2023年浙江省绍兴市中考数学必修综合测试试卷附解析
- 格式:docx
- 大小:134.52 KB
- 文档页数:8
2023年浙江省绍兴市中考数学测评考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.一条信息可通过如图所示的网络线由A 点往各站点传递(同级别站点不能传递),则信息由 A 点到达d 3的所有不同途径中,其中按途径]233A a b c d →→→→到达的概率是( )A .14B .15 C .16 D .182.下列图形不相似的是( )A . 所有的圆B .所有的正方形C . 所有的等边三角形D . 所有的菱形3.判断四边形是菱形应满足的条件是( )A .对角线相等B .对角线互相垂直C .对角线互相平分D .对角线互相垂直平分4.下列各命题的逆命题不成立的是( )A .两直线平行,内错角相等B .若两个数的绝对值相等,则这两个数也相等C .全等三角形的对应边相等D .如果a b =,那么22a b =5.对于任意实数a ,点P (a ,(6)a a +)一定不在( )A . 第一象限B .第二象限C .第三象限D .第四象限 6.在多项式222x y +,22x y -,22x y -+,22x y --中,能用平方差公式分解的是( )A .1个B .2个C .3个D .4个 7.△ABC 中,AC=AB ,BC=8 cm ,且|AC -BC|=2 cm ,则AC 的长为( )A .10 cm 或6 cmB .10 cmC .6 cmD .8 cm 或6 cm 8.同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有 1 到 6 的点数. 下 列事件中,属于不可能事件的是( )A 点数之和为 12B .点数之和小于 3C .点数之和大于4且小于 8D .点数之和为 139.一副三角板,如图所示叠放在一起,则图中α的度数是( )A .75°B .60°C .65°D .55°10.下列说法错误的是 ( )A .(-3)2的平方根是±3B .绝对值等于它的相反数的数一定是负数C .单项式235x y z 与322zy x -是同类项D .近似数3.14×103有三个有效数字二、填空题11.如图,在矩形ABCD 中,AB=5,BC=12,⊙O 1和⊙02分别是△ABC 和△ADC 的内切圆,则O 1O 2=__________.12. 如果二次函数y =x 2-3x -2k,不论x 取任何实数,都有y>0,则k 的取值范围是_______.k<-98 13.若梯形的上、下底分别是2和5,一腰长为4,则另一腰x 的取值范围是 .14.一个几何体的三视图如图所示,则这个几何体是__________.(写出名称)15.若213254b a b x y ---=是二元一次方程,则a = ,b = .16.(12a 3-8a 2+25a )÷4a= . 17.某数的3倍比它的一半大2,若设某数为y ,则列方程为 .3y-0.5y=218.如图,在△ABC 中,已知AD=ED ,AB=EB ,∠A=75°,那么∠1+∠C 的度数是 .19.下列各数-4,17,π,3. 14,050.333…中,无理数有 . 20.太阳的半径约是69660千米,用科学记数法表示(保留3个有效数字)约是 千米.21.某班举行“环保知识”竞赛,共 25 题,规定做对一题得 4 分,做错或不做,每题扣1分,若一位同学答对了 23 题,则他能得分.三、解答题22.一个不透胡的袋子中装有三个完全相同的小球,分别标有教字 3、4、5,从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成的一个两位数. 试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为 9 的两位数的概率是多少?用列表法或画树状图法加以说明.23.如图所示,△ACB,△ECD都是等腰直角三角形,且点 C在AD上,AE的延长线与BD 交于点F. 请你在图中找出一对全等三角形,并写出证明它们全等的过程.24.如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.25.某城市在1990年为了尽快改善职工住房条件,积极鼓励个人购买和积累住房基金,决定住公房的职工按基本工资的高低交纳住房公积金,办法如下表:每月基本工资交纳公积金比率(%)100元以下(含100元)不交纳100元至200元(含200元)交纳超过l00元部分的5%200元至300元(含300元)100元至200元部分交纳5%,超过200元以上部分交纳10%(1)时,y 与x 之间的关系式;(2)若小军的妈妈每月基本工资为200元,问她每月交纳公积金为多少元?(3)若小明的妈妈每月交纳公积金为4元,问她每月基本工资为多少元?26.解不等式组523(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩,并求出其整数解.27.已知方程21|28|(5)02x x y a -+--=.(1)当0y >时,求a 的取值范围;(2)当0y <时,求a 的取值范围.28.在一次数学活动课中组织同学测量旗杆的高度,第一组l0名同学测得旗杆的高度如下(单位:m):20.0,19.9,19.8,20.0,21.1,20.2,20.0,20.0,24.6,35.6.求旗杆高度的平均数,中位数,众数各是多少?29.计算:(1)432114212121a a a a a a +----+++;(2)2242n mn m mn m n m n n m ------;(3)22()()()()xy yz x y x z x y z x +----; (4)2b ac b c a b c b a c b a c+-+--+----30.如图所示,在Rt△ABC中,∠A=∠B,CD是∠ACB的平分线,请判定CD与AB的位置关系,并说明理由.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.D4.D5.D6.B7.A8.D9.A10.B二、填空题11.65 12.13.1<x<714.圆柱15.1,116.85232+-a a 17. 18.75°19.π20.6.97×10421.90三、解答题22.列表如下:因此,能组成的两位数有 33,34,35,43,44,45,53,54,55 共 9 个, 十位上与个位上数字之和为 9 的两位数有 2 个. (929P =十位上的数字与个位上的数字之和为的两位数). 23.△ACE ≌△BCD ,证明略24.证△CBE ≌△CDE ,得∠CDF=∠CBE=∠AFD 25.(1)y=0.05x-5(100<x ≤200);(2)5元;(3)180元 26.542x <≤,整数解为3,4 27.(1)a<20;(2)a>2028.平均数:22.12 m ,中位数:20.0 m ,众数:20.0 m 29.(1)3;(2)m n -;(3)2y yχ-;(4)-2 30.CD ⊥AB ,理由略。
2023年浙江省绍兴市中考数学真题合集试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.图中几何体的主视图是( )A .B .C .D . 2.某学习小组在讨论“变化的鱼”,知道大鱼与小鱼是位似图形,如图所示,则小鱼上的点(a ,b )对应大鱼上的点( ) A . ( -2a , -2b )B .(-a, -2b )C .(-2b, -2a )D . (-2a, -b )3.抛物线222y x x =-+的顶点坐标是( ) A .(1,1)B .R (一1,1)C .(一 1,一1)D .(1,一1)4.如图,在△ABC 中,AB=AC=5,D 是BC 上的点,DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F ,那么四边形AFDE 的周长是( ) A .5 B .10 C .15 D .205.以下可以用来证明命题“若x+2y=0,则x=y=0”是假命题的反例的是( ) A .x=1,y=1 B .x=2,y=0 C .x=-l ,y=2 D .x=2,y=-l 6.在□ABCD 中,对角线AC ,BD 的长分别为6和8,则边AB 的取值范围为( ) A .2<AB<14B .1<AB<7C .1<AB<5D .2<AB<10 7. 将方程2440y y ++=的左边配成完全平方后得( ) A .2(4)0y += B .2(4)0y -=C .2(2)0y +=D .2(2)0y -=8.若01=++-y x x ,则20052006y x +的值为( )A .0B .1C .-1D . 29.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数( ) A .至多6人 B .至少6人 C .至多5人 D .至少5人 10.等腰三角形的一边长是8,周长是l8,则它的腰长是( ) A .8B .5C .2D .8或511.下列方程组中,是二元一次方程组的是( )A . 2626xy x y =⎧⎨-=⎩B . 2131x y y z -=⎧⎨=+⎩C . 213x y x y +=⎧⎨-=⎩D . 2121x x y ⎧=⎨+=⎩12. 已知 x ,y 满足等式11x y x -=+,则用x 的代数式表示得( ) A .11x y x -=+ B . 11xy x-=+ C .11xy x+=- D .11x y x +=- 13.从哈尔滨开往A 市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,那么不同的票价的种数为( ) A .4 种 B . 6 种C . 10 种D . 12 种 14.三角形的一边长为(3a b +)cm ,这条边上的高为2a cm ,这个三角形的面积为( ) A .5a b + cm 2B . 262a ab + cm 2C . 23a ab + cm 2D . 232a ab + cm 215.a 的32大1的数”用代数式表示是( ) A .32a +1B .23a +1C .52aD .32a -1 二、填空题16. 用配方法把二次函数y=-2x 2+8x-5化成y=a(x+m)2+n 的形式,即y= . y=-2(x -2)2+317.如图所示,已知∠A=∠1,∠A+∠C=∠AEC .求证:AB ∥EF ∥CD .证明:∵∠A=∠ , ∴AB ∥ ( ).∵∠A+∠C=∠AEC( ), ∴∠A+∠C=∠l+∠2. ∴∠2= .∴ ( ). ∴.AB ∥EF ∥CD .18.一组数据4,0,1,-2,2的标准差是 .19.已知一次函数24y x =+的图象经过点(m ,8),则m= .20. 联系生活实际,给出一个能用方程(110%)1050x +=解决的实际问题的背景 . 21.按键的顺序是:列出算式: .三、解答题22.如图,△ABC 中,∠BAC 与∠ABC 的角平分线AE 、BE 相交于点E ,延长AE•交△ABC 的外接圆于D 点,连结BD 、CD 、CE ,且∠BDA=60°. 求证:(1)△BDE 是等边三角形;(2)若∠BDC=120°,猜想四边形BDCE 是怎样的四边形,并证明你的猜想.23.如图,在 Rt △ABC 中,∠C= 90°,∠A =60°,AC=3,将△ABC 绕点 B 旋转至△A ′BC ′的位置,且使点 A .B 、C ′三点在同一条直线上,求点 A 经过的最短路线的长度.5324.如图①所示的是我国工商银行的标志,它是轴对称图形.(1)观察我国其它几家银行的标.志,找出是轴对称的标志,把它画在图②中; (2)自己设计一种与圆有关的轴对称图形的漂亮图案,把它画在图③中.25.一杠杆装置如图,杆的一端拉起一物体,所受重力为 300 N 物体对杆的拉力的作用点到支点的杠长为 lm.杠与水平线的倾斜角为45°,设在杠的另一端施加的压力为 p(N),压力作用点到支的距离为 d(m).(杠杆自身重量忽略不计)(1)求p关于d 的函数解析式;(2)若d=2.5 m,问杆的另一端所施加的压力为多少?26.求代数式(a+1)2-(2a- 3 )(1-a)的值,其中a= 327.如图,在矩形ABCD中,对角线AC和BD交于点0,点E,F,G,H分别是A0,B0,CD,D0的中点,请说明四边形EFGH是矩形.28.有一批型号相同的陶瓷杯子共1000个,其中有一等品700个,二等品200个,三等品100个,从中任选1个杯子,求下列事件发生的概率:(1)选到一等品的概率;(2)选到二等品的概率;(3)选到三等品的概率.29.一艘轮船在一条江里顺水航行的速度为28 km/h,逆水航行的速度为 20 km/h,求轮船在静水中的速度和水流速度.30.小马虎解一元一次方程11(32)152x x--=,解法如下:解:先去括号:131 52x x-+=再移项:131 52 x x+=-合并同类项:61 52 x=-化系数为 1 得:512 x=-问:你认为小马虎解得对吗?若不对,请说明你是怎样检查出来的,并写出正确的解.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.A4.B5.D6.B7.C8.A9.B10.D11.C12.C13.B14.C15.A二、填空题 16. 17.已知;EF ;内错角相等,两直线平行;已知;∠C ;EF ∥CD ;内错角相等,两直线平行18.219.220.略21.-4.32×(-1.2)=三、解答题 22.(1)证∠DBE=∠DEB ;(2)四边形BDCE 是菱形.23.24. (1)如图②是中国农业银行的标志;(2)略.25.(1) ∵ 杠与水平线的倾斜角为 45由阻力×阻力臂=动力×动力臂,得3001p d ⨯=⨯300pd =300p d =,∴p 关于d 的函数解析式是300p d=(2)当 d=2.5m 时,3001202.5p==(N).26.原式=3a2- 3 a+ 3 +1 =7+ 3 .27.证明四边形EFGH是平行四边形及EG=FH 28.(1)710;(2)51;(3)11029.静水中的速度为 24 km/h,水流速度为 4 km/h 30.错误. 检查方法:先把512x=-代入原方程,发现左边≠右边,说明512x=-不是原方程的根.再看步骤,发现移项时,“32-”从左边移到右边时没有改变符号.正确的解:2512x=。
