七年级数学上册 一元一次方程计算题练习 50题(含答案)
- 格式:docx
- 大小:37.07 KB
- 文档页数:6
北师大版七年级数学上册第五单元《一元一次方程》单元练习题(含答案)一、单选题1.已知(a ﹣2)x |a |﹣1=﹣2是关于x 的一元一次方程,则a 的值为( ) A .﹣2 B .2 C .±2 D .±1 2.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为( ) A .1800元 B .1700元 C .1710元 D .1750元 3.一艘轮船在甲、乙两地之间航行,已知水流速度是5千米/小时,顺水航行需要6小时,逆水航行需要8小时,则甲乙两地间的距离是( )A .220千米B .240千米C .260千米D .350千米 4.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2xD .12y y+= 5.某商品的标价为300元,打六折销售后获利50元,则该商品进价为( ) A .120元B .130元C .140元D .150元 6.在以下的式子中:3x +8=3;12-x ;x -y =3;x +1=2x +1;3x 2=10;2+5=7;其中是方程的个数为( )A 、3B 、4C 、5D 、67.下列方程是一元一次方程的是( )A .x+3y=-4B .21231()()n n n b b b b b b ⋅==2C .2x -3=0D .5-3=1-(-1)8.下列各组方程中,解相同的是( )A .x =3与4x +12=0B .x +1=2与2(x +1)=2xC .7x -6=25与7165x -= D .x =9与x+9=0 9.若a=b ,则下列各式不一定成立的是( )A .-a=-bB .a-2=b-2C .a b c c =D .22a b = 10.若关于x 的方程x m ﹣1+2m +1=0是一元一次方程,则这个方程的解是( ) A .﹣5 B .﹣3 C .﹣1D .511.某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米 ,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为小时,则可列方程得( ) A .B .C .D .12.一列匀速前进的火车,从它进入600m 的隧道到离开,共需20s ,又知在隧道顶部的一盏固定的灯发出的一束光线垂直照射火车5s ,则这列火车的长度是( )A .100mB .120mC .150mD .200m二、填空题13.若关于x 的方程3x -7=2x +a 的解为x=-1,则a 的值为 .14.若关于x 的方程315ax x -=的解为5x =,则a 等于__________.15.已知数组:11211222,,,,123211333334,,,,,,234331444444,,,,,,…记第一个数为a 1,第二个数为a 2,第n 个数为a n ,若a n 是方程13123x x +--=1的解,则n 等于_____.16.若方程213x +=和203a x --=的解相同,则a 的值是__________. 17.方程2x ﹣3=0的解是__.18.当a 、b 满足关系式________时,等式99a b -=-成立.19.一项工程,甲单独做 10 天可以完成,乙单独做 15 天可以完成,甲队先做两天,余下的工程由两队合做 x 天可以完成,则由题意可列出的方程是________.20.一家商店将某款棉衣按进价提高40%标价,又以8折卖出,结果每件棉衣可获利15元,则这款棉衣的进价是_____元.三、解答题21.将连续偶数2,4,6,8,…排成如图数表.(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为a ,用式子表示十字框中的五个数之和;(3)若十字框中的五数之和为220,求十字框中的正中心的数是多少?(4)若将十字框上、下、左、右平移,可框住另外的五个数,则十字框中的五个数之和可能等于2010吗?若可能,写出这五个数;如不可能,请说明理由.22.当x为何值时,整式12x++1和24x-的值互为相反数?23.如果13a+1与273a-的值互为相反数,求a的值.24.将正整数1至2019按照一定规律排成下表:记a ij表示第i行第j个数,如a14=4表示第1行第4个数是4.(1)直接写出a42=_________,a53=_________;(2)①如果a ij=2019,那么i=_________,j =_________;②用i,j表示a ij=_____________;(3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2027.若能,求出这5个数中的最小数,若不能说明理由。
人教版七年级上册第三章一元一次方程练习题一、选择题1.已知下列方程:①x+1=3x ;②5x=8;③x3=4x+1;④4x2+2x−3=0;⑤x=1;⑥3x+y=6.其中一元一次方程的个数有()A. 2个B. 3个C. 4个D. 6个2.在下列等式的变形中,正确的是()A. 若3x=a,则x=a3B. 若ax=b,则x=baC. 若ac=bc,则a=bD. 若a=b,则a−c=c−b3.在下列各式中,是方程的是()A. 2x+3y=2B. 2a+3C. 2x>5D. π−1=2.144.下列方程中,移项正确的是()A. 12−x=−5,移项,得12−5=xB. −7x+3=−13x−2,移项,得13x−7x=−3−2C. 4x+3=2x+5,移项,得4x−2x=5+3D. −5x−7=2x−11,移项,得11−7=2x−5x5.解方程3x+7=32−2x正确的时()A. x=25B. x=5C. x=39D. x=3956.代数式2x−1与4−3x的值互为相反数,则x等于()A. −3B. 3C. −1D. 17.关于x的方程3x+2m=−1与方程x+2=2x+1的解相同,则m的值为().A. 2B. −2C. 1D. −18. 若3x+12的值比2x−23的值小1,则x 的值为( )A. 135B. −135C. 513D. −5139. 若3a +1的值与3(a +1)的值互为相反数,则a 的值为( )A. −23B. −13C. 23D. 13 10. 某书上有一道解方程的题:1+▫x 3+1=x ,▫处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x =−2,那么▫处的数字是( )A. 7B. 5C. 2D. −2 11. 解方程x+14=x −5x−112时,去分母正确的是( )A. 3(x +1)=x −(5x −1)B. 3(x +1)=12x −5x −1C. 3(x +1)=12x −(5x −1)D. 3x +1=12x −5x +1 12. 把方程x −x−52=x−16去分母,正确的是( )A. x −3(x −5)=x −1B. 6x −3(x −5)=x −1C. x −x −5=x −1D. 6x −(x −5)=x −113. 甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时,如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x 小时两车相遇,则根据题意列方程为( )A. 75×1+(120−75)x =270B. 75×1+(120+75)x =270C. 120(x −1)+75x =270D. 120×1+(120+75)x =27014. 