所谓的积分问题。
一 原函数与不定积分 (一) 原函数定义1 设函数)(x f 与)(x F 在区间I 上有定义。
若)()(x f x F =', I x ∈,则称)(x F 为)(x f 在区间I 上的一个原函数。
如:331x是2x 在R 上的一个原函数;x2cos 21-, 12cos 21+x ,x 2sin ,x2cos -等都有是x 2sin 在R 上的原函数——若函数)(x f 存在原函数,则其原函数不是唯一的。
问题1 )(x f 在什么条件下必存在原函数?若存在,其个数是否唯一;又若不唯一,则有多少个? 问题2 若函数)(x f 的原函数存在,如何将它求出?(这是本章的重点内容)。
定理1 若)(x f 在区间I 上连续,则)(x f 在I 上存在原函数)(x F 。
证明:在第九章中进行。
说明:(1)由于初等函数在其定义域内都是连续的,故初等函数在其定义域内必存在原函数(但其原函数不一定仍是初等函数)。
(2)连续是存在原函数的充分条件,并非必要条件。
定理2 设)(x F 是)(x f 在在区间I 上的一个原函数,则(1)设C x F +)(是)(x f 在在区间I 上的原函数,其中C 为任意常量(若)(x f 存在原函数,则其个数必为无穷多个)。
(2))(x f 在I 上的任何两个原函数之间,只可能相差上个常数(揭示了原函数间的关系)。
证明:由定义即可得。
(二) 不定积分定义2 函数)(x f 在区间I 上的原函数的全体称为)(x f 在I 上的不定积分,记作:⎰dxx f )(其中⎰--积分号;--)(x f 被积函数; --dx x f )(被积表达式;--x 积分变量。
注1⎰dxx f )(是一个整体记号;注2 不定积分与原函数是总体与个体的关系,即若)(x F 是)(x f 的一个原函数,则)(x f 的不定积分是一个函数族{}C x F +)(,其中C 是任意常数,于是,记为:⎰dxx f )(=C x F +)(。
此时称C 为积分常数,它可取任意实数。
故有⎰=')(])([x f dx x f ——先积后导正好还原;或 ⎰=dxx f dx x f d )()(。
⎰+='Cx f dx x f )()(——先导后积还原后需加上一个常数(不能完全还原)。
或 ⎰+=Cx f x df )()(。
如:Cxdx x +=⎰332,Cx xdx +-=⎰2cos 212sin 。
不定积分的几何意义: 若)(x F 是)(x f 的一个原函数,则称)(x F y =的图象为)(x f 的一条积分曲线。
于是,)(x f 的不定积分在几何上表示)(x f 的某一条积分曲线沿纵轴方向任意平移所得一载积分曲线组成的曲线族,如左图。
结论:若在每一条积分曲线上横坐标相同的点处作切线,则这些切线互相平行。
注: 在求原函数的具体问题中,往往是先求出全体原函数,然后从中确定一个满足条件00)(y x F =(称之为初始条件,一般由具体问题确定)的原函数,它就是积分曲线族中通过点),(00y x 的那条积分曲线。
如:见P179.二 基本积分表由于不定积分的定义不象导数定义那样具有构造性,这就使得求原函数的问题要比求导数难得多,因此,我们只能先按照微分法的已知结果去试探。
首先,我们把基本导数公式注意:上述基本积分公式一定要牢记,因为其它函数的不定积分经运算变形后,最终归结为这些基本不定积分。
另外,还须借助一些积分法则才能求出更多函数的不定积分。
定理3 若函数)(x f 与)(x g 在区间I 上都存在原函数,21,k k 为两个任意常数,则)()(21x g k x f k +也存在原函数,且⎰⎰⎰+=+dx x g k dx x f k dx x g k x f k )()()]()([2121(积分的线性)。
证明:由定义即得。
注:线性法则的一般形式为: ⎰∑∑⎰===ni ni i ii idxx f k dx x f k11)()(。
例1nn n na x a x a x a x p ++++=--1110)( ,则C x a x a x na xn a dx x p n n nn ++++++=-+⎰211121)( 。
例2 Cx x xdx x xdx xx ++-=++-=++⎰⎰arctan 23)121(1132224。
例3⎰⎰⎰+=+=dxx x dx xx xx x x dx )sec (cscsincossin cossincos22222222C x x ++-=t a n c o t 。
例4Cx x dx x x xdx x ++-=-=⋅⎰⎰)2cos 214cos 41(21)2sin 4(sin 21sin 3cosCx x +--=)2c o s 4(c o s 81。
例5⎰⎰⎰-+=-+=----dxdx dx xx xxxx]2)10()10[()21010()1010(22222Cxx+--=-22)1010(10ln 2122。