2023年浙江省绍兴市中考数学试题数学卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分1.计算23-的结果是()A.1- B.3- C.1 D.3【答案】A【解析】【分析】根据有理数的减法法则进行计算即可.【详解】解:231-=-,故选:A .【点睛】本题主要考查了有理数的减法,解题的关键是掌握有理数的减法计算法则.减去一个数等于加上它的相反数.2.据报道,2023年“五一”假期全国国内旅游出游合计274000000人次.数字274000000用科学记数法表示是()A.727.410⨯ B.810 C.90.27410⨯ D.92.7410⨯【答案】B【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中1||10,a n ≤<为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,由此进行求解即可得到答案.【详解】解:8274000000 2.7410=⨯,故选B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.3.由8个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.【答案】D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看第一层是三个小正方形,第二层左边一个小正方形,中间没有,右边1个小正方形,故选:D.【点睛】本题考查了三视图的知识,要求同学们掌握主视图是从物体的正面看得到的视图.4.下列计算正确的是()A.623a a a÷= B.()52a a-=- C.()()2111a a a+-=- D.22(1)1a a+=+【答案】C【解析】【分析】根据同底数幂相除法则判断选项A;根据幂的乘方法则判断选项B;根据平方差公式判断选项C;根据完全平方公式判断选项D即可.【详解】解:A.6243a a a a÷=≠,原计算错误,不符合题意;B.()5210a a a-=-≠-,原计算错误,不符合题意;C.()()2111a a a+-=-,原计算正确,符合题意;D.222(1)211a a a a+=++≠+,原计算错误,不符合题意;故选:C.【点睛】本题考查了同底数幂相除法则、幂的乘方法则、平方差公式、完全平方公式等知识,熟练掌握各运算法则是解答本题的关键.5.在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是()A.25 B.35 C.27D.57【答案】C【解析】【分析】根据概率的意义直接计算即可.【详解】解:在一个不透明的袋子中装有2个红球和5个白球,它们除颜色外其他均相同,从中任意摸出1个球,共有7种可能,摸到红球的可能为2种,则摸出红球的概率是27,故选:C .【点睛】本题考查了概率的计算,解题关键是熟练运用概率公式.6.《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容是单位);大容器1个,小容器5个,总容暴为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是()A.5352x y x y +=⎧⎨+=⎩ B.5352x y x y +=⎧⎨+=⎩ C.5352x y x y =+⎧⎨=+⎩ D.5253x y x y =+⎧⎨=+⎩【答案】B【解析】【分析】设大容器的容积为x 斛,小容器的容积为y 斛,根据“大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛”即可得出关于x 、y 的二元一次方程组.【详解】解:设大容器的容积为x 斛,小容器的容积为y 斛,根据题意得:5352x y x y +=⎧⎨+=⎩.故选:B .【点睛】本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于x 、y 的二元一次方程组是解题的关键.7.在平面直角坐标系中,将点(),m n 先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()A.()2,1m n -- B.()2,1m n -+ C.()2,1m n +- D.()2,1m n ++【答案】D【解析】【分析】把(),m n 横坐标加2,纵坐标加1即可得出结果.【详解】解:将点(),m n 先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()2,1m n ++.故选:D .【点睛】本题考查点的平移中坐标的变换,把(),a b 向上(或向下)平移h 个单位,对应的纵坐标加上(或减去)h ,,把(),a b 向右上(或向左)平移n 个单位,对应的横坐标加上(或减去)n .掌握平移规律是解题的关键.8.如图,在矩形ABCD 中,O 为对角线BD 的中点,60ABD ∠=︒.动点E 在线段OB 上,动点F 在线段OD 上,点,E F 同时从点O 出发,分别向终点,B D 运动,且始终保持OE OF =.点E 关于,AD AB 的对称点为12,E E ;点F 关于,BC CD 的对称点为12,F F .在整个过程中,四边形1212E E F F 形状的变化依次是()A.菱形→平行四边形→矩形→平行四边形→菱形B.菱形→正方形→平行四边形→菱形→平行四边形C.平行四边形→矩形→平行四边形→菱形→平行四边形D.平行四边形→菱形→正方形→平行四边形→菱形【答案】A【解析】【分析】根据题意,分别证明四边形1212E E F F 是菱形,平行四边形,矩形,即可求解.【详解】∵四边形ABCD 是矩形,∴AB CD ∥,90BAD ABC ∠=∠=︒,∴60BDC ABD ∠=∠=︒,906030ADB CBD ∠=∠=︒-︒=︒,∵OE OF =、OB OD =,∴DF EB=∵对称,∴21DF DF BF BF ==,,21,BE BE DE DE ==∴1221E F E F =∵对称,∴260F DC CDF ∠=∠=︒,130EDA E DA ∠=∠=︒∴160E DB ∠=︒,同理160F BD ∠=︒,∴11DE BF ∥∴1221E F E F ∥∴四边形1212E E F F 是平行四边形,如图所示,当,,E F O 三点重合时,DO BO =,∴1212DE DF AE AE ===即1212E E EF =∴四边形1212E E F F 是菱形,如图所示,当,E F 分别为,OD OB 的中点时,设4DB =,则21DF DF ==,13DE DE ==,在Rt △ABD 中,2,AB AD ==,连接AE ,AO ,∵602ABO BO AB ∠=︒==,,∴ABO 是等边三角形,∵E 为OB 中点,∴AE OB ⊥,1BE =,∴AE =,根据对称性可得1AE AE ==,∴2221112,9,3AD DE AE ===,∴22211AD AE DE =+,∴1DE A 是直角三角形,且190E ∠=︒,∴四边形1212E E F F 是矩形,当,F E 分别与,D B 重合时,11,BE D BDF 都是等边三角形,则四边形1212E E F F 是菱形∴在整个过程中,四边形1212E E F F 形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形,故选:A .【点睛】本题考查了菱形的性质与判定,平行四边形的性质与判定,矩形的性质与判定,勾股定理与勾股定理的逆定理,轴对称的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.9.已知点()()()4,2,2,,2,M a N a P a ---在同一个函数图象上,则这个函数图象可能是()A. B. C.D.【答案】B【解析】【分析】点()()()4,2,2,,2,M a N a P a ---在同一个函数图象上,可得N 、P 关于y 轴对称,当0x <时,y 随x 的增大而增大,即可得出答案.【详解】解:∵()()2,,2,N a P a -,∴得N 、P 关于y 轴对称,∴选项A 、C 错误,∵()()4,2,2,M a N a ---在同一个函数图象上,∴当0x <时,y 随x 的增大而增大,∴选项D 错误,选项B 正确.故选:B .10.如图,在ABC 中,D 是边BC 上的点(不与点,B C 重合).过点D 作DE AB ∥交AC 于点E ;过点D 作DF AC ∥交AB 于点F .N 是线段BF 上的点,2BN NF =;M 是线段DE 上的点,2DM ME =.若已知CMN 的面积,则一定能求出()A.AFE △的面积B.BDF V 的面积C.BCN △的面积D.DCE △的面积【答案】D【解析】【分析】如图所示,连接ND ,证明FBD EDC ∽,得出FB FD ED EC =,由已知得出NF BF ME DE=,则FD NF EC ME =,又NFD MEC ∠=∠,则NFD MEC ∽,进而得出MCD NDB ∠=∠,可得MC ND ∥,结合题意得出1122EMC DMC MNC S S S == ,即可求解.【详解】解:如图所示,连接ND ,∵DE AB ∥,DF AC ∥,∴,ECD FDB FBD EDC ∠=∠∠=∠,,BFD A A DEC ∠=∠∠=.∴FBD EDC ∽,NFD MEC ∠=∠.∴FB FD ED EC=.∵2DM ME =,2BN NF =,∴11,33NF BF ME DE ==,∴NF BF ME DE =.∴FD NF EC ME =.又∵NFD MEC ∠=∠,∴NFD MEC ∽.∴ECM FDN ∠=∠.∵FDB ECD∠=∠∴MCD NDB ∠=∠.∴MC ND ∥.∴MNC MDC S S = .∵2DM ME =,∴1122EMC DMC MNC S S S == .故选:D .【点睛】本题考查了相似三角形的性质与判定,证明MC ND ∥是解题的关键.卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11.因式分解:m 2﹣3m =__________.【答案】()3m m -【解析】【分析】题中二项式中各项都含有公因式m ,利用提公因式法因式分解即可得到答案.【详解】解:()233m m m m -=-,故答案为:()3m m -.【点睛】本题考查整式运算中的因式分解,熟练掌握因式分解的方法技巧是解决问题的关键.12.如图,四边形ABCD 内接于圆O ,若100D ∠=︒,则B ∠的度数是________.【答案】80︒##80度【解析】【分析】根据圆内接四边形的性质:对角互补,即可解答.【详解】解:∵四边形ABCD 内接于O ,∴180B D �邪=,∵100D ∠=︒,∴18080B D ∠︒∠︒=﹣=.故答案为:80︒.【点睛】本题主要考查了圆内接四边形的性质,掌握圆内接四边形的对角互补是解答本题的关键.13.方程3911x x x =++的解是________.【答案】3x =【解析】【分析】先去分母,左右两边同时乘以()1x +,再根据解一元一次方程的方法和步骤进行解答,最后进行检验即可.【详解】解:去分母,得:39x =,化系数为1,得:3x =.检验:当3x =时,10x +≠,∴3x =是原分式方程的解.故答案为:3x =.【点睛】本题主要考查了解分式方程,解题的关键是掌握解分式方程的方法和步骤,正确找出最简公分母,注意解分式方程要进行检验.14.如图,在菱形ABCD 中,40DAB ∠=︒,连接AC ,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E ,连接CE ,则AEC ∠的度数是________.【答案】10︒或80︒【解析】【分析】根据题意画出图形,结合菱形的性质可得1202CAD DAB ∠=∠=︒,再进行分类讨论:当点E 在点A 上方时,当点E 在点A 下方时,即可进行解答.【详解】解:∵四边形ABCD 为菱形,40DAB ∠=︒,∴1202CAD DAB ∠=∠=︒,连接CE ,①当点E 在点A 上方时,如图1E ,∵1AC AE =,120CAE ∠=︒,∴()1118020802AE C ∠=︒-︒=︒,②当点E 在点A 下方时,如图2E ,∵1AC AE =,120CAE ∠=︒,∴211102AE C CAE ∠=∠=︒,故答案为:10︒或80︒.【点睛】本题主要考查了菱形的性质,等腰三角形的性质,三角形的内角和以及三角形的外角定理,解题的关键是掌握菱形的对角线平分内角;等腰三角形两底角相等,三角形的内角和为180︒;三角形的一个外角等于与它不相邻的两个内角之和.15.如图,在平面直角坐标系xOy 中,函数k y x=(k 为大于0的常数,0x >)图象上的两点()()1122,,,A x y B x y ,满足212x x =.ABC 的边AC x ∥轴,边∥BC y 轴,若OAB 的面积为6,则ABC 的面积是________.