一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,则这个商店这次( ) A. 不赔不赚 B. 赚了8元 C. 赔了8元 D. 赔了10元15. 某足球比赛计分规则:胜一场得3分,平一场得1分,负一场得0分.某足球队经过26轮激战,以42分获比赛第五名,其中负6场,那么胜场数为( )A. 9B. 10C. 11D. 12二、填空题16.写出一个一元一次方程使它同时满足下列两个条件: ①未知数的系数是2; ②方程的解为2.则这个方程为.17.如果x+17=y+6,那么x+11=y+_____,根据是___________________.18.当x的值为________时,代数式2x+3与(x−7)的差等于5.19.当x=_________ 时,代数式x−x−25的值等于−2.20.小明和他父亲的年龄之和为54,又知父亲年龄是小明年龄的3倍少2岁,则他父亲的年龄为____岁.三、解答题21.甲、乙、丙三位爱心人士向贫困山区的希望小学捐赠图书,已知甲、乙、丙三位爱心人士捐赠图书的册数之比是5:8:9,如果他们共捐了748册图书,那么甲、乙、丙三位爱心人士各捐了多少册图书?22.知关于x的方程2(x−1)=3m−1与3x+2=−2(m+1)的解互为相反数,求m的值.23.解下列方程:(1)2x+13−5x−16=1;(2)x−x−12=2−x+25.24.某商场销售的一款空调每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价;(2)若在这次促销活动中,商场销售了这款空调100台,则盈利多少元?25.如图,数轴上A,B两点所表示的数分别为−5,10,O为原点,点C为数轴上一动点且表示的数为x.点P以每秒2个单位长度的速度,点Q以每秒3个单位长度的速度,分别自A,B两点同时出发,相向而行,在数轴上运动.设运动时间为t秒.(1)若点P,Q在点C处相遇,求点C所表示的数x;(2)若OP=OQ,求t的值;(3)当PQ=5时,求t的值;(4)若同时一只宠物鼠以每秒4个单位长度的速度从点B出发,与点P相向而行,宠物鼠遇到点P后立即返回,又遇到点Q后立即返回,又遇到点P后立即返回⋯⋯直到点P,Q相遇为止.求宠物鼠在整个过程中所经过的路程.答案和解析1.【答案】B【解析】【分析】本题主要考查的是一元一次方程的概念的有关知识,直接利用一元一次方程的概念进行求解即可.【解答】不是一元一次方程;解:①x+1=3x②5x=8是一元一次方程;=4x+1是一元一次方程;③x3④4x2+2x−3=0不是一元一次方程;⑤x=1是一元一次方程;⑥3x+y=6不是一元一次方程.故选B.2.【答案】A【解析】【分析】此题主要考查了等式的性质,关键是注意等式两边同时除以同一个数时,必须说明除以一个不为零的数.根据等式的性质:等式两边乘同一个数或除以一个不为零的数,结果仍得等式,进行分析即可.【解答】解:A.若3x=a,则x=a,本选项正确;3B.若ax=b,则x=b,没说明a≠0,本选项错误;aC.若ac=bc,若c=0,则a=b不一定成立,本选项错误;D.若a=b,则a−c=c−b不一定成立,本选项错误;故选A.3.【答案】A【解析】【分析】此题主要考查方程的概念,根据含有未知数的等式就是方程求解【解答】解:A.2x+3y=2是方程,故A选项正确;B.2a+3不是等式,故B选项错误;C.2x>5不是等式,故C选项错误;D.π−1=2.14,不含未知数,故D选项错误.故选A.4.【答案】B【解析】【分析】本题考查了解一元一次方程,注意移项要变号.根据移项要变号对各选项分析判断即可得解.【解答】解:A、12−x=−5,移项,得12+5=x,故本选项错误;B、−7x+3=−13x−2,移项,得13x−7x=−3−2,故本选项正确;C、4x+3=2x+5,移项,得4x−2x=5−3,故本选项错误;D、−5x−7=2x−11,移项,得11−7=2x+5x,故本选项错误.故选B.5.【答案】B【解析】【分析】本题考查的是解一元一次方程有关知识,首先对该方程移项,合并同类项,系数化为1可得.【解答】解:移项可得:3x+2x=32−7,合并同类项:5x=25,系数化为1可得:x=5.故选B.6.【答案】B【解析】【分析】本题主要考查的是相反数,一元一次方程的解法的有关知识,根据相反数的定义列出方程求解即可.【解答】解:∵代数式2x−1与4−3x的值互为相反数,∴2x−1+4−3x=0,合并同类项得−x+3=0,解得x =3.故选B .7.【答案】B【解析】【分析】本题主要考查的是同解方程,一元一次方程的解法的有关知识.先求出方程x +2=2x +1的解,然后将x 的值代入3x +2m =−1进行求解即可.【解答】解: x +2=2x +1,∴x −2x =1−2,∴−x =−1,解得:x =1,∵两个方程的解相同,∴把x =1代入3x +2m =−1得3+2m =−1,解得:m =−2.故选B .8.【答案】B【解析】【试题解析】【分析】本题考查了解一元一次方程方程,其步骤为:去分母,去括号,移项合并同类项,将未知数系数化为1,求出解. 根据3x+12的值比2x−23的值小1列出方程,求出方程的解即可得到x 的值.【解答】解:由题,3x+12=2x−23−1,去分母得:3(3x +1)=2(2x −2)−6,去括号得,9x +3=4x −4−6,移项、合并得:5x =−13,系数化为1得:x =−135.故选B .9.【答案】A【解析】【分析】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.利用相反数的性质列出方程,求出方程的解即可得到a的值.【解析】解:根据题意得:3a+1+3(a+1)=0,去括号得:3a+1+3a+3=0,移项合并得:6a=−4,,解得:a=−23故选A.10.【答案】B【解析】【分析】利用方程的解的定义,求方程中另一个字母的解,此题主要考查解方程,已知方程的解x=−2,把x=−2代入未知方程,就可以求出被油墨盖住的地方了.【解答】+1=x解:把x=−2代入1+□x3+1=−2,得:1−2□3解这个方程得:□=5.故选B.11.【答案】C【解析】解:方程两边都乘以12,去分母得,3(x+1)=12x−(5x−1).故选:C.根据解一元一次方程的方法,方程两边都乘以分母的最小公倍数12即可.本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.12.【答案】B【解析】【分析】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.根据等式的基本性质,把方程的左右两边同时乘6,去掉分母即可.【解答】解:去分母得,6x−3(x−5)=x−1,故选B.13.【答案】B【解析】【分析】本题考查了由实际问题抽象出一元一次方程的知识,解题的关键是了解相遇问题中的等量关系,难度不大.根据两车相遇共行驶270千米列出方程即可.【解答】解:设再经过x小时两车相遇,则根据题意列方程为75×1+(120+75)x=270,故选:B.14.【答案】C【解析】【分析】本题考查了一元一次方程的应用,需注意利润率是相对于进价说的,进价+利润=售价.已知售价,需算出这两件衣服的进价,让总售价减去总进价就算出了总的盈亏.【解答】解:设盈利25%的那件衣服的进价是x元,根据进价与得润的和等于售价列得方程:x+0.25x=60,解得:x=48,类似地,设另一件亏损衣服的进价为y元,,列方程y−25%y=60,解得:y=80.