课后记1.根据以往对本节教学的经验、教训,经反复强掉总有一些学生在求不定积分时忘记加任意常数C ,因此,在再一次组织对本节的教学时,我在整个教学流程中惯穿原函数与不定积分的区别,有一定的效果.2.让同学们自己总结出以下两种方法,加深记忆,提高学习效率:验证所求不定积分是否正确的方法.对所求结果求导,已知一个函数的导数求这个函数,对其导数求不定积分,任意常数由初始条件确定.§2 换元积分法与分部积分法教学目的要求: 能熟练的用换元积分法与分部积分法计算不定积分. 教学重点难点: 换元积分法、分部积分法 学时安排: 4学时 教学过程:一 换元积分法定理4 (1)(换元积分法)设)(u g 在],[βα上有定义,)(x u ϕ=在],[b a 上可导,且βϕα≤≤)(x ,],[b a x ∈,记)())(()(x x g x f ϕϕ'=, ],[b a x ∈。
(1)(第一换元积分法)若)(u g 在],[βα上存在原函数)(x G ,则)(x f 在],[b a 上也存在原函数)(x F ,且有 C x G x F +=))(()(ϕ,即⎰⎰⎰+=+=='=Cx G C u G duu g dxx x g dx x f ))(()()()())(()(ϕϕϕ。
也可写为:=='⎰⎰)())(()())((x d x g dx x x g ϕϕϕϕ(令))(u x =ϕ⎰+==Cu G duu g )()(=(代回)(x u ϕ=)C x G +))((ϕ。
(2)(第二换元积分法)又若0)(≠'x ϕ,],[b a x ∈,则上述命题(1)可逆,即当)(x f 在],[b a 存在原函数)(x F 时,)(u g 在],[βα上也存在原函数)(u G ,且)(u G C u F +=-))((1ϕ,即⎰du u g )((令))(x u ϕ=⎰⎰+=='=C x F dx x f dxx x g )()()())((ϕϕ(代回))(1u x -=ϕC u F +-))((1ϕ。
证明:由不定积分的定义及求导法则即得。
注:在第一换元积分法中是将被积函数的某一部分视为一个整体看作一个新的积分变量;在第二换元积分法中是用某一函数来代替其积分变量。
例1 求 ⎰xdxtan 。
解⎰xdx tan Cx x d xdx xx +-=-==⎰⎰cos ln cos cos 1cos sin 。
例2 求 ⎰+22xa dx)0(>a 。
【分析】 若令a xu =(第一换元法),或令au x =(第二换元法)均可将积分化为:⎰+21udu;同时也可令u a x tan =(第二换元法),可将积分化为:⎰du。
例3 求⎰-22xa dx 。
【分析】 若令a xu =(第一换元法),或令au x =(第二换元法)均可将积分化为:⎰-21udu ;同时也可令u a x sin =,或u a x cos =(第二换元法)将积分化为:⎰du。
例4 求⎰-22a xdx。
【分析】 因)11(21122a x ax a ax +--=-,故可分别令a x u -=,a x u +=(第一换元法),可将积分化为:⎰u du。
同时也可令u a x sec =或u a x csc =(第二换元法)将积分化为: duuu⎰2cossin 或duuu⎰2sincos 。
(但此时计算不如前一方法简单!!)例5 求 ⎰xdxsec 。
解:(方法一)Cxx xxd dx xxxdx +-+=-==⎰⎰⎰sin 1sin 1ln21sin1sin cos cos sec 22。
(方法二)⎰xdxsec ⎰⎰++=++=xx x x d dx xx x x x tan sec )tan (sec tan sec )tan (sec sec=Cx x ++tan sec ln 。
使用第一换元积分法的关键:在于把被积表达式dx x f )(凑成)())(()())((x d x g dx x x g ϕϕϕϕ='形式,从而作变换)(x u ϕ=,化积分为:⎰du u g )(。
但要注意的是最后要换回原积分变量。
第二换元积分法的目的同第一换元法一样,也是被积函数化为容易求得原函数的形式,但最终同样不要忘记变量还原。
例6 求⎰+3u u du。
【分析】 为了去掉被积函数中的根号,取根次数2和3的最小公倍数6,并令6x u =,则可化简积分。
例7 求 dx x a ⎰-22)0(>a 。
【分析】 为了去掉被积函数中的根号,可令t a x sin =,也可令t a x cos =。
例8 求 )0(22>-⎰a a x dx。
【分析】 为了去掉被积函数中的根号,可令t a x sec =,也可令t a x csc =。
例9 求 ⎰+222)(a x dx)0(>a 。
【分析】 为了化简被积函数,可令t a x tan =,或t a x cot =。
解:令t a x tan =,2π<t ,于是,有⎰+222)(a xdx⎰⎰⎰+===dt t atdt adt tat a )2cos 1(21cos 1sec sec 323442Cax ax a x aC t t t a+++=++=)(arctan 21)cos sin (212233。