【答案】2【解析】【分析】过点A B 、作AF y ⊥轴于点F ,AD x ⊥轴于点D ,BE x ⊥于点E ,利用6AFO ABO BOE FABEO S S S S k =++=+ 五边形,AFOD FABEO ADEB ADEB S S S k S =+=+矩形五边形梯形梯形,得到6ADEB S =梯形,结合梯形的面积公式解得11=8x y ,再由三角形面积公式计算2112111111111()()22224ABC S AC BC x x y y x y x y =×=-×-=×=,即可解答.【详解】解:如图,过点A B 、作AF y ⊥轴于点F ,AD x ⊥轴于点D ,BE x ⊥于点E ,6AFO ABO BOE FABEO S S S S k =++=+ 五边形AFOD FABEO ADEB ADEBS S S k S =+=+矩形五边形梯形梯形6ADEB S ∴=梯形2121()()62y y x x +-∴= 212x x =2112y y ∴=11112121111()(2)()()32==6224y y x x y y x x y x +-+-∴=11=8x y ∴8k ∴=21121111111111()()82222244ABC S AC BC x x y y x y x y =×=-×-=×===故答案为:2.【点睛】本题考查反比例函数中k 的几何意义,是重要考点,掌握相关知识是解题关键.16.在平面直角坐标系xOy 中,一个图形上的点都在一边平行于x 轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数()2(2)03y x x =-≤≤的图象(抛物线中的实线部分),它的关联矩形为矩形OABC .若二次函数()21034y x bx c x =++≤≤图象的关联矩形恰好也是矩形OABC ,则b =________.【答案】712或2512-【解析】【分析】根据题意求得点()3,0A ,()3,4B ,()0,4C,根据题意分两种情况,待定系数法求解析式即可求解.【详解】由()2(2)03y x x =-≤≤,当0x =时,4y =,∴()0,4C ,∵()3,0A ,四边形ABCO 是矩形,∴()3,4B ,①当抛物线经过O B ,时,将点()0,0,()3,4B 代入()21034y x bx c x =++≤≤,∴019344c b c =⎧⎪⎨⨯++=⎪⎩解得:712b =②当抛物线经过点,A C 时,将点()3,0A ,()0,4C 代入()21034y x bx c x =++≤≤,∴419304c b c =⎧⎪⎨⨯++=⎪⎩解得:2512b =-综上所述,712b =或2512b =-,故答案为:712或2512-.【点睛】本题考查了待定系数法求抛物线解析式,理解新定义,最小矩形的限制条件是解题的关键.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:0(1)π---.(2)解不等式:324x x ->+.【答案】(1)1;(2)3x >【解析】【分析】(1)根据零指数幂的性质、二次根式的化简、绝对值的性质依次解答;(2)先移项,再合并同类项,最后化系数为1即可解答.【详解】解:(1)原式1=-+1=.(2)移项得36x x ->,即26x >,∴3x >.∴原不等式的解是3x >.【点睛】本题考查实数的混合运算、零指数幂、二次根式的化简和解一元一次不等式等知识,是基础考点,掌握相关知识是解题关键.18.某校兴趣小组通过调查,形成了如下调查报告(不完整).建议……结合调查信息,回答下列问题:(1)本次调查共抽查了多少名学生?(2)估计该校900名初中生中最喜爱篮球项目的人数.(3)假如你是小组成员,请你向该校提一条合理建议.【答案】(1)100(2)360(3)答案不唯一,见解析【解析】【分析】(1)根据乒乓球人数和所占比例,求出抽查的学生数;(2)先求出喜爱篮球学生比例,再乘以总数即可;(3)从图中观察或计算得出,合理即可.【小问1详解】被抽查学生数:3030%100÷=,答:本次调查共抽查了100名学生.【小问2详解】被抽查的100人中最喜爱羽毛球的人数为:1005%5⨯=,∴被抽查的100人中最喜爱篮球的人数为:100301015540----=,∴40900360100⨯=(人).答:估计该校900名初中生中最喜爱篮球项目的人数为360.【小问3详解】答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点睛】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题.19.图1是某款篮球架,图2是其示意图,立柱OA 垂直地面OB ,支架CD 与OA 交于点A ,支架CG CD ⊥交OA 于点G ,支架DE 平行地面OB ,篮筺EF 与支架DE 在同一直线上, 2.5OA =米,0.8AD =米,32AGC ∠=︒.(1)求GAC ∠的度数.(2)某运动员准备给篮筐挂上篮网,如果他站在発子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin 320.53,cos 320.85,tan 320.62︒≈︒≈︒≈)【答案】(1)58︒(2)该运动员能挂上篮网,理由见解析【解析】【分析】(1)根据直角三角形的两个锐角互余即可求解;(2)延长,OA ED 交于点M ,根据题意得出32ADM ∠=︒,解Rt ADM △,求得AM ,根据OM OA AM =+与3比较即可求解.【小问1详解】解:∵CG CD ⊥,∴90ACG ∠=︒,∵32AGC ∠=︒,∴903258GAC ∠=︒-︒=︒.【小问2详解】该运动员能挂上篮网,理由如下.如图,延长,OA ED 交于点M ,∵,OA OB DE OB ⊥∥,∴90DMA ∠=︒,又∵58DAM GAC ∠=∠=︒,∴32ADM ∠=︒,在Rt ADM △中,sin 320.80.530.424AM AD =︒≈⨯=,∴ 2.50.424 2.9243OM OA AM =+=+=<,∴该运动员能挂上篮网.【点睛】本题考查了解直角三角形的应用,直角三角形的两个锐角互余,熟练掌握三角函数的定义是解题的关键.20.一条笔直的路上依次有,,M P N 三地,其中,M N 两地相距1000米.甲、乙两机器人分别从,M N 两地同时出发,去目的地,N M ,匀速而行.图中,OA BC 分别表示甲、乙机器人离M 地的距离y (米)与行走时间x (分钟)的函数关系图象.(1)求OA 所在直线的表达式.(2)出发后甲机器人行走多少时间,与乙机器人相遇?(3)甲机器人到P 地后,再经过1分钟乙机器人也到P 地,求,P M 两地间的距离.【答案】(1)200y x=(2)出发后甲机器人行走103分钟,与乙机器人相遇(3),P M 两地间的距离为600米【解析】【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求出BC 所在直线的表达式,再列方程组求出交点坐标,即可;(3)列出方程即可解决.【小问1详解】∵()()0,0,5,1000O A ,∴OA 所在直线的表达式为200y x =.【小问2详解】设BC 所在直线的表达式为y kx b =+,∵()()0,1000,10,0B C ,∴10000,010,b k b =+⎧⎨=+⎩解得100,1000k b =-⎧⎨=⎩.∴1001000y x =-+.甲、乙机器人相遇时,即2001001000x x =-+,解得103x =,∴出发后甲机器人行走103分钟,与乙机器人相遇.【小问3详解】设甲机器人行走t 分钟时到P 地,P 地与M 地距离200y t =,则乙机器人()1t +分钟后到P 地,P 地与M 地距离()10011000y t =-++,由()20010011000t t =-++,得3t =.∴600y =.答:,P M 两地间的距离为600米.【点睛】本题考查了一次函数的图象与性质,用待定系数法可求出函数表达式,要利用方程组的解,求出两个函数的交点坐标,充分应用数形结合思想是解题的关键.21.如图,AB 是O 的直径,C 是O 上一点,过点C 作O 的切线CD ,交AB 的延长线于点D ,过点A 作AE CD ⊥于点E .(1)若25EAC ∠=︒,求ACD ∠的度数.(2)若2,1OB BD ==,求CE 的长.【答案】(1)115︒(2)CE =【解析】【分析】(1)根据三角形的外角的性质,ACD AEC EAC ∠=∠+∠即可求解.(2)根据CD 是O 的切线,可得90OCD ∠=︒,在Rt OCD △中,勾股定理求得CD =根据OC AE ∥,可得CD OD CE OA=,进而即可求解.【小问1详解】解:∵AE CD ⊥于点E ,∴90AEC ∠=︒,∴9025115ACD AEC EAC ∠=∠+∠=︒+︒=︒.【小问2详解】∵CD 是O 的切线,OC 是O 的半径,∴90OCD ∠=︒.在Rt OCD △中,∵2,3OC OB OD OB BD ===+=,∴CD =.∵90OCD AEC ∠=∠=︒,∴OC AE∥∴CD OD CE OA =,即32CE =,∴CE =.【点睛】本题考查了三角形外角的性质,切线的性质,勾股定理,平行线分线段成比例,熟练掌握以上知识是解题的关键.22.如图,在正方形ABCD 中,G 是对角线BD 上的一点(与点,B D 不重合),,,,GE CD GF BC E F ⊥⊥分别为垂足.连接,EF AG ,并延长AG 交EF 于点H .(1)求证:DAG EGH ∠=∠.(2)判断AH 与EF 是否垂直,并说明理由.【答案】(1)见解析(2)AH 与EF 垂直,理由见解析【解析】【分析】(1)由正方形的性质,得到AD CD ⊥,结合垂直于同一条直线的两条直线平行,可得AD GE ∥,再根据平行线的性质解答即可;(2)连接GC 交EF 于点O SAS 证明ADG CDG ≌,再根据全等三角形对应角相等得到DAG DCG ∠=∠,继而证明四边形FCEG 为矩形,最后根据矩形的性质解答即可.【小问1详解】解:在正方形ABCD 中,AD CD⊥GE CD⊥ ∴AD GE ∥,∴DAG EGH ∠=∠.【小问2详解】AH 与EF 垂直,理由如下.连接GC 交EF 于点O .∵BD 为正方形ABCD 的对角线,∴45ADG CDG ∠=∠=︒,又∵,DG DG AD CD ==,∴ADG CDG ≌,∴DAG DCG ∠=∠.在正方形ABCD 中,90ECF ∠=︒,又∵,GE CD GF BC ⊥⊥,∴四边形FCEG 为矩形,∴OE OC =,∴OEC OCE ∠=∠,∴DAG OEC ∠=∠.又∵DAG EGH ∠=∠,∴90EGH GEH OEC GEH GEC ∠+∠=∠+∠=∠=︒,∴90GHE ∠=°,∴AH EF ⊥.【点睛】本题考查正方形的性质、平行线的性质、全等三角形的判断与性质、矩形的判定与性质等知识,综合性较强,是重要考点,掌握相关知识是解题关键.23.已知二次函数2y x bx c =-++.(1)当4,3b c ==时,①求该函数图象的顶点坐标.②当13x -≤≤时,求y 的取值范围.(2)当0x ≤时,y 的最大值为2;当0x >时,y 的最大值为3,求二次函数的表达式.【答案】(1)①()2,7;②当13x -≤≤时,27y -≤≤(2)222y x x =-++【解析】【分析】(1)①将4,3b c ==代入解析式,化为顶点式,即可求解;②已知顶点()2,7,根据二次函数的增减性,得出当2x =时,y 有最大值7,当=1x -时取得最小值,即可求解;(2)根据题意0x ≤时,y 的最大值为2;0x >时,y 的最大值为3,得出抛物线的对称轴2b x =在y 轴的右侧,即0b >,由抛物线开口向下,0x ≤时,y 的最大值为2,可知2c =,根据顶点坐标的纵坐标为3,求出2b =,即可得解.【小问1详解】解:①当4,3b c ==时,2243(2)7y x x x =-++=--+,∴顶点坐标为()2,7.②∵顶点坐标为()2,7.抛物线开口向下,当12x -≤≤时,y 随x 增大而增大,当23x ≤≤时,y 随x 增大而减小,∴当2x =时,y 有最大值7.又()2132-->-∴当=1x -时取得最小值,最小值=2y -;∴当13x -≤≤时,27y -≤≤.【小问2详解】∵0x ≤时,y 的最大值为2;0x >时,y 的最大值为3,∴抛物线的对称轴2b x =在y 轴的右侧,∴0b >,∵抛物线开口向下,0x ≤时,y 的最大值为2,∴2c =,又∵()()241341c b ⨯-⨯-=⨯-,∴2b =±,∵0b >,∴2b =,∴二次函数的表达式为222y x x =-++.【点睛】本题考查了待定系数法求二次函数解析式,顶点式,二次函数的最值问题,熟练掌握二次函数的性质是解题的关键.24.在平行四边形ABCD 中(顶点,,,A B C D 按逆时针方向排列),12,10,AB AD B ==∠为锐角,且4sin 5B =.(1)如图1,求AB 边上的高CH (2)P 是边AB 上的一动点,点,C D 同时绕点P 按逆时针方向旋转90︒得点,C D ''.①如图2,当点C '落在射线CA 上时,求BP 的长.②当AC D ''△是直角三角形时,求BP 的长.【答案】(1)8(2)①347BP =;②6BP =或8±【解析】【分析】(1)利用正弦的定义即可求得答案;(2)①先证明PQC CHP '△≌△,再证明AQC AHC '△∽△,最后利用相似三角形对应边成比例列出方程即可;②分三种情况讨论完成,第一种:C '为直角顶点;第二种:A 为直角顶点;第三种,D ¢为直角顶点,但此种情况不成立,故最终有两个答案.【小问1详解】在ABCD Y 中,10BC AD ==,在Rt BCH 中,4sin 1085CH BC B ==⨯=.【小问2详解】①如图1,作CH BA ⊥于点H ,由(1)得,6BH ==,则1266AH =-=,作C Q BA '⊥交BA 延长线于点Q ,则90CHP PQC ∠'=∠=︒,∴90C PQ PC Q '∠+∠='︒.∵90C PQ CPH ∠+∠='︒∴PC Q CPH ∠=∠'.由旋转知PC PC '=,∴PQC CHP '△≌△.设BP x =,则8,6,4PQ CH C Q PH x QA PQ PA x ====-=-=-'.∵,C Q AB CH AB '⊥⊥,∴C Q CH '∥,∴AQC AHC '△∽△,∴C Q QA CH HA =',即6486x x --=,∴347x =,∴347BP =.②由旋转得,PCD PC D CD C D '''='△≌△,CD C D ⊥'',又因为AB CD ,所以C D AB ''⊥.情况一:当以C '为直角顶点时,如图2.∵C D AB ''⊥,∴C '落在线段BA 延长线上.∵PC PC ⊥',∴PC AB ⊥,由(1)知,8PC =,∴6BP =.情况二:当以A 为直角顶点时,如图3.设C D ''与射线BA 的交点为T ,作CH AB ⊥于点H .∵PC PC ⊥',∴90CPH TPC ∠'+∠=︒,∵C D AT ''⊥,∴90PC T TPC ∠'+∠='︒,∴CPH PC T ∠=∠'.又∵90,CHP PTC PC C P ∠=∠=='︒',∴CPH PC T '△≌△,∴,8C T PH PT CH '===.设C T PH t '==,则6AP t =-,∴2AT PT PA t=-=+∵90,C AD C D AB ∠=︒''⊥'',∴ATD C TA '' ∽,∴AT C T TD TA='',∴2AT C T TD '=⋅',∴()2(2)12t t ι+=-,化简得2420t t -+=,解得2t =±∴8BP BH HP =+=±情况三:当以D ¢为直角顶点时,点P 落在BA 的延长线上,不符合题意.综上所述,6BP =或8±【点睛】本题考查了平行四边形的性质,正弦的定义,全等的判定及性质,相似的判定及性质,理解记忆相关定义,判定,性质是解题的关键.。