那么这两件衣服的进价是x+y=128元,而两件衣服的售价为120元.∴120−128=−8元,所以,该家商店赔了8元.故选:C.15.【答案】C【解析】【分析】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.要求胜场数,就要先设出未知数,然后根据题中的等量关系列方程求解.此题等量关系:胜场所得分数+平场所得分数=总分.【解答】解:设胜场数为x场,则平场数为(26−6−x)场,依题意得:3x+(26−6−x)=42解得:x=11,那么胜场数为11场.故选C.16.【答案】2x−4=0(答案不唯一)【解析】【分析】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.注意方程的解是指能使方程成立的未知数的值.根据一元一次方程的定义,只要含有一个未知数(元),并且未知数的指数是1(次),且系数是2,还要满足方程的解是3,这样的方程即可,答案不唯一,只要符合以上条件即可.【解答】解:答案不唯一,如2x−4=0等17.【答案】0,等式的基本性质一【解析】【分析】本题主要考查了等式的性质,熟练掌握等式的性质是解题的关键,根据等式的基本性质一解答即可.【解答】解:x+17=y+6,两边同时减去6可得x+17−6=y+6−6,即x+11=y+0,故答案为0,等式的基本性质一.18.【答案】−5【解析】【分析】本题考查一元一次方程的解法,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.根据代数式2x+3与x−7的差等于5,即可列方程2x+3−(x−7)=5,解方程即可求解.【解答】解:根据题意得,2x+3−(x−7)=52x+3−x+7=5x=−5,故答案为−5.19.【答案】−3【解析】【分析】本题考查了解一元一次方程的解法,解题时牢记解方程的步骤是关键.先列出等式,再根据解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1解题即可.【解答】=−2.解:x−x−25去分母得:5x−x+2=−10,移项、合并同类项得:4x=−12,系数化为1得:x=−3.故答案为−3.20.【答案】14【解析】【分析】本题考查了由实际问题抽象出一元一次方程.等量关系为:小明现在的年龄+父亲现在的年龄=54,把相关数值代入即可求解.【解答】解:设小明的年龄的为x岁,则父亲的年龄为(3x−2)岁,根据题意得:x+(3x−2)=54解得x=14.故答案为14.21.【答案】解:设甲捐书5x册,则乙捐书8x册,丙捐书为9x册,∵他们共捐了748册,∴5x+8x+9x=748解得x=34,∴甲捐书5x=170册,乙捐书8x=272册,丙捐书为9x=306册.答:甲捐了170册图书,乙捐了272册图书,丙捐了306册图书.【解析】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.设甲捐书5x册,则乙捐书8x册,丙捐书为9x册,根据他们共捐了748册,即可求出这三位同学各捐书多少册.22.【答案】解:解方程2(x−1)=3m−1得:x=3m+12;解方程3x+2=−2(m+1)得:x=−2m−43;因为两个方程的解互为相反数,所以3m+12+−2m−43=0,解得m=1.【解析】本题主要考查的是相反数,一元一次方程的解,一元一次方程的解法的有关知识.分别求出两个方程的解,然后根据相反数的定义得到关于m的方程求解即可.23.【答案】(1)2x+13−5x−16=1解:去分母(方程两边乘6),得2(2x+1)−(5x−1)=6.去括号,得4x+2−5x+1=6.移项,得4x−5x=6−2−1.合并同类项,得−x=3.系数化为1,得x=−3.(2)x−x−12=2−x+25解:去分母(方程两边乘10),得10x−5(x−1)=20−2(x+2).去括号,得10x−5x+5=20−2x−4.移项,得10x−5x+2x=20−4−5.合并同类项,得7x=11.系数化为1,得x=117.【解析】本题考查的是一元一次方程的解法。
第五章一元一次方程本章复习1.下列方程是一元一次方程的是( B )A .x 2=25B .x -5=6C.13x -y =6D.1x =22.若(m -1)x |m |+5=0是一元一次方程,则m 的值为( B )A .1B .-1C .±1D .不能确定3.已知x =2是关于x 的方程3x +a =0的一个解,则a 的值是( A )A .-6B .-3C .-4D .-54.已知关于x 的方程5x +3k =24与方程5x +3=0的解相同,则k 的值是(D )A .7B .-8C .-10D .95.解下列方程:(1)2(x +3)=5(x -3);(2)2x -13=4-3x 5-x .解:(1)2x +6=5x -15-3x =-21x =7.(2)10x -5=12-9x -15x34x =17x =12.6.已知关于x 的方程2(x +1)-m =-m -22的解比方程5(x -1)-1=4(x -1)+1的解大2.(1)求第二个方程的解;(2)求m 的值.解:(1)5(x -1)-1=4(x -1)+15x -5-1=4x -4+15x -4x =-4+1+1+5x =3.(2)由题意得:方程2(x +1)-m =-m -22的解为x =3+2=5, 把x =5代入方程2(x +1)-m =-m -22,得 2(5+1)-m =-m -22,解得m =22.7.甲、乙两人从A 地出发前往B 地,甲出发2小时后,乙开始出发,已知甲的速度是15 km/h ,乙的速度是60 km/h ,A ,B 两地相距100 km ,乙追上甲的地方离B 地多远?解:设乙出发x h 后追上甲,则此时甲出发了(x +2)h.根据题意,得60x =15(x +2),解得x =23, ∴100-60x =100-60×23=60. 则乙追上甲的地方离B 地60 km.8.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?解:设应先安排x 人工作.根据题意,得4x 40+8(x +2)40=1, 化简可得x 10+x +25=1, 即x +2(x +2)=10,解得x =2,则应先安排2人工作.9.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器.因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?解:(1)设第一次购进烤火器x台,则第二次购进烤火器(x-10)台.根据题意得150x=180(x-10),解得x=60,x-10=50.则家电销售部第一次购进烤火器60台,第二次购进50台.(2)(250-150)×60+(250-180)×50=9 500(元).故家电销售部共获利9 500元.10.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).(1)请用含x代数式分别表示顾客在两家超市购物所付的费用;(2)李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由.(3)计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?解:(1)设顾客在甲超市购物所付的费用为y甲,顾客在乙超市购物所付的费用为y乙,根据题意得y甲=300+0.8(x-300)=0.8x+60;y乙=200+0.85(x-200)=0.85x+30.(2)他应该去乙超市,理由如下:当x=500时,y甲=0.8x+60=460,y乙=0.85x+30=455,∵460>455,∴他去乙超市划算.(3)令y甲=y乙,即0.8x+60=0.85x+30,解得x=600.则李明购买600元的商品时,到两家超市购物所付的费用一样.11.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算?并说明理由.(必须在同一家购买)解:(1)设一个水瓶x元,表示出一个水杯为(48-x)元.根据题意得3x+4(48-x)=152,解得x=40,则一个水瓶是40元,一个水杯是8元.(2)甲商场所需费用为(40×5+8×20)×80%=288(元).乙商场所需费用为5×40+(20-5×2)×8=280(元).∵288>280,∴选择乙商场购买更合算.12.牛奶加工厂现有鲜奶8吨,若在市场上直接销售鲜奶(每天可销售8吨),每吨可获利润500元;制成酸奶销售,每加工1吨鲜奶可获利润1 200元;制成奶片销售,每加工1吨鲜奶可获利润2 000元.该厂的生产能力是:若制酸奶,每天可加工3吨鲜奶;若制奶片,每天可加工1吨鲜奶;受人员和设备限制,两种加工方式不可同时进行;受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.(1)某数学小组设计了三种加工、销售方案:方案一:不加工直接在市场上销售;方案二:全部制成酸奶销售;方案三:尽可能多的制成奶片销售,来不及制成奶片的鲜奶的直接在市场上销售.通过计算说明哪种方案获利最多.(2)是否还有更好的一种加工、销售方案,使这8吨鲜奶既能在4天内全部销售或加工完毕,又能获得你认为最多的利润?解:(1)方案一:500×8=4 000(元).方案二:1 200×8=9 600(元).方案三:2 000×4+500×4=10 000(元).可见第三种方案获利最大.(2)设有x 天生产酸奶,(4-x )天生产奶片,依题意,得3x +(4-x )=8,解得x =2,1 200×2×3+2 000×(4-2)=11 200(元).用2天加工酸奶,2天加工奶片,获得的利润最大.13.如图,已知A ,B 两点在数轴上,点A 表示的数为-10,OB =3OA .点M 以每秒3个单位长度的速度从点A 向右运动,点N 以每秒2个单位长度的速度从点O 向右运动(点M ,点N 同时出发).(1)数轴上点B 对应的数是__30__;(2)经过几秒,点M ,点N 分别到原点O 的距离相等?(3)当点M 运动到什么位置时,恰好使AM =2BN ?解:(2)设经过x 秒,点M ,点N 分别到原点O 的距离相等.①点M ,点N 在点O 两侧,则10-3x =2x ,解得x =2.②点M ,点N 重合,则3x -10=2x ,解得x =10.所以经过2秒或10秒,点M ,点N 分别到原点O 的距离相等.(3)设经过y 秒,恰好使AM =2BN .①点N 在点B 左侧,则3y =2(30-2y ),解得y =607, 则3×607-10=1107. ②点N 在点B 右侧,则3y =2(2y -30),解得y =60,3×60-10=170.综上可知,点M 运动到1107或170位置时,恰好使AM =2BN .。
七年级数学上册第三章《一元一次方程》综合复习练习题(含答案)一、单选题1.已知下列方程:①22x x -=;②0.31x =;③512xx =+;④243x x -=;⑤6x =;⑥20.x y +=其中一元一次方程的个数是( ) A .2B .3C .4D .52.若使方程(2)1m x +=是关于x 的一元一次方程,则m 的值是( ) A .2m ≠-B .0m ≠C .2m ≠D .2m >-3.一支球队参加比赛,开局9场保持不败,共积21分,比赛规定胜一场得3分,平一场得1分,则该队共胜的场数为( ) A .6场B .7场C .8场D .9场4.关于x 的方程4231x m x -=-的解是23x x m =-的解的2倍,则m 的值为( ) A .12B .14C .14-D .12-5.在做科学实验时,老师将第一个量筒中的水全部倒入第二个量筒中,如图所示,根据图中给出的信息,得到的正确方程是( ).A .π×(92)2×x =π×(52)2×(x+4)B .π×92×x =π×92×(x+4)C .π×(92)2×x =π×(52)2×(x-4)D .π×92×x =π×92×(x-4)6.古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,若设这个数是x ,则所列方程为( ) A .213337x x x ++=B .21133327x x x ++=C .21133327x x x x +++=D .21133372x x x x ++-=7.我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( )A .()()8374x x -=+B .8374x x +=-C .3487y y -+= D .3487y y +-= 8.中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了( ) A .102里 B .126里C .192里D .198里9.小明解方程12123x x +--=的步骤如下: 解:方程两边同乘6,得()()31122x x +-=-① 去括号,得33122x x +-=-② 移项,得32231x x -=--+③ 合并同类项,得4x =-④以上解题步骤中,开始出错的一步是( ) A .①B .②C .③D .④10.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的25,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1916元,求其他两个年级的捐款数若设七年级捐款数为x 元,则可列方程为( )A .65191652x x x ++=B .21191653x x x ++=C .2191635x x x ++= D .25191652x x x ++= 11.把19-这9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x 的值为:( )A .1B .3C .4D .612.《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( ) A .2932x x+=- B .9232x x -+=C .9232x x +-=D .2932x x-=+ 二、填空题13.《九章算术》是我国古代数学名著,书中记载:“今有人合伙买羊,每人出5钱,还差45钱;每人出7钱,还差3钱,问合伙人数、羊价各是多少?”设合伙人数为x 人,根据题意可列一元一次方程为__________________.14.如将()x y -看成一个整体,则化简多项式22()5()4()3()x y x y x y x y -----+-=__. 15.有一个一元一次方程:11623x x -=-■,其中“■”表示一个被污染的常数.答案注明方程的解是32x =-,于是这个被污染的常数是___ ___.16.已知2230m x -+=是关于x 的一元一次方程,则m =________________.17.22年冬奥会开幕式上,烟台莱州武校的健儿们参演的立春节目让全世界人民惊艳和动容,小明想知道这震撼人心的队伍的总人数.