2023年浙江省绍兴市中考数学测试试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在夏日的上午,树影变化的方向是( )A .正西→正北B .西偏北→西偏南C .正西→正南D .东偏北→东偏南 2.已知⊙O 的半径为 r ,圆心0到直线l 的距离为 d. 若直线l 与⊙O 有交点,则下列结论正确的是( )A .d=rB .d ≤rC . d ≥rD . d <r 3.下列方程中,无实数根的是( ) A .2250x x ++=B .220x x --=C .22100x x +-=D .2210x x --= 4.样本数据3,6,a ,4,2的平均数是5,则这个样本的方差是( ) A .8B .5C . 3D .22 5.如图,AB ∥CD ,∠1=110°,∠E=40°,∠ECD 的大小是( )A .80°B .75°C .70°D .60°6.有四个三角形,分别满足下列条件:(1)一个内角的的度等于另两个内角的度数之和;(2)三个内角的度数之比为 3:4:5;(3)三边长之比为3:4:5;(4)三边长分别为 7、24、25. 其中直角三角形有( )A . 1个B .2个C .3个D .4个 7.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB 的依据是( )A .SSSB .SASC .ASAD .AAS8.如图,可以写出一个因式分解的等式是( )A .2265(23)(2)a ab b b a b a ++=++B .22652(32)a ab b a a b ++=+C .2265(2)(3)a ab b a b a b ++=++D .2265(5)(2)a ab b a b a b ++=++9.从一只船上看小岛,方向为北偏东35°,那么从小岛上看这只船,其方向为()A.南偏西35°B.南偏东55°C.北偏东55°D.北偏西35°10.如果关于m的方程 2m+b=m-1 的解是-4,那么b的值是()A.3 B.5 C. -3 D.-511.观察图2,下列说法中错误的是()A.OA 的方向是北偏东 30°B.OB的方向是北偏西 15°C.OC的方向是南偏西25°D.OD的方向是东南方向12.如图.一张矩形报纸ABCD的长AB=a(cm).宽BC=b(cm),E.F分别是AB,CD 的中点。
2023年浙江省绍兴市中考数学优质试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 抛物线y=x 2+6x+8与y 轴交点坐标( )A .(0,8)B .(0,-8)C .(0,6)D .(-2,0)(-4,0)2.正方形 ABCD 的边长为 1,对角线 AC 、BD 相交于点O ,若以 O 为圆心作圆,要使点A 在⊙O 外,则所选取的半径可能是( )A .12B .22C .32D .23.二次函数y=ax 2+bx+c 的图象的对称轴位置 ( )A .只与a 有关B .只与b 有关C .只与a, b 有关D .与 a , b ,c 都有关4.当k>0,b>0 对,函数y kx b =+与k y x-=的图象在同一直角坐标系内可能是( )A .B .C .D .5.下列方程中,属于一元二次方程是( )A .10x y --=B .2110x x +-=C .210x -=D .310y -=6.在梯形ABCD 中,AD BC ∥,AB DC =,E F G H ,,,分别是AB BC CD DA ,,,的中点,则四边形EFGH 是( )A .等腰梯形B .矩形C .菱形D .正方形 7.已知在△ABC 和△DFE 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和△DEF 全等的是( )A .AB=DE ,AC=DFB .AC=EF,BC=DFC .AB=DE ,BC=FED .∠C=∠F ,BC=FE8. 在△ABC 中,如果∠A —∠B= 90°,那么△ABC 是( )A .直角三角形B .钝角三角形C .锐角三角形D .锐角三角形或钝角三角形9.若 x ,y 是正整数,且5222x y ⋅=,则x ,y 的值有( )A .4 对B .3 对C .2 对D .1 对10.对角的表示方法理解错误的是( )A .角可用三个大写字母表示,顶点字母写在中间,每边上的点的字母写在两旁B .任何角都可用一个顶点字母表示C .记角有时可在靠近顶点处加上弧线,注上数字来表示D .记角有时可在靠近顶点处加上弧线,注上希腊字母表示二、填空题11.如图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是___________________.(把下图中正确的立体图形的序号都填在横线上) .12.如果(221)(221)63a b a b +++-=,那么a b +的值是 .13.如图,D 为等边△ABC 内一点,且BD=AD ,BP=AB ,∠l=∠2,则∠P= .解答题14. 如图所示,一滑梯 AB 的坡比为 3:4,若滑梯 AB 的长为 lO cm ,则滑梯的顶端离地面的距离 BC= m.15.已知3a x-1b y+1与-12a 2-yb x 是同类项,则x-y-1=______. 216.若一个三角形的三个内角这比为2:3:4,则三个内角中最小的内角为 .17.三个连续奇数的和为69,则这三个数分别为 .18.方程1(1)3x x -=-的解是 . 19. 某商品的价格为 x 元,那么代数式(1-20%)x 可以解释为 .20.(1) 2(7)-的平方根是 ;(2) 2(3 1.733)算术平方根是 .21. 写出和为 6 的两个无理数: .22.如图,身高1.6m 的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为6m ,那么这棵树高大约为 .(结果精确到0.1m ,其中小丽眼睛距离地面高度近似为身高)三、解答题23.如图所示,一次函数y =x ,y =21x +1的图象都经过点P . (1)求图象经过点P 的反比例函数的表达式;(2)试判断点(-3,-1)是否在所求得的反比例函数的图象上?24.某商场出售一批进价为 2 元的贺卡,在市场营销中发现此商品日销售单价x(元)与日销售量 y(张)之间有如下关系:x (元)3456y(张)20151210(1)根据表中数据在直角坐标系中描出实数对(x,y)的对应点;(2)猜测并确定 y 与x 之间的函数关系式,并画出图象;(3)设经营此贺卡的销售利润为ω元,试求ω与x之间的函数关系式,如果物价局规定此贺卡售价最高不能超过10元/张,请你求出当日销售单价x定为多少元时,才能获得最大日销售利润?25.如图①所示,已知AE是△ABC的高,F是AE上的任意一点,G是E点关于F的对称点,过点G作BC的平行线与AB交于点H,与AC交于点I,连结IF并延长交BC于点J,连结HF并延长交BC于点K.(1)请你在图②中再画出一个满足条件的四边形HJKI(点F的位置与图①不同);(2)请你判断四边形HJKl是怎样的四边形?并对你得到的结论予以证明(图②供思考用).26.如图,∠1与∠2是直线a,b被直线c所截得的同位角,且∠l≠∠2,用反证法证明a不平行b,试完成下列证明过程中的填空:证明:假设,则∠l=∠2.这与相矛盾,故不成立.∴a不平行b.27.据资料记载,位于意大利的比萨余塔在1918~1958年这41年间,平均每年倾斜1.1 mm;1959~1969年这ll年间,平均每年倾斜1.26 mm.那么1918~1969年这52年间,比萨斜塔平均每年倾斜约多少mm (精确到0.01mm)?28.如图,∠A=∠B,CE∥DA,CE交AB于E,△CEB是等腰三角形吗?说明理由.29.已知方程组3,51,ax byx cy+=⎧⎨-=⎩甲正确地解得2,3,xy=⎧⎨=⎩,而乙粗心地把c看错了,解得3,6,xy=⎧⎨=⎩求 a,b,c的值.30.图中 3×3 方格是从月历表中取下的,正中方格的日期是n,请用适当的代数式填入各个空格,表示所填入空格的日期,然后比较两条对角线的五个日期数之和,你发现了什么规律?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.C4.B5.C6.C7.B8.B9.A10.B二、填空题11.①、②、④12.4±13.30°14.615.16.40°17.21,23,2518. 14x =19.某商品价格为x 元,降价 20% 后的价格是 (1-20%)x 元 20.7±,3, 1.733-21.如π,6π-22.5.1m三、解答题23.(1)xy 4=;(2)不在. 24.(1)如图,(2)是反比例函数,60yx= (x 为正整数)图象如解图.(3)12060wx=-,当定价x定为10元/张时,利润最大,为48 元.25.(1)作图与①类似;②四边形HJKI为平行四边形,证略26.a∥b,已知,假设27.1.13 mm28.是等腰三角形,说明∠CEB=∠B29.a=3,b= -1, c=3.30.两条对角线上的三个日期数之和都等于3n。
2023年浙江省绍兴市中考数学试卷一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、选,均不给分)1.(4分)计算2﹣3的结果是()A.﹣1B.﹣3C.1D.32.(4分)据报道,2023年“五一”假期全国国内旅游出游合计274000000人次.数字274000000用科学记数法表示是()A.27.4×107B.2.74×108C.0.274×109D.2.74×109 3.(4分)由8个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.(4分)下列计算正确的是()A.a6÷a2=a3B.(﹣a2)5=﹣a7C.(a+1)(a﹣1)=a2﹣1D.(a+1)2=a2+15.(4分)在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是()A.B.C.D.6.(4分)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛,问大容器、小容器的容量各是多少斛?设大容器的容量为x斛,小容器的容量为y斛,则可列方程组是()A.B.C.D.7.(4分)在平面直角坐标系中,将点(m,n)先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()A.(m﹣2,n﹣1)B.(m﹣2,n+1)C.(m+2,n﹣1)D.(m+2,n+1)8.(4分)如图,在矩形ABCD中,O为对角线BD的中点,∠ABD=60°,动点E在线段OB上,动点F在线段OD上,点E,F同时从点O出发,分别向终点B,D运动,且始终保持OE=OF.点E关于AD,AB的对称点为E1,E2;点F关于BC,CD的对称点为F1,F2在整个过程中,四边形E1E2F1F2形状的变化依次是()A.菱形→平行四边形→矩形→平行四边形→菱形B.菱形→正方形→平行四边形→菱形→平行四边形C.平行四边形→矩形→平行四边形→菱形→平行四边形D.平行四边形→菱形→正方形→平行四边形→菱形9.(4分)已知点M(﹣4,a﹣2),N(﹣2,a),P(2,a)在同一个函数图象上,则这个函数图象可能是()A.B.C.D.10.(4分)如图,在△ABC中,D是边BC上的点(不与点B,C重合).过点D作DE∥AB交AC于点E;过点D作DF∥AC交AB于点F、N是线段BF上的点,BN=2NF:M 是线段DE上的点,DM=2ME.若已知△CMN的面积,则一定能求出()A.△AFE的面积B.△BDF的面积C.△BCN的面积D.△DCE的面积二、填空题(本大题有6小题,每小题5分,共30分11.(5分)因式分解:m2﹣3m=.12.(5分)如图,四边形ABCD内接于圆O,若∠D=100°,则∠B的度数是.13.