张老师说你可以自己算算:若调配55座大巴若干辆接送他们,则有8人没有座位;若调配44座大巴接送,则用车数量将增加两辆,并空出3个座位,你能帮小明算出一共去了_______名健儿参演节目吗?18.关于x 的方程5m +3x =1+x 的解比方程2x =6的解小2,则m =___ __. 19.已知x =1是方程31322x k x -=-的解,则23k +的值是_________ _____ 20.已知数轴上的点A ,B 表示的数分别为2-,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 ___ __. 三、解决问题 21.解方程:(1)43(23)12(4)x x x +-=--; (2)121146x x +--=.22.解方程(1)2(x +8)=3(x -1) (2)121124x x --=-23.以下是圆圆解方程1323+--x x =1的解答过程. 解:去分母,得3(x +1)﹣2(x ﹣3)=1. 去括号,得3x +1﹣2x +3=1. 移项,合并同类项,得x =﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.24.根据市场调查,某厂某种消毒液的大瓶装(500g) 和小瓶装(250g) 两种产品的销售数量(按瓶计算)比为2:5.该厂每天生产这种消毒液22.5吨,这些消毒液应分装大、小瓶两种产品各多少瓶?25.某市有甲、乙两个工程队,现有-小区需要进行小区改造,甲工程队单独完成这项工程.需要20天,乙工程队单独完成这项工程所需的时间比甲工程队多12(1)求乙工程队单独完成这项工程需要多少天?(2)现在若甲工程队先做5天,剩余部分再由甲、乙两工程队合作,还需要多少天才能完成?(3)已知甲工程队每天施工费用为4000元,乙工程队每天施工费用为2000元,若该工程总费用政府拨款70000元(全部用完),则甲、乙两个工程队各需要施工多少天?26.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如:数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“联盟点”.(1)若点A表示数﹣2,点B表示的数4,下列各数,3,2,0所对应的点分别C1,C2,C3,其中是点A,B的“联盟点”的是;(2)点A表示数﹣10,点B表示的数30,P在为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“联盟点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P表示的数为.27.对数轴上的点P进行如下操作:将点P沿数轴水平方向,以每秒m个单位长度的速度,向右平移n 秒,得到点P ',称这样的操作为点P 的“m 速移”点P '称为点P 的“m 速移”点. (1)点A 、B 在数轴上对应的数分别是a 、b ,且()25150a b ++-=. ①若点A 向右平移n 秒的“5速移”点A '与点B 重合,求n ;②若点A 向右平移n 秒的“2速移”点A '与点B 向右平移n 秒的“1速移”点B '重合,求n ; (2)数轴上点M 表示的数为1,点C 向右平移3秒的“2速移”点为点C ',如果C 、M 、C '三点中有一点是另外两点连线的中点,求点C 表示的数;(3)数轴上E ,F 两点间的距高为3,且点E 在点F 的左侧,点E 向右平移2秒的“x 速移”点为点E ',点F 向右平移2秒的“y 速移”点为点F ',如果3E F EF ''=,请直接用等式表示x ,y 的数量关系。
一、选择题1.一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元.若设这件羽绒服的成本是x元,根据题意,可得到的方程是( )A.x(1+50%)80%=x−250B.x(1+50%)80%=x+250C.(1+50%x)80%=x−250D.(1+50%x)80%=250−x+3的解也为整数,则所有满足条件的数2.已知a为整数,关于x的一元一次方程2x+1=ax3a的和为( )A.0B.24C.36D.483.某商品提价25%后.欲恢复原价,则应降低( )A.40%B.25%C.20%D.15%4.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )A.80元B.85元C.90元D.95元5.妈妈将2万元为小明存了一个6年期的教育储蓄(免利息税),6年后,总共能得27056元,则这种教育储蓄的年利率为( )A.5.86%B.5.88%C.5.84%D.5.82%6.用一根绳子环绕一棵大树,环绕大树3周绳子还多4米,环绕4周又少了3米,则环绕大树一周需要的绳长为( )A.5米B.6米C.7米D.8米7.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A.240元B.250元C.280元D.300元8.若关于x的方程(k−4)x=3有正整数解,则自然数k的值是( )A.1或3B.5C.5或7D.3或79.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为( )A.400cm2B.500cm2C.600cm2D.300cm210.一台电视机成本价为a元,销售价比成本价增加了25%,因库存积压,所以就按销售价的70%出售,那么每台实际售价为( )A.(1+25%)(1+70%)a元B.70%(1+25%)a元C.(1+25%)(1−70%)a元D.(1+25%+70%)a元二、填空题11.9月6日,重庆来福购物中心正式开业,购物中心里的美食店推出了A,B两种套餐和其他美食,当天,A套餐的销售额占总销售额的40%,B套餐的销售额占总销售额的20%.国庆期间,重庆外来旅客增加,此店老板考虑外来游客的饮食口味推出了C套餐,在10月1日这一天,A,B套餐各自的销售额都比9月6日的销售额减少了15%,C套餐的销售额占10月1日当天总销售额的20%,其他美食的销售额不变,则10月1日的总销售额比9月6日的总销售额增加%.12.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有人,这个物品的价格是元.13.丰都县某中学为培养学生综合实践能力,开展了一系列综合实践活动,有一次财商训练活动中,小明同学准备去集市批发两种商品用于活动中交易.预先了解到A,B两种商品的价格之和为27元,小明计划购买B商品的数量比A商品的数量多2件,但一共不超过25件,且每样不少于3件,但小明去购买时发现A商品正打九折销售,而B商品的价格提高了20%,小明决定将A,B 产品的购买数量对调,这样实际花费只比计划多8元,已知价格和购买数量均为整数,则小明购买两种商品实际花费为元.14.如图,∠AOC是平角,∠AOB=60∘,在平面内,OA,OB绕点O顺时针转动,速度分别为每秒40∘和每秒20∘.经过t秒后,首次出现射线OA,OB,OC中的一条是另外两条组成角的角平分线,则t=.15.在一个长为3,宽为m(m<3)的矩形纸片上,剪下一个面积最大的正方形(称为第一次操作);再在剩下的矩形上剪下一个面积最大的正方形(称为第二次操作);如此反复操作下去.若在第n 次操作后,剩下的矩形为正方形,则操作终止.当n=2时,m的值为.16.