(5分)方程的解是.14.(5分)如图,在菱形ABCD中,∠DAB=40°,连接AC,以点A为圆心,AC长为半径作弧,交直线AD于点E,连接CE,则∠AEC的度数是.15.(5分)如图,在平面直角坐标系xOy中,函数(k为大于0的常数,x>0)图象上的两点A(x1,y1),B(x2,y2),满足x2=2x1,△ABC的边AC∥x轴,边BC∥y轴,若△OAB的面积为6,则△ABC的面积是.16.(5分)在平面直角坐标系xOy中,一个图形上的点都在一边平行于x轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数y=(x ﹣2)2(0≤x≤3)的图象(抛物线中的实线部分),它的关联矩形为矩形OABC.若二次函数图象的关联矩形恰好也是矩形OABC,则b=.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:;(2)解不等式:3x ﹣2>x +4.18.(8分)某校兴趣小组通过调查,形成了如表调查报告(不完整).调查目的1.了解本校初中生最喜爱的球类运动项目2.给学校提出更合理地配置体育运动器材和场地的建议调查方式随机抽样调查调查对象部分初中生调查内容调查你最喜爱的一个球类运动项目(必选)A .篮球B .乒乓球C .足球D .排球E .羽毛球调查结果建议…结合调查信息,回答下列问题:(1)本次调查共抽查了多少名学生?(2)估计该校900名初中生中最喜爱篮球项目的人数.(3)假如你是小组成员,请向该校提一条合理建议.19.(8分)图1是某款篮球架,图2是其示意图,立柱OA垂直地面OB,支架CD与OA 交于点A,支架CG⊥CD交OA于点G,支架DE平行地面OB,篮筐EF与支架DE在同一直线上,OA=2.5米,AD=0.8米.∠AGC=32°.(1)求∠GAC的度数;(2)某运动员准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)20.(8分)一条笔直的路上依次有M,P,N三地,其中M,N两地相距1000米.甲、乙两机器人分别从M,N两地同时出发,去目的地N,M,匀速而行.图中OA,BC分别表示甲、乙机器人离M地的距离y(米)与行走时间x(分钟)的函数关系图象.(1)求OA所在直线的表达式;(2)出发后甲机器人行走多少时间,与乙机器人相遇?(3)甲机器人到P地后,再经过1分钟乙机器人也到P地,求P,M两地间的距离.21.(10分)如图,AB是⊙O的直径,C是⊙O上一点,过点C作⊙O的切线CD,交AB 的延长线于点D,过点A作AE⊥CD于点E.(1)若∠EAC=25°,求∠ACD的度数;(2)若OB=2,BD=1,求CE的长.22.(12分)如图,在正方形ABCD中,G是对角线BD上的一点(与点B,D不重合),GE⊥CD,GF⊥BC,E,F分别为垂足.连接EF,AG,并延长AG交EF于点H.(1)求证:∠DAG=∠EGH;(2)判断AH与EF是否垂直,并说明理由.23.(12分)已知二次函数y=﹣x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标;②当﹣1≤x≤3时,求y的取值范围;(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.24.(14分)在平行四边形ABCD中(顶点A,B,C,D按逆时针方向排列),AB=12,AD =10,∠B为锐角,且sin B=.(1)如图1,求AB边上的高CH的长;(2)P是边AB上的一动点,点C,D同时绕点P按逆时针方向旋转90°得点C',D',①如图2,当C'落在射线CA上时,求BP的长;②当△AC'D'是直角三角形时,求BP的长.2023年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、选,均不给分)1.【分析】根据有理数减法法则:减去一个数,等于加上这个数的相反数.即:a﹣b=a+(﹣b),即可得出答案.【解答】解:2﹣3=﹣1.故选:A.【点评】此题主要考查了有理数的减法,正确掌握有理数的减法运算法则是解题关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:274000000=2.74×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】主视图有3列,每列小正方形数目分别为2,1,2,据此判断即可.【解答】解:如图所示:它的主视图是:故选:D.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.4.【分析】直接利用整式的混合运算法则分别判断得出答案.【解答】解:A.a6÷a2=a4,故此选项不合题意;B.(﹣a2)5=﹣a10,故此选项不合题意;C.(a+1)(a﹣1)=a2﹣1,故此选项符合题意;D.(a+1)2=a2+2a+1,故此选项不合题意.故选:C.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.5.【分析】由一个不透明的布袋里装有7个球,其中2个红球,5个白球,它们除颜色外其余都相同,直接利用概率公式求解即可求得答案.【解答】解:从中任意摸出1个球,则摸到红球的概率是:=,故选:C.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种可能,那么事件A的概率P(A)=.6.【分析】根据“大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛”,列出关于x、y的二元一次方程组即可.【解答】解:由题意得:,故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7.【分析】根据点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减求解即可.【解答】解:将点(m,n)先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是(m+2,n+1),故选:D.【点评】本题主要考查坐标与图形变化—平移,解题的关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.8.【分析】根据题意,分别证明四边形E1E2F1F2是菱形,平行四边形,矩形,即可求解.【解答】解:如图1中,∵四边形ABCD是矩形,∴AB∥CD,∠BAD=∠ABC=90°,∴∠BDC=∠ABD=60°,∠ADB=∠CBD=90°﹣60°=30°,∵OE=OF、OB=OD,∴DF=EB,∵对称,∴DF=DF2,BF=BF1,BE=BE2,DE=DE1,E1F2=E2F1.∵对称∴∠F2DC=∠CDF=60°,∴∠EDA=∠E1DA=30°,∴∠E1DB=60°,同理∠F1BD=60°,∴DE1∥BF1,∵E1F2=E2F1,∴四边形E1E2F1F2是平行四边形,如图2所示,当E,F,O三点重合时,DO=OB,∴DE1=DF2=AE1=AE2,即E1E2=E1F2,∴四边形E1E2F1F2是菱形.如图3所示,当E,F分别为OD,OB的中点时,设DB=4,则DF2=DF=1,DE1=DE=3,在Rt△ABD中,AB=2,AD=2,连接AE,AO,∵∠ABO=60°,BO=2=AB,∴△ABO是等边三角形,∵E为OB中点,∴AE⊥OB,BE=1,∴.根据对称性可得.∴AD2=12,=9,=3,∴,∴ΔDE1A是直角三角形,且∠E1=90°,四边形E1E2F1F2是矩形.当F,E分别与D,B重合时,△BE1D,△BDF1都是等边三角形,则四边形E1E2F2F2是菱形,∴在整个过程中,四边形E1E2F1F2形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形,故选:A.【点评】本题考查了菱形的性质与判定,平行四边形的性质与判定,矩形的性质与判定,勾股定理与勾股定理的逆定理,轴对称的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.9.【分析】由点N(﹣2,a),P(2,a)关于y轴对称,可排除选项A、C,再根据M(﹣4,a﹣2),N(﹣2,a),可知在y轴的左侧,y随x的增大而增大,从而排除选项D.【解答】解:由N(﹣2,a),P(2,a)在同一个函数图象上,可知图象关于y轴对称,故选项A、C不符合题意;由M(﹣4,a﹣2),N(﹣2,a),可知在y轴的左侧,y随x的增大而增大,故选项B 符合题意;故选:B.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.10.【分析】如图所示,连接ND,证明△FBD∽△EDC,得出,由已知得出,则,又∠NFD=∠MEC,则△NFD∽△MEC,进而得出∠MCD=∠NDB,可得MC∥ND,结合题意得出,即可求解.【解答】解:如图所示,连接ND,∵DE∥AB,DF∥AC,∴∠ECD=∠FDB,∠FBD=∠EDC,∠BFD=∠A,∠A=DEC.∴△FBD∽△EDC,∠NFD=∠MEC.∴=,∵DM=2ME,BN=2NF,∴,.∴∴,又∵∠NFD=∠MEC,∴△NFD∽△MEC.∴∠ECM=∠FDN.∵∠FDB=∠ECD,∴∠MCD=∠NDB.∴MC∥ND.=S△MDC.∴S△MNC∵DM=2ME,∴.故选:D.【点评】本题考查相似三角形的判定和性质,平行线的性质,三角形的面积等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.二、填空题(本大题有6小题,每小题5分,共30分11.【分析】直接提取公因式m,进而分解因式即可.【解答】解:m2﹣3m=m(m﹣3).故答案为:m(m﹣3).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【分析】由圆内接四边形的性质:圆内接四边形的对角互补,即可得到答案.【解答】解:∵四边形ABCD内接于圆O,∴∠B+∠D=180°,∵∠D=100°,∴∠B=80°.故答案为:80°.【点评】本题考查圆内接四边形的性质,关键是掌握圆内接四边形的性质.13.【分析】解分式方程得结论.【解答】解:去分母,得3x=9,∴x=3.经检验,x=3是原方程的解.故答案为:x=3.【点评】本题主要考查了解分式方程,掌握分式方程的解法是解决本题的关键.14.【分析】根据菱形的性质可得∠DAC=20°,再根据等腰三角形的性质可得∠AEC的度数.【解答】解:以点A为圆心,AC长为半径作弧,交直线AD于点E和E′,如图所示,在菱形ABCD中,∠DAC=∠BAC,∵∠DAB=40°,∴∠DAC=20°,∵AC=AE,∴∠AEC=(180°﹣20°)÷2=80°,∵AE′=AC,∴∠AE′C=∠ACE′=10°,综上所述,∠AEC的度数是10°或80°,故答案为:10°或80°.【点评】本题考查了菱形的性质,等腰三角形的性质,熟练掌握这些性质是解题的关键.15.【分析】证明出点A、B为矩形边的中点,根据三角形OAB的面积求出矩形面积,再求出三角形ABC面积即可.【解答】解:长CA交y轴于E,延长CB交x轴于点F,∴CE⊥y轴,CF⊥x轴,∴四边形OECF为矩形,∵x2=2x1,∴点A为CE中点,=S△OBF,由几何意义得,S△OAE∴点B为CF中点,=S矩形=6,∴S△OAB=16,∴S矩形=×16=2.∴S△ABC故答案为:2.【点评】本题考查了反比例函数的性质的应用,几何意义的应用及矩形特性是解题关键.16.【分析】根据题意求得点A(3,0),B(3,4),C(0,4),然后分两种情况,利用待定系数法求出解析式即可.【解答】解:由y=(x﹣2)2(0≤x≤3),当x=0时,y=4,∴C(0,4),∵A(3,0),四边形ABCO是矩形,∴B(3,4),①当抛物线经过O、B时,将点O(0,0),B(3,4)代入y=x2+bx+c(0≤x≤3)得,解得b=;②当抛物线经过A、C时,将点A(3,0),C(0,4)代入y=x2+bx+c(0≤x≤3)得,解得b=﹣,综上所述,b=或b=﹣,故答案为:或﹣,【点评】本题考查了待定系数法求抛物线的解析式,能够理解新定义,最小矩形的限制条件是解题的关键.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)先算零指数幂,二次根式的化简,绝对值,再算加减即可;(2)利用解一元一次不等式的方法进行求解即可.【解答】解:(1)==1;(2)3x﹣2>x+4,移项得:3x﹣x>4+2,即:2x>6,系数化为1,得:x>3,∴原不等式的解是:x>3.【点评】本题主要考查解一元一次不等式,实数的运算,解答的关键是对相应的知识的掌握.18.【分析】(1)根据乒乓球的人数和所占的百分比即可得出答案;(2)用900乘样本中最喜爱篮球项目的人数所占比例即可;(3)根据最喜爱的球类运动项目所占百分比解答即可(答案不唯一).【解答】解:(1)30÷30%=100(名),答:本次调查共抽查了100名学生.(2)被抽查的100人中最喜爱羽毛球的人数为:100×5%=5(名),∴被抽查的100人中最喜爱篮球的人数为:100﹣30﹣10﹣15﹣5=40(名),=360(名),答:估计该校900名初中生中最喜爱篮球项目的人数为360名.(3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.19.【分析】(1)根据垂直定义可得∠ACG=90°,然后利用直角三角形的两个锐角互余进行计算,即可解答;(2)延长OA,ED交于点M,根据垂直定义可得∠AOB=90°,从而利用平行线的性质可得∠DMA=∠AOB=90°,再根据对顶角相等可得∠DAM=∠GAC=58°,从而利用直角三角形的两个锐角互余可得∠ADM=32°,然后在Rt△ADM中,利用锐角三角函数的定义求出AM的长,从而利用线段的和差关系求出MO的长,比较即可解答.