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件的销售利润为元.17.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,若设这种商品的进价是x元,由题意可列方程为.三、解答题18.如图,已知线段AB,点C是线段AB的中点,点D在AB延长线上.(1) 用直尺和圆规在答题纸上作出点C;(2) 已知线段AD的长是7,线段AC的长比线段BD长的一半少1,求线段AC的长.19.已知一张方桌由1个桌面和4条桌腿组成,1立方米木料可制作方桌桌面50张或桌腿300条.现有5立方米木料,那么多少木料做桌面,多少木料做桌腿,可以恰好配套成方桌?20.如图1,O为直线AB上点,过点O作射线OC,∠AOC=30∘,将一直角三角板(∠M=30∘)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1) 将图1中的三角板绕点O以每秒3∘的速度沿顺时针方向旋转一周,如图2经过t秒后,OM恰好平分∠BOC.①求t的值.②此时ON是否平分∠AOC?请说明理由.(2) 在(1)问的基础上,若三角板在转动的同时,射线 OC 也绕 O 点以每秒 6∘ 的速度沿顺时针方向旋转一周,如图 3,那么经过多长时间 OC 平分 ∠MON ?请你说明理由.(3) 在(2)问的基础上,经过多长时间 OC 平分 ∠MOB ?请画图并说明理由.21. “六一”期间,小张购进 100 只两种型号的文具并全部售出后获利 500 元,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A 型1012B 型1523问当初小张进货,用了多少元?22. 已知有理数 a ,b ,c 在数轴上对应的点分别为 A ,B ,C ,其中 b 是最小的正整数,a ,c 满足∣a +2∣+(c −5)2=0.(1) 填空:a = ,b = ,c = ;(2) 现将点 A ,点 B 和点 C 分别以每秒 4 个单位长度,1 个单位长度和 1 个单位长度的速度在数轴上同时向右运动,设运动时间为 t 秒.①定义:已知 M ,N 为数轴上任意两点,将数轴沿线段 MN 的中点 Q 进行折叠,点 M 与点 N 刚好重合,所以我们又称线段 MN 的中点 Q 为点 M 和点 N 的折点. 试问:当 t 为何值时,这三个点中恰好有一点为另外两点的折点?②当点 A 在点 C 左侧时(不考虑点 A 与点 B 重合),是否存在一个常数 m 使得 2AC +m ⋅AB 的值在一定时间范围内不随 t 的改变而改变?若存在,求出 m 的值;若不存在,请说明理由.23. 已知;如图,线段 AB =6,点 C 是线段 AB 的中点.动点 P 从点 A 出发,以每秒 1 个单位的速度沿 AB 向终点 B 运动,设点 P 运动的时间是 t (秒).(1) 用含t的代数式表示AP,则AP=.(2) 当点P与点C重合时,求t的值.(3) 用含t的代数式表示CP.(4) 若在点P出发的同时,动点Q从点B出发,以每秒2个单位的速度沿BA向终点A运动,当P,Q两点的距离是1时,直接写出t的值.24.我们把解相同的两个方程称为同解方程.例如:方程2x=6与方程4x=12的解都为x=3,所以它们为同解方程.(1) 若方程2x−3=11与关于x的方程4x+5=3k是同解方程,求k的值.(2) 若关于x的方程3[x−2(x−k3)]=4x和3x+k12−1−5x8=1是同解方程,求k的值.(3) 若关于x的方程2x−3a=b2和4x+a+b2=3是同解方程,求14a2+6ab2+8a+6b2的值.25.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1) 若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2) 若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?答案一、选择题1. 【答案】B【解析】标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%,则可列方程为:(1+50%)x×80%=x+250,故选B.【知识点】利润问题2. 【答案】D+3,【解析】∵2x+1=ax3∴(6−a)x=6,+3的解为整数,∵关于x的一元一次方程2x+1=ax3为整数,∴x=66−a∴6−a=±1或±2或±3或±6,又∵a为整数,∴a=5或7或4或8或3或9或0或12,∴所有满足条件的数a的和为:5+7+4+8+3+9+0+12=48.【知识点】含参一元一次方程的解法3. 【答案】C【知识点】利润问题4. 【答案】C【知识点】利润问题5. 【答案】B【知识点】和差倍分6. 【答案】C【解析】设环绕大树一周需要的绳长为x米.根据题意,得3x+4=4x−3,解得x=7,则环绕大树一周需要的绳长为7米.【知识点】和差倍分7. 【答案】A【知识点】利润问题8. 【答案】C【解析】由 (k −4)x =3,解得 x =3k−4,又因为 (k −4)x =3 有正整数解,k 为自然数, 所以 k −4=1或3,所以 k =5或7,所以自然数 k 的值是 5 或 7. 【知识点】含参一元一次方程的解法9. 【答案】A【解析】设一个小长方形的长为 x cm ,宽为 y cm , 则可列方程组 {x +y =50,x +4y =2x,解得 {x =40,y =10,则一个小长方形的面积 =40 cm ×10 cm =400 cm 2. 【知识点】几何问题10. 【答案】B【解析】可先求销售价 (1+25%)a 元,再求实际售价 70%(1+25%)a 元. 【知识点】利润问题二、填空题11. 【答案】 13.75【解析】设 9 月 6 日的总销售额为 x 元, 则 9 月 6 日 A 套餐的销售额为 40%x 元, B 套餐的销售额为 20%x 元,其他美食的销售额为 (1−40%−20%)x =40%x ,则 10 月 1 日 A 套餐的销售额为 40%x ×(1−15%)=34%x 元, B 套餐的销售额为 20%x ×(1−15%)=17%x 元, 其他美食的销售额为 40%x ,则 10 月 1 日的总销售额为 (34%x +17%x +40%x )÷(1−20%)=1.1375x ,则 10 月 1 日的总销售额比 9 月 6 日的总销售额增加 (1.1375x −x )÷x =13.75%. 【知识点】利润问题12. 【答案】 7 ; 53【解析】设共有 x 人,则这个物品的价格是 (8x −3) 元, 依题意,得:8x −3=7x +4,解得:x =7, ∴8x −3=53. 【知识点】和差倍分13. 【答案】312【解析】设A商品的单价为x元/件,则B商品的单价为(27−x)元/件,计划购买A商品a件,则B商品为(a+2)件,根据题意可得:0.9x×(a+2)+1.2×(27−x)×a=xa+(27−x)(a+2)+8,∴x=62−5.4a−0.3a+3.8,∵a≥3,a+2≥3,a+a+2≤25,x,a均为整数,∴a=10,x=10,∴小明购买两种商品实际花费=9×12+1.2×10×17=312元.【知识点】和差倍分14. 【答案】4【知识点】几何问题15. 【答案】1或2【解析】由题意第一象操作后剩下的矩形长是宽的2倍,由此可得:3−m=2m或m=2(3−m),解得m=1或2.【知识点】几何问题16. 【答案】4【解析】设该商品每件的销售利润为x元,根据进价+利润=售价,得80+x=120×0.7,解得x=4,故答案为4.