【解答】解:(1)∵CG⊥CD,∴∠ACG=90°,∵∠AGC=32°,∴∠GAC=90°﹣∠AGC=90°﹣32°=58°,∴∠GAC的度数为58°;(2)该运动员能挂上篮网,理由如下:延长OA,ED交于点M,∵OA⊥OB,∴∠AOB=90°,∵DE∥OB,∴∠DMA=∠AOB=90°,∵∠GAC=58°,∴∠DAM=∠GAC=58°,∴∠ADM=90°﹣∠DAM=32°,在Rt△ADM中,AD=0.8米,∴AM=AD•sin32°≈0.8×0.53=0.42(米),∴OM=OA+AM=2.5+0.424=2.924(米),∵2.924米<3米,∴该运动员能挂上篮网.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.20.【分析】(1)利用待定系数法,将(5,1000)代入解析式中,求出答案;(2)俩机器人相向而行,同时出发,相遇时两人路程应为MN的长度,列出方程即可;(3)设甲到P地时间为t分钟,乙到P地时间为(t+1)分钟,分别求出两人到P地时,与M的距离,列出方程,解出答案.【解答】解:(1)由图象可知,OA所在直线为正比例函数,∴设y=kx,∵A(5,1000),1000=5k,k=200,∴OA所在直线的表达式为y=200x.(2)由图可知甲机器人速度为:1000÷5=200(米/分钟),乙机器人速度为:1000÷10=100(米/分钟),两人相遇时:=(分钟),答:出发后甲机器人行走分钟,与乙机器人相遇.(3)设甲机器人行走t分钟时到P地,P地与M地距离为200t,则乙机器人(t+1)分钟后到P地,P地与M地距离1000﹣100(t+1),由200t=1000﹣100(t+1),解得t=3,∴200t=600,答:P,M两地间的距离为600米.【点评】本题以一次函数综合运用为背景,考查了学生在函数中数形结合的能力,此类题目的关键是弄懂题意,求出每个人的速度,明确相向而行时相遇时两人的路程和等于总路程,进而求解.21.【分析】(1)由垂直的定义得到∠AEC=90°,由三角形外角的性质即可求出∠ACD的度数;(2)由勾股定理求出CD的长,由平行线分线段成比例定理得到,代入有关数据,即可求出CE的长.【解答】解:(1)∵AE⊥CD于点E,∴∠AEC=90°∴∠ACD=∠AEC+∠EAC=90°+25°=115°;(2)∵CD是⊙O的切线,∴半径OC⊥DE,∴∠OCD=90°,∵OC=OB=2,BD=1,∴OD=OB+BD=3,∴CD==.∵∠OCD=∠AEC=90°,∴OC∥AE,∴,∴,∴CE=.【点评】本题考查切线的性质,垂线,平行线分线段成比例,勾股定理,三角形外角的性质,关键是由三角形外角的性质求出∠ACD的度数,由勾股定理求出CD的长,由平行线分线段成比例定理即可求出CE的长.22.【分析】(1)直接由平行公理的推理即可解答.(2)先连接CG,然后根据正方形的性质得出△ADG≌△CDG,从而得到∠DAG=∠DCG.再证明∠EGH=∠DCG=∠OEC即可.【解答】(1)证明:在正方形ABCD中,AD⊥CD,GE⊥CD,∴∠ADE=∠GEC=90°,∴AD∥GE,∴∠DAG=∠EGH.(2)解:AH⊥EF,理由如下.连结GC交EF于点O,如图:∵BD为正方形ABCD的对角线,∴∠ADG=∠CDG=45°,又∵DG=DG,AD=CD,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCG.在正方形ABCD中,∠ECF=90°,又∵GE⊥CD,GF⊥BC,∴四边形FCEG为矩形,∴OE=OC,∴∠OEC=∠OCE,∴∠DAG=∠OEC,由(1)得∠DAG=∠EGH,∴∠EGH=∠OEC,∴∠EGH+∠GEH=∠OEC+∠GEH=∠GEC=90°,∴∠GHE=90°,∴AH⊥EF.【点评】本题考查正方形的性质与全等三角形的性质,熟悉性质是解题关键.23.【分析】(1)先把解析式进行配方,再求顶点;(2)根据函数的增减性求解;(3)根据函数的图象和系数的关系,结合图象求解.【解答】解:(1)①∵b=4,c=3时,∴y=﹣x2+4x+3=﹣(x﹣2)2+7,∴顶点坐标为(2,7).②∵﹣1≤x≤3中含有顶点(2,7),∴当x=2时,y有最大值7,∵2﹣(﹣1)>3﹣2,∴当x=﹣1时,y有最小值为:﹣2,∴当﹣1≤x≤3时,﹣2≤y≤7.(2)∵x≤0时,y的最大值为2;x>0时,y的最大值为3,∴抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线开口向下,x≤0时,y的最大值为2,∴c=2,又∵,∴b=±2,∵b>0,∴b=2.∴二次函数的表达式为y=﹣x2+2x+2.【点评】本题考查了二次函数的性质,掌握数形结合思想是解题的关键.24.【分析】(1)由平行四边形的性质对边相等,和三角函数可求得结果;(2)①由三角形全等和三角形相似可得出结论;②三角形的直角顶点不确定,故要分类讨论,分三种情况讨论,求出结论.【解答】解:(1)在▱ABCD中,BC=AD=10,在Rt△BCH中,HC=BC sin B=.(2)①如图,作CH⊥BA于点H,由(1)得,BH===6,作C'Q⊥BA交BA延长线于点Q,则∠CHP=∠PQC'=90°,∴∠C'PQ+∠PC'Q=90°,∵∠C'PQ+∠CPH=90°,∴∠PC'Q=∠CPH,由旋转知PC'=PC,∴△PQC′≌△CHP(AAS).设BP=x,则PQ=CH=8,C′Q=PH=6﹣x,QA=PQ﹣PA=x﹣4.∵C′Q⊥AB,CH⊥AB,∴C′Q∥CH,∴△AQC′∽△AHC,∴,∴,∴x=,∴BP=,②由旋转得△PCD≌△PC′D′,CD=C'D' CD⊥CD'又∵AB∥CD,∴C'D'⊥AB情况一:当以C′为直角顶点时,如图.∵C'D'⊥AB,∴C′落在线段BA延长线上.∵PC⊥PC',∴PC⊥AB,由(1)知,PC=8,∴BP=6.情况二:当以A为直角顶点时,如图,设C'D'与射线BA的交点为T,作CH⊥AB于点H.∵PC⊥PC',∴∠CPH+∠TPC'=90°,∵C'D'⊥AT,∴∠PC'T+∠TPC'=90°∴∠CPH=∠PC'T,∵∠CHP=∠PTC'=90°,PC=C′P,∴△CPH≌△PC′T(AAS),∴C′T=PH,PT=CH=8.设C′T=PH=t,则AP=6﹣t,∴AT=PT﹣PA=2+t.∵∠C'AD'=90°,C'D'⊥AB,∴△ATD′∽△C′TA,∴,∴AT2=C'T⋅TD,∴(2+t)2=t(12﹣t),化简得t²﹣4t+2=0,解得,∴BP=BH+HP=8±,情况三:当以D'为直角顶点时,点P落在BA的延长线上,不符合题意.综上所述,BP=6或8±.【点评】本题考查了平行四边形的性质,全等三角形的判定,相似三角形的性质与判定,三角函数等知识,熟练掌握这些知识点是解题的关键。
2023年浙江省绍兴市中考数学经典试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.以下所给的数值中,为不等式-2x + 3<0的解的是( )A .-2B .-1C .23D .2 2. 下列各式中,等号不成立的是( )A .|5|5-=B .|4||4|--=-C .|3|3-=D .|2|2--=3.如图 ,A 、B 、C 、D 四点在同一条直线上,M 是AB 的中点,N 是CD 的中点,MN=a ,BC =b ,则线段AD 的长等于( )A .a b +B .2a b +C .2b a -D .2a b -4.如图①,有 6 张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图③摆放,从中任意翻开一张是汉字“自”的概率是( )A .12 B .13 C .23 D .165.如图,转动转盘,转盘停止转动时指针指向阴影部分的概率是( )A .58B .12C .34D .786.在“口2口4a 口4”的空格“口”中,任意填上“+”或“一”,在所有得到的代数式中,能构成完全平方式的概率是( )A .1B .12 C .13 D .147.某人往返于A 、B 两地,去时先步行2公里再乘汽车10公里;回来时骑自行车,来去所用时间恰好一样,已知汽车每小时比步行多走16公里,自行车比步行每小时多走8公里,若步行速度为x 公里/小时,则可列出方程( )A .21210816x x x +=++B .10122168x x x -=++C .21012168x x x +=++D .10122168x x x+=++ 8.如图,在边长为4的等边三角形ABC 中,AD 是BC 边上的高,点E 、F 是AD 上的两点,则图中阴影部分的面积是( )A .43B .33C .23D .39.如图,CD 是平面镜,光线从A 点出发经CD 上的点E 反射后到B 点.若入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC =3,BD =6,CD =11,则tan α值为( )A .113B .311C .911D .11910.一种牛奶包装盒标明“净重300g,蛋白质含量≥2.9%” .那么其蛋白质含量为( )A .2.9%及以上B .8.7gC .8.7g 及以上D .不足8.7g11.下图几何体的主视图是( )A .B .C .D . 12.下面的函数是反比例函数的是( )A .13+=x yB .x x y 22+=C .2x y =D .x y 2=13.已知二次函数y=x 2-4x -5,若y>0,则( )A . x>5B . -l <x <5C . x>5或x <-1D . x>1或x<-514.圆心角为1000,弧长为20л的扇形的半径是 ( ) A .36 B . 720 C . 6D . 62 15.若反比例函数的图象xk y =经过点(-3,4),则此函数图象必定不经过点( ) A .(3,-4) B .(4,-3) C .(-4,3) D .(-3,-4)16.如图所示,已知 AB ∥CD ,则与 ∠1相等的角 (∠1 除外)共有( )A .5 个B .4 个C .3 个D .个二、填空题17.已知∠BAC=45°,一动点O 在射线AB 上运动(点O 与点A 不重合),设OA=x ,如果半径为l的⊙O与射线AC只有一个公共点,那么x的取值范围是.18.如图是用火柴棒摆出的两个正五边形的图案,若图甲的面积是a,则图乙的面积 (用含 a 的代数式表示)是.19.为了了解小学生的体能情况,抽取了某小学同年级学生进行跳绳测试,将所得数据整理后画出如图所示的频数分布直方图,已知图中从左到右前三个小组的频数分别是5,15,20,第—小组的频率为0.1,则参加这次测试的学生有人,第四小组的频率是.20.仔细观察下列图案,并按规律在横线上画出合适的图形.21.多项式221-+++中不含字母y,则Q(n2+1,2n)点关于x轴的对称点的坐标x ny x y是.22.某市房产开发公司向中国建设银行贷年利率分别为 6% 和 8% 的甲、乙两种款共 500万元,一年后利息共 34 万元. 求两种贷款的数额各是多少?设甲、乙两种贷款分别为x万元,y 万元,根据题意可得方程组:.解答题23.用力旋转如图所示的转盘A 和B 的指针,如果想让指针停在黑色区域上. 选哪个转盘能使成功的机会大?同学甲说选A 成功的机会大,同学乙说选B成功的机会大,同学丙说选 A,B 成功的机会一样大,则说的正确.24.计算122000-+-++-= .(1)(1)(1)三、解答题25.如图,已知⊙O1、⊙O2相交于 A,、B,PE 切⊙O1于 P,PA、PB 交⊙O2于 C.D. 求证: CD∥PE.26.有砖和水泥,可砌长 48m 的墙. 要盖三间面积一样的平房,如图所示,问应怎样砌,才能使房屋的面积最大?27.已知一个圆的直径是 2,如果直径增加 x时,面积增加 y,求y与x 的函数关系式.要使面积增加8 ,那么直径应增加多少?28.某学生在一学年的6次测试中的数学、语文两科的成绩分别如下(单位:分):数学:80,75,90,64,88,95;语文:84,80,88,76,79,85.试估计该学生是数学成绩较稳定还是语文成绩较稳定.29.某高校共有 5 个同规格的大餐厅和 2 个同规格的小餐厅,经过测试:同时开放 1 个大餐厅,2 个小餐厅,可供 1680 名学生就餐;同时开放 2 个大餐厅, 1 个小餐厅,可供2280 名学生就餐.(1)求 1 个大餐厅,1个小餐厅分别可供多少名学生就餐;(2)若 7 个餐厅同时开放,能否供全校的5300 名学生就餐?请说明理由.30.已知一个长方形的长是宽的 3倍,面积是48 cm2,求这个长方形的周长.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.D4.A5.B6.B7.C8.C9.D10.C11.C12.D13.C14.A15.D16.C二、填空题17.10<<x 或2=x18.4a.19.50,0.220.略21.(2,-2)22.5006%8%34x y x y +=⎧⎨+=⎩23. 同学丙24.三、解答题25.作直径 PT ,连结 AT 、AB.∴∠PAT=90°,∠T+∠TPA=90°.∵PE 切⊙O 1 于点P.∴∠TPA+∠EPA=90°,∴∠EPA=∠T ,∵∠T=∠B ,∠B=∠C ,∴∠EPA=∠C ,∴CD ∥PE .26.设长为 x(m),则宽为(283x -)m ,∴222(8)+833s x x x x =-=- 当62b x a=-=时,S 最大,即当长为 6m 、宽 4m 时,才能使房屋面积最大. 27.222()12x y ππ+=⨯-⨯,整理得214y x x ππ=+,令8y π=, ∴2184x x πππ+=,x l = 4,x 2 =一 8(舍去),∴x=4,即直径应增加 4 28.语文成绩稳定29.( 1) 1 个大餐厅可供 960 名学生就餐, 1 个小餐厅可供360 人就餐;(2)5300 人 30.32cm。