【知识点】利润问题17. 【答案】200×80%=(1+25%)x【知识点】利润问题三、解答题18. 【答案】(1) 图略.(2) 设AC的长为x,则BD的长为7−2x.由题意得x=12(7−2x)−1.解得x=54.答:线段AC的长是54.【知识点】几何问题、线段中点的概念及计算、线段的和差19. 【答案】设桌面用木料x立方米,则桌腿用木料(5−x)立方米,根据题意得,50x×4=300(5−x)解得x=35−3=2答:桌面3立方米,桌腿2立方米.【知识点】和差倍分20. 【答案】(1) ① ∵∠AON+∠BOM=90∘,∠COM=∠MOB,∵∠AOC=30∘,∴∠BOC=2∠COM=150∘,∴∠COM=75∘,∴∠CON=15∘,∴∠AON=∠AOC−∠CON=30∘−15∘=15∘,解得t=15∘÷3∘=5秒.②是,理由如下:∵∠CON=15∘,∠AON=15∘,∴ON平分∠AOC.(2) 5秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90∘,∠CON=∠COM,∵∠MON=90∘,∴∠CON=∠COM=45∘,三角板绕点O以每秒3∘的速度,射线OC也绕O点以每秒6∘的速度旋转,设∠AON为3t,∠AOC为30∘+6t,∵∠AOC−∠AON=45∘,可得:30+6t−3t=45∘,解得:t=5秒.(3) OC平分∠MOB,∵∠AON+∠BOM=90∘,∠BOC=∠COM,∵三角板绕点O以每秒3∘的速度,射线OC也绕O点以每秒6∘的速度旋转,设∠AON为3t,∠AOC为30∘+6t,(90∘−3t),∴∠COM为12∵∠BOM+∠AON=90∘,(90∘−3t).可得:180∘−(30∘+6t)=12秒.解得:t=703如图:【知识点】角平分线的定义、几何问题、角的计算21. 【答案】A文具为40只,B文具60只,进货用了1300元.【知识点】利润问题22. 【答案】(1) −2;1;5(2) ① t秒后,点A表示的数为−2+4t,点B表示的数为1+t,点C表示的数为5+t.(i)当点A为点B和点C的对折点时,有:(1+t)+(5+t)=2(−2+4t),解得t=53;(ii)当点B为点A和点C的对折点时,有:(−2+4t)+(5+t)=2(1+t),解得t=−13<0(舍去);(iii)当点C为点B和点A的对折点时,有:(−2+4t)+(1+t)=2(5+t),解得t=113.综上所述,满足条件的t的值是53或113.② t秒后,点A表示的数为−2+4t,点B表示的数为1+t,点C表示的数为5+t.(i)当点A在点B的左侧时,如图所示,AC=(5+t)−(−2+4t)=7−3t,AB=(1+t)−(−2+4t)=3−3t∴2AC+m⋅AB=2(7−3t)+m(3−3t)=(−3m−6)t+3m+14.∵2AC+m⋅AB的值在一定时间范围内不随t的改变而改变,∴−3m−6=0.∴m=−2;(ii)当点A在点B与点C之间时,如图所示,AC=(5+t)−(−2+4t)=7−3t,AB=−(1+t)+(−2+4t)=−3+3t∴2AC+m⋅AB=2(7−3t)+m(−3+3t)=(3m−6)t−3m+14.∵2AC+m⋅AB的值在一定时间范围内不随t的改变而改变,∴3m−6=0.∴m=2.综上:m的值是2或−2.【解析】(1) ∵最小的正整数是1,∴b=1,由题意得,a+2=0,c−5=0,解得a=−2,c=5.【知识点】数轴的概念、行程问题23. 【答案】(1) t(2) ∵AB=6,C是线段AB的中点,∴AC=3,则此时AP=AC=t=3,∴t=3.(3) 0≤t≤3时,PC=3−t,3<t≤6时,PC=t−3.(4) 53或73.【解析】(1) 由题AP=t.(4) AP=t,BQ=2t,P与Q在t=2时相遇,①则0≤t≤2时,PQ=6−3t=1,则t=53符合条件,② 2<t≤3时,PQ=3t−6=1,则t=73符合条件,故t=53或73.【知识点】行程问题、绝对值的几何意义、线段中点的概念及计算、线段的和差24. 【答案】(1) 2x−3=11,解得x=7,∵2x−3=11与4x+5=3k是同解方程,∴把x=7代入4x+5=3k中可得k=11.(2) 3[x−2(x−k3)]=4x,3(x−2x+23k)=4x,−3x+2k=4x,7x=2k,x=27k,3x+k 12−1−5x8=1,2(3x+k)−3(1−5x)=24,6x+2k−3+15x=24,21x=27−2k,x=27−2k21,∵原方程为同解方程,∴27k=27−2k21,6k=27−2k,8k=27,k=278.(3) 2x−3a=b2,x=b2+3a2,4x+a+b2=3,x=3−a−b24.∵原方程为同解方程,b2+3a2=3−a−b24,4b2+12a=6−2a−2b2,6b2+14a=6,14a2+6ab2+8a+6b2=(14a+6b2)+8a+6b2=6a+8a+6b2=14a+6b2= 6.【知识点】含参一元一次方程的解法、解常规一元一次方程25. 【答案】(1) 分三种情况计算:①设购进甲种电视机x台,乙种电视机(50−x)台.1500x+2100(50−x)=90000.解得x=25.则50−x=50−25=25.故购进甲种电视机25台,乙种电视机25台.②设购进甲种电视机y台,丙种电视机(50−y)台.1500y+2500(50−y)=90000.解得y=35.则50−y=15.故购进买甲种电视机35台,丙种电视机15台.③设购进乙种电视机z台,丙种电视机(50−z)台.2100z+2500(50−z)=90000.解得z=87.5.则50−z=−37.5(不合题意,舍去).故有以下两种进货方案:①甲、乙两种型号的电视机各购进25台;②购进甲种电视机35台,丙种电视机15台.(2) 方案一:25×150+25×200=8750(元).方案二:35×150+15×250=9000(元).故购进甲种电视机35台,丙种电视机15台获利最多.【知识点】利润问题、方案决策。
一元一次方程练习题及答案一元一次方程练习题及答案一元一次方程是人教版七年级上册第三章的内容,它是初中数学的重要内容之一,一元一次方程练习题有哪些呢?下面是的一元一次方程练习题资料,欢迎阅读。
篇1:一元一次方程练习题一、选择题(每小题3分,共30分)1.下列方程中,属于一元一次方程的是()A. B. C D.2.已知ax=ay,下列等式中成立的是()A.x=yB.ax+1=ay-1C.ax=-ayD.3-ax=3-ay3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价()A.40%B.20%C25%D.15%4.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名用1分钟从队尾走到队头,这位同学走的路程是()A.a米B.(a+60)米C.60a米D.(60+2a)米5.解方程时,把分母化为整数,得()。
A、 B、 C、 D、6.把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领,这捆书的本数是()A.10B.52C.54D.567.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x-1=5(1.5x)B.3x+1=50(1.5x)C.3x-1=(1.5x)D.180x+1=150(1.5x)8.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x为()A.约700元B.约773元C.约736元D.约865元9.下午2点x分,钟面上的时针与分针成110度的角,则有()A. B. C. D.10.某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为()A.15%B.17%C.22%D.80%二、填空题(每小题3分,共计30分)11.若x=-9是方程的解,则m=。