2023年浙江省绍兴市中考数学试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列关于圆的切线的说法正确的是( )A .与圆有公共点的直线是圆的切线B .圆的切线垂直于圆的半径C .从任意一点都可以引圆的两条切线D .过圆心和切点的直线垂直于经过该切点的切线2.已知二次函数y =ax 2+bx+c (a ≠0)的图象经过点(1,0)和(0,-1),顶点在第三象限,则a -b +c 的取值范围是( )A .-1<a -b+c <1B .-2<a -b+c<-1C .-1<a -b +c<0D .-2<a -b+c<0 3.下列命题中为真命题的是( ) A .三点确定一个圆B .度数相等的弧相等C .圆周角是直角的角所对的弦是直径D .相等的圆心角所对的弧相等,所对的弦也相等4.满足55x -<<的非正整数x 是( ) A . -1 B .0 C .-2,-1, 0D .1,-1, 0 5.如果|2|30x y -++=,那么x ,y 的值需满足( ) A .且3y = B .2x =且3y =C .2x =且3y =-D . 2x =-且3y =-6.将点M (-3,-5)向上平移7个单位得到点N 的坐标为( ) A .(-3,2)B .(-2,-l2)C (4,-5)D .(-10,-5) 7. 如图,宽为 50 cm 的矩形图案由 10个全等的小长方形拼成,其中一个小长方形的面积为( )A .400cm 2B .500 cm 2C .600 cm 2D .4000 cm 28.设“●,▲,■”分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么在右盘处应放“■”的个数为( )A.2个B.3个C.4个D.5个9.已知a、b为有理数,要使分式ab的值为非负数,a、b应满足的条件是()A.a≥0,b≠0 B.a≤0,b<0C.a≥0,b>0 D.a≥0,b>0或a≤0,b<010.如图所示,△ABC平移后得到△DEF,若∠BNF=100°,则∠DEF的度数是()A.120°B.100°C.80°D.50°11.如图所示,△ABC中,AB=AC,BE=CE,则由“SSS”可直接判定()A.△ABD≌△ACD B.△ABE≌△ACE C.△BED≌△CED D.以上答案都不对12.张颖同学把自己一周的支出情况,用如图所示的统计图来表示.则从图中可以看出()A.一周支出的总金额B.一周各项支出的金额C.一周内各项支出金额占总支出的百分比D.各项支出金额在一周中的变化情况13.立方根等于 8的数是()A.512 B.64 C.2 D.2±14.如果两个数的积为零,那么这两个数()A.都为0 B.至多有一个为 0 C.不都为0 D.至少有一个为0二、填空题15.如图所示,D、E两点分别在△ABC两条边上,且DE与BC不平行,请填上一个你认为适合的条件_________,使得△ADE∽△ABC.16.若将一个半径为 80 cm,面积为3200π的扇形围成一个圆锥 (围成圆锥后的接缝不计),则它的高为 cm . 17.某商店销售一种纪念品,已知成批购进时单价为 4 元,根据市场调查,销售量与销售单价在一段时间内满足如下关系:单价为10 元时销售量为 300 枚,而单价每降低 1元,就可多售出 5枚,那么当销售单价降低x 元(4<x<10)时,销售量是 枚,若设利润为y 元,则y 与x 的函数关系是 .18.如图,已知□ABCD 中,AB=24,M ,N 是对角线AC 上两点,且AM=MN=NC ,则CH= .19.平行四边形ABCD 的两条对角线AC 与BD 相交于点0,已知AB=8 cm ,BC=6 cm ,△AOB 的周长是l8 cm ,那么△AOD 的周长是 .20.一次函数2(1)3y m x m =-++的图象与y 轴的交点的纵坐标足4,则m 的值是 .21.从 1,2,3,4,5 中任选两个数,这两个数的和恰好等于7 有 种可能.22. 13∣的倒数是 . 23.如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2008厘米后停下,则这只蚂蚁停在 点.24.当x ________时,分式xx 2121-+有意义. 三、解答题25.如图,已知矩形的长为5,宽为 3,现在矩形上截取一个边长为 x 的正方形,求:(1)余下部分的面积 y 关于x 的函数解析式,并求出 x 的取值范围.(2)当 x=2时,余下部分的面积是多少?26.一定质量的二氧化碳,当它的体积V=5m 时,它的密度ρ=1.98 kg/m 3.(1)求V 与ρ的函数解析式;(2)求当V=9m 3 时,二氧化碳的密度.27. 试证明:不论m 为何值,方程222(41)0x m x m m ----=总有两个不相等的实数根. 224241>0b ac m -=+28.从1,2,3,4,5中任取两个数相加.求:(1)和为偶数的概率;(2)和为偶数的概率或和为奇数的概率;(3)和为奇数的概率.29.如图,O 是△ABC 外一点,以点O 为旋转中心,将△ABC 逆时针方向旋转90°,作出经旋转变换后的像.30.利用图形变换,分析如图的花边图案是怎样形成的,请类似地利用图形变换设计一条花边图案.O . B C【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.C4.C5.C6.A7.A8.D9.D10.C11.BC13.A14.D二、填空题15.∠1=∠B (答案不唯一)16..300 + 5x ,(6)(3005)y x x =-+18.619.16cm20.-121.222.323.A24.21≠三、解答题25.(1)253y x =⨯-,即215y x =-,x 的取值范围为0<x ≤3.(2)把x=2代入215y x =-得215211y =-=(1)由 1.9859.9m V ρ==⨯= kg ,∵m 一定,∴9.9m V ρρ==; (2)当 V=9m 3 时,9.99.9 1.19V ρ=== kg/m 3. 27.224241>0b ac m -=+28.(1)25;(2)1;(3)35 29.略.30.略。
2023年浙江省绍兴市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,小敏在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,若命中篮筐中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5 mD .4.6 m2.有左、中、右三个抽屉,左边的抽屉里放有 2个白球,中间和右边的抽屉里各放一个红球和一个白球,从三个抽屉里任选一个球是红球的概率是( )A .14 B .13 C .16 D .253. 四位学生用计算器求 cos27o 40′的值正确的是( )A . 0.8857B .0.8856C . 0. 8852D . 0.88514.下面几个命题中,正确的有( )(1)等腰三角形的外接圆圆心在顶角平分线所在的直线上(2)直角三角形的外接圆圆心在斜边上(3)等边三角形的外接圆圆心在一边的中线上(4)钝角三角形的外接圆圆心在三角形的外面A .1 个B .2 个C .3 个D .4 个5.正方形的面积 y (cm 2)与它的周长 x (cm )之间的函数关系式是( )A .214y x = B .2116y x = C . 2164y x = D .24y x = 6.用配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)2x -= B .2(2)2x += C .2(2)2x -=- D .2(2)6x -= 7.在下列定理中,没有逆定理的是( )A .有斜边和一直角边对应相等的两个直角三角形全等B .直角三角形两个锐角互余C .全等三角形对应角相等D .角平分线上的点到这个角两边的距离相等8.已知正比例函数y kx =的图象经过点(2,4),k 的值是( )A . 1B .2C . -1D .-29.下列调查方式合适的是( )A .为了了解全国中小学生的睡眠状况,采用普查的方式B .为了对“神舟六号”零部件进行检查,采用抽样调查的方式C .为了了解我市居民的环保意识,采用普查的方式D .为了了解炮弹的杀伤力,采用抽样调查的方式10.如图,∠AEF 和∠EFD 是一对( )A .同位角B .内错角C .同旁内角D .以上都不对11. 小王身上只有 2元和 5元两种面值的人民币,他买一件学习用品要支付27元,则付款的( )A .1种B .2种C .3种D .4种12.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期储蓄的年利率为2.25%,今年小刚取出一年到期的本息时,交纳了l3.5元的利息税,则小刚一年前存入银行的本金为 ( )A .1000元B .2000元C .4000元D .3000元 13.下列说法中正确的有( ) ①单项式212x y π-的系数是12-②多项式3a b ab ++是一次多项式③多项式23342a b ab -+ 的第二项是4ab ④2123x x+-是多项式 A .0 个B .1 个C .2 个D . 3 个 14.在数12-,0,4.5,9,-6.79中,属于正数的有( )A .2个B .3个C .4个D .5个二、填空题15.如图所示,函数y kx =-(k ≠0)与4y x=-的图象交于A 、B 两点,过点A 作AC ⊥y 轴,垂足为 C ,则△BOC 的面积为 .16.若一次函数y x a =+与一次函数y x b =-+的图象的交点坐标为(m ,4),则a b += .17.若关于x 的不等式组41320x x x a +⎧>+⎪⎨⎪-<⎩的解为2x <,则a 的取值范围是 .18.如果一个三角形的三条高都在三角形的内部,那么这个三角形是 三角形(按角分类).19.在括号前面填上“+”或“-”号,使等式成立:(1)22)()(y x x y -=-;(2))2)(1()2)(1(--=--x x x x .20.如图,∠ACB=∠DFE ,BC=EF ,请你再补充一个条件: ,使得△ABC 与△DEF 全等.21.写出下列各式分解因式时应提取的公因式:(1)ax ay -应提取的公因式是 ;(2)236x mx n -应提取的公因式是 ;(3)2x xy xz -+-应提取的公因式是 ;(4)322225520x y x y x y --应提取的公因式是 ;(5)()()a x y b x y +-+应提取的公因式是 .22.如图所示,四边形ABCD 为正方形,它被虚线分成了9个小正方形,则△DBE 与△DEC 的面积之比为 .23.如图所示,在△ABC 中,∠B=35°,∠C=60°,AE 是∠BAC 的平分线,AD ⊥BC 于D ,则∠DAE 的度数为 .24.常见的非负数的表示方式有 , .(用含字母 a 的式子表示).25.两个有理数相乘,若把一个因数换成它的相反数,所得的积是原来积的 .三、解答题26.如图,,已知 AD 平分∠CAB ,且DC ⊥AC ,DB ⊥AB ,那么AB 和AC 相等吗?请说明理由.27.化简:(1)22)(9)(4y x y x --+ (2)4x 3 ÷(-2x )2-(2x 2-x )÷(21x ) (3)[(x -y )2-(x + y )2]÷(-4xy ) (4)(a+3)2-2(a+3)(a-3)+(a-3)228.用平方差公式计算:(1)2(2)(2)(4)x x x -++;(2)99810029991001⨯-⨯;(3)22222210099989721-+-+-; (4) 2222211111(1){1)(1)(1)(1)234910-----29.如果25x y =⎧⎨=-⎩和11x y =⎧⎨=-⎩是方程15mx ny +=的两个解,求m ,n 的值.30.下列用科学记数法表示的数原来各是什么数?(1)3.7×105;(2)6.38×l04;(3)5.010×106;(4)7.86×l07.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.A4.D5.答案:B6.A7.C8.B9.D10.B11.CD13.A14.A二、填空题15.216.817.a≥18.2锐角19.(1)+,(2)+20.略21.(1) a;(2)3x;(3)x-;(4)25x y;(5)x y+ 22.1:223.12.5°24.,2a,||a25.相反数三、解答题26.AB =AC,理由略(1)225526y x xy --;(2)2-3x ;(3)1;(4) 36. 28.(1)416x -;(2)-3;(3)5050;(4)1120 29.m=20 ,n= 5 30.(1) 370000 (2)63800 (3)5010000 (4)78600000。
2023年浙江省绍兴市中考数学测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为,,a b c ,则,,a b c 正好是直角三角形三边长的概率是( )A .1216B .172C .136D .1122.已知△ABC ∽△A'B'C',且它们的相似比是 3,则下列命题正确的是( ) A .∠A 是∠A ′的3倍 B .∠A ′是∠A 的3倍 C .A'B'是 AB 的3倍 D .AB 是A'B'的 3倍3.如图,点O 是两个同心圆的圆心,大圆半径OA 、OB 交小圆于点C 、D ,下列结论中正确的个数有( )(1)⌒AB =⌒CD ;(2 )AB= CD ;(3)∠OCD=∠OAB A .0 个B .1个C .2 个D .3 个4.如图,四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A .AB=CDB .AD=BCC .AB=BCD .AC=BD 5.若梯形的面积为28cm ,高为2cm ,则此梯形的中位线长是( ) A .2cm B .4cm C .6cm D .8cm 6.点P (a ,2)与Q (-1,b )关于坐标原点对称,则b a +的值为( )A .1B .-1C .3D .-37.若x <2,化简x 32)x (2--+的正确结果是( ) A .-1B .1C .2x -5D .5-2x8.在国家实行一系列“三农”优惠政策后,农民收入大幅度增加.某乡所辖村庄去年年人均收入(单位:元)的情况如下表.该乡去年人均收入的中位数是( )A.3700元 B .3800元 C .3850元年人均收入/ 元 3500 3700 3800 3900 4500 村庄个数11331D .3900元9.如图,CD 是等腰直角三角形斜边AB 上的中线,DE ⊥BC 于E ,则图中等腰直角三角形的个数是( ) A .3个B .4个C .5个D .6个10.下列长度的三条线段能组成三角形的是( ) A .5cm,3cm,1cm B .6cm,4cm,2cmC . 8cm, 5cm, 3cmD . 9cm,6cm,4cm11.把分式方程12121=----xxx 的两边同时乘以(x-2),约去分母,得( ) A .1-(1-x )=1 B .1+(1-x )=l C .1-(1-x )=x-2D .l+(1-x )=x-212.下列图形中:角、线段、直角三角形、等边三角形、长方形,其中一定是轴对称图形的有( ) A .2个 B .3个C .4个D .5个13.方程组2321x y x y +=⎧⎨-=⎩的解是( )A .53x y =-⎧⎨=⎩ B .11x y =-⎧⎨=-⎩ C .11x y =⎧⎨=⎩ D .35x y =⎧⎨=-⎩二、填空题14.一段楼梯,高 BC=3m ,斜边 AB 为 6m ,在这个楼梯上铺地毯,至少需要地毯 m . 15.已知,AB 和DE 是直立在地面上的两根立柱.AB =5m ,某一时刻AB 在阳光下的投影为3m ,同时测量出DE 在阳光下的投影长为6m ,则DE = m . 16.圆O 可以看成是到定点 的距离等于半径的所有点组成的图形.17.如图所示,在□ABCD 中,BE ⊥CD ,BF ⊥AD ,垂足分别为E ,F ,∠FBE=60°,AF=3cm,CE=4.5cm ,则∠A= ,AB= ,BC= .18.等腰三角形ABC 中,BC=8,AB ,AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是 .19.放假了,小明和小丽去蔬菜加工厂社会实践,两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?” 小丽思考了一会儿说:“我来考考你.图⑴、图⑵分别表示你和我的工作量与工作时间的关系,你能算出我加工了多少千克吗?” 小明思考后回答:“你难不倒我,你现在加工了 千克.”20.若点A 的坐标是(-7,-4),则它到x 轴的距离是 .21.如图是在平面镜里看到背向墙壁的电子钟示数,这时的实际时间应该是 .22.2x y -24y +=0,则x 2-2y 的值为 .23.已知某个一元一次方程的解为 2,请写出这个一元一次方程 .24.请写出25ab 的两个同类项,且这两个同类项与25ab 合并后结果为0. 你给出的两个同类项是 ..25.绝对值小于4的所有负整数的和是 ,积是 .三、解答题26.已知三角形的面积一定,且当底边的长a=12 cm 时,底边上的高h=5㎝. (1)试说明a 是h 的反比例函数,并求出这个反比例函数的关系式; (2)当a=6cm 时,求高h 的值.27.如图,方格纸中小正方形的边长为1,△ABC 的三个顶点都在小正方形的格点上,求: (1)△ABC 的面积; (2)△ABC 的周长; (3)点C 到AB 边的距离.CBA28. 先化简,再求值:22[(37)(5)](424)a a a --+÷-,其中150a =29. 一不透明纸箱中装有形状、大小、质地等完全相同的4个小球,分别标有数字1,2,3,4.(1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率;(2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明.30.若(221)(221)35a b a b +-++=,试求代数a b +的值.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.B4.D5.B6.B7.D8.B9.C10.D11.D12.C13.C二、填空题 14.3+.1016.O17.60°,6 cm ,9 cm18.25 或 1619.2020.421.20:5122.523.答案不唯一,如2x 31-=24.答案不唯一,如22ab 和27ab -25.-6,-6三、解答题 26.(1)∵' 三角形的面积12s ah =,∴面积S 一定,∴a 是h 的反比例函数.∵ a= 12 ,h = 5 ,∴1125302S =⨯⨯=,∴所求的函数关系式为260s a h h==(2)当 a=6 时,6060106h a ===(cm). 27.(1)27,(2)13105++,(3)1313728.21a -,2425- 29.解:(1)从纸箱中随机地一次取出两个小球,所标数字的所有可能结果有:(12)(13)(14)(23)(24)(34),,,,,,,,,,,,共6种;而所标数字一个是奇数另一个是偶数的有4种,4263P ∴==. (2所有可能出现的结果共有16种,其中能被3整除的有5种.516P ∴=. 30.由已知,得2(22)1=35a b +-,24()36a b +=,2()9a b +=,3a b +=±.4。
2023年浙江省绍兴市中考数学必修综合测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
一、选择题
1.甲、乙两袋均有红、黄色球各一个,分别从两袋中任意取出一球,那么所取出的两球是同色球的概率为( )
A .23
B .12
C .13
D .16
2.在△ABC 中,∠C = 90°,a 、b 分别是∠A 、∠B 的对边,若a :b=2:5,则 sinA : sinB 的值是 ( )
A .25
B .52
C .425
D .254
3.如图,在△ABC 中,P 为 AB 上一点,在下列四个条件中,①∠ACP=∠B ;②∠APC=∠ACB ;③A 2AC AP AB =⋅;④AB CP AP CB ⋅=⋅,其中能满足△APC 和△ACB 相似的条件是( )
A .①②④
B .①③④
C .③③④
D .①②③
4.已知抛物线2y ax bx c =++的图象如图所示,那么关于x 的方程20ax bx c ++=的根的情
况是( )
A .没有实数根
B .有两个异号实数根
C . 有两个相等的实数根
D . 有两个不相等的正实根 5.下列命题是假命题的有( )
①两边及其夹角对应相等的两个三角形全等.②两条直线被第三条直线所截,同位角相等.③如果a>b ,b>0,那么a>0.④若两个三角形周长相等,则它们全等.
A .1个
B .2个
C .3个
D .4个
6. 方程(3)3x x x +=+的解是( )
A . 1x =
B . 10x =,23x =-
C . 10x =,23x =
D .11x =,23x =-
7.在ABC △中,275A B ∠=∠=,则C ∠=( ) A .30° B .135° C .105°
D .67°30′ 8.如图是某只股票从星期一至星期五的最高股价与最低股价的折线统计图,则这5天中最高股价与最低股价之差最大的一天是( )
A .星期二
B .星期三
C .星期四
D .星期五
(第6题图)星期 日最低股价 日最高股价
股价(元)11.511
10.510
9.5
9
8.58
五四三二一
9.设m 是9 的平方根, 3(3)n =,则m 与n 的关系是( ) A .m n =±
B .m n =
C .m n =-
D .||||m n ≠ 10.两个不为 0的数相除,如果交换它们的位置,商不变,那么( )
A .两数相等
B .两数互为相反数
C .两数互为倒数
D .两数相等或互为相反数 二、填空题
11.如图,⊙O 的半径为4cm ,直线l ⊥OA ,垂足为O ,则直线l 沿射线OA 方向平移________cm 时与⊙O 相切.
12.在图中有两圆的多种位置关系,请你找出还没有的位置关系是 .
13.半径为6 ㎝,弧长为2π2π的扇形面积为 ㎝2.
14.已知圆的面积为 81πcm 2,其圆周上一段弧长为3πcm ,那么这段弧所对圆心角的度数是 .
15.已知直角三角形的两条边长分别是方程2
14480x x -+=的两个根,则此三角形的第三边是_______ .
16.若一个多边形的内角和与外角和的和等于900°,则它有 条对角线.
17.如图,矩形ABCD中,E是BC的中点,∠BAE=30°,AE=2,则AC= .18.若 2 是关于x的方程220
a x
-=的根,则 a= .
19.用计算器探索:已知按一定规律的一组数:1,1
2
,
1
3
,……,
1
19
,
1
20
,如果从中选
出若干个数,使它们的和大于3,那么至少要选个数.
20.如图,从电线杆离地面8 m处拉一条缆绳,这条缆绳在地面上的固定点距离电线杆底部6m,则这条缆绳的长为 m.
21.下列方程组中,其中是二元一次方程组的有 (填序号).
①
235
571
x y
x y
+=
⎧
⎨
--=
⎩
,②
1
2
3
x
y
y x
⎧
+=
⎪
⎨
⎪-=
⎩
,③
320
27
x y
y z
-=
⎧
⎨
+=
⎩
,④
30
4
x
y
-=
⎧
⎨
=
⎩
22.(1)自行车用脚架撑放比较稳定的原因是.
(2)若AABC的三边长都为整数,周长为11,有一边长为4,且任何两边都不相等,则这个三角形的最大边长为.
23.同一平面内三条直线两两相交,最少有个交点,最多有个交点.
三、解答题
24.如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成64个大小相同的小正方体.从这些小正方体中任意取出一个,求取出的小正方体:
(1)三面涂有颜色的概率;
(2)两面涂有颜色的概率;
(3)各个面都没有颜色的概率.
x y O A C B P E
25.如图,在 Rt △ABC 中,∠C= 90°,斜边AB=8 cm,AC=4㎝.
(1)以点 C 为圆心作圆,半径为多少时,AB 与⊙C 相切?
(2)以点 C 为圆心,分别以 2cm 和 4cm 的长为半径作两个圆,这两个圆与 AB 分别有怎样的位置关系?
26. 如图,抛物线y =x 2-2x -3与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.
(1)求A 、B 两点的坐标及直线AC 的函数表达式;
(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值.
27.请将四个全等的直角梯形拼成一个平行四边形,并画出两种不同的拼法示意图(拼出的两个图形只要不全等就认为是不同的拼法).
28.如图,画出△ABO绕点O逆时针旋转90°后的图形.
29.若a,b互为相反数,求3223
+++的值.
a a
b ab b
30.如图,先画出三角形关于直线n的轴对称图形,再画出所得图形关于直线m的轴对称图形;经过这样两次轴对称变换后所得的图形和原来图形有什么关系?
【参考答案】
学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
一、选择题
1.
B
2.
A
3.
D
4.
B
5.
B
6.
D
7.
D
8.
B
9.
A
10.
D
二、填空题
11.
4
12.
外离
13.
6π 14.
60°
15.
10
16.
5
17.
.
2±19.
5
20.
10
21.
①③
22.
(1)三角形的稳定性;(2)5
23.
1,3
三、解答题
24.
解:(1)因为三面涂有颜色的小正方体有8个,
∴P (三面涂有颜色)81648
=
=(或0.125); (2)因为两面涂有颜色的小正方体有24个,
∴P (两面涂有颜色)243648==(或0.375); (3)因为各个面都没有涂颜色的小正方体共有8个,∴P (各个面都没有颜色)=81648= 25.
(1)如图,过点 C 作 CD ⊥AB ,垂足为 D,∵AC= 4 cm,AB= 8 cm , ∠C= 90° ∴∠B= 30°,43BC = cm .∵1122ABC S AC BC AB CD ∆=⋅=⋅,∴4428CD ⨯==(cm) ∴ 当半径长为23cm 时,AB 与⊙C 相切.
(2)由 (1)可知,圆心 C 到 AB 的距离23d =,所以
当 r= 2 cm 时,d>r ,⊙C 与 AB 相离;
当 r= 4cm 时,d<r ,⊙C 与AB 相交.
26.
(1)令y=0,解得x 1=-1,x 2=3
∴A (-1,0),B (3,0);
将C 点的横坐标x=2代入y =x 2-2x -3得y=-3,∴C (2,-3) ∴直线AC 的函数解析式是y=-x -1
(2)设P 点的横坐标为x (-1≤x ≤2)
则P 、E 的坐标分别为:P (x ,-x -1),E(x ,x 2-2x -3)
∵P 点在E 点的上方,PE=(-x -1)-(x 2-2x -3)=-x 2+x +2
∴当x=12 时,PE 的最大值94
. 27.
略
28.
略
29.
30.
略。