解一元一次方程40题(三)含答案一.解答题(共40小题) 1.已知12x =是方程21423x m x m ---=的解,求式子211(428)(1)42m m m -+-+-的值.2.已知关于x 的方程13(23)322x x +-=和3261x m x +=+的解相同,求:代数式202020193(2)()2m m ---的值.3.若代数式33x +比344x -的值大4,求x 的值.4.定义:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”,例如:24x =-的解为2x =-,且242-=-+,则该方程24x =-是和解方程. (1)判断934x -=是否是和解方程,说明理由;(2)若关于x 的一元一次方程52x m =-是和解方程,求m 的值.5.解方程:(1)37322x x +=-; (2)43(20)40x x --+=;(3)352123x x +-=; (4)5415323412y y y +--+=-;6.解方程 (1)23132x x --+= (2)2321{[1(1)]9}1320.32x x x +----=-7.解方程:(1)2557x x +=- (2)3(2)25(2)x x -=-+ (3)14223x x +-+= (4)12311463x x x -++-=+8.解下列方程:(1)5379x x +=-+ (2)43(20)40x x --+= (3)3157146y y ---= (4)1213323x x x --+=-9.解方程(1)0.50.7 6.5 1.3x x -=- (2)758143x x -+-=10.某同学在解方程21233x x a-+=-时,方程右边的2-没有乘以3,其它步骤正确,结果方程的解为1x =.求a 的值,并正确地解方程.11.(1)计算:225(210)4-⨯--÷ (2)计算:2313()(24)(3)12468-+⨯-+-÷(3)解方程:3221211245x x x +++-=-12.解方程: (1)0.10.2130.020.5x x -+-= (2)312143x x -+-=-13.解方程:(1)2343x x -=- (2)13(1)2x x --=(3)85(1)2x x +-= (4)4320.20.5x x +--=14.解方程:(1)34(25)4x x x -+=+; (2)12226x x x -+-=-.15.一元一次方程解答题:已知关于x 的方程23x m mx -=-与12(2)x x l -=-的解互为倒数,求m 的值.16.解方程:211236x x -+-=17.解下列方程或方程组(1)219x x -=+ (2)52(1)x x +=- (3)43135x x --=- (4)3717245x x -+-=-18.解方程:126125y y--=-.19.311(54)1535x-+=22531277714x+-=20.解方程:(1)132xx--=(2)0.6310.20.4x x--=21.解方程(1)2(4)3(1)x x x--=-(2)313142x x-+ -=22.解方程21911 36x x++-=23.已知52x+-与445x+互为相反数,求x的值.24.(1)计算:4321(2)4[5(3)]-+-÷⨯-- (2)解方程4372153x x ---=25.计算下列各题:(1)计算:315()7|0.75|4---+-- (2)计算:2312(3)4()(2)2⨯--÷-+-(3)解方程:211134x x +--=26.解方程(1)43(2)52(12)y y y -+=-- (2)11136x xx ---=-27.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数, (1)求m 的值.(2)若当y m =时,代数式31ay by ++的值为5,求当y m =-时,代数式31ay by ++的值.28.解方程:52(1)x x +=-29.解方程:221134x x +-=+.30.解下列方程:(1)22x -=-; (2)355(2)x x x -=-+; (3)2532168x x +--=; (4)312[2()]6223x x -+=.31.解方程:3252x x -=-32.小明解方程21152x x a+-+=时,由于粗心大意,在去分母时,方程左边的1没有乘10,求的方程的解为2x =-,试求a 的值.33.解方程(1)321x x -=-+ (2)18(1)32(21)x x x -+=-- (3)31571104y y ---=34.解方程:(1)2(100.5)(1.52)x x -=-+; (2)5415523412y y y +--+=-35.先阅读下列解题过程,然后解答后面两个问题. 解方程:|3|2x -=.解:当30x -…时,原方程可化为32x -=,解得5x =; 当30x -<时,原方程可化为32x -=-,解得1x =. 所以原方程的解是5x =或1x =. (1)解方程:|32|40x --=. (2)解关于x 的方程:|2|1x b -=+36.解下列方程:(1)2(2)3(41)9(1)x x x ---=-; (2)2152122362x x x-+--=-.37.(1)684(1)x x -=-+ (2)20.30.410.50.3x x -+-=38.解方程:123173x x -+-=.39.解方程:104(3)22x x --=-.40.已知关于x 的方程2(1)31x m -=-与324x +=-的解互为相反数,求m 的值.解一元一次方程40题(三)含答案参考答案与试题解析一.解答题(共40小题) 1.已知12x =是方程21423x m x m ---=的解,求式子211(428)(1)42m m m -+-+-的值. 【分析】把12x =代入方程,求出m 的值,再把代数式进行化简,最后代入求出即可. 【解答】解:把12x =代入方程21423x m x m---=得:1112423mm ---=, 解得:5m =,211(428)(1)42m m m -+-+- 21112222m m m =-+-+-2122m =--21522=--1272=-.【点评】本题考查了解一元一次方程,一元一次方程的解,整式的混合运算和求值等知识点,能求出m 的值是解此题的关键. 2.已知关于x 的方程13(23)322x x +-=和3261x m x +=+的解相同,求:代数式202020193(2)()2m m ---的值.【分析】分别求出两个方程的解,然后根据解相同,列出关于m 的方程,求出m 的值,再将m 的值代入200920103(2)()2m m ---,计算即可求解.【解答】解:解方程13(23)322x x +-=,得:2363x x +-=, 0x ∴=,方程13(23)322x x +-=和3261x m x +=+的解相同,21m ∴=解得:12m =, 所以202020193(2)()2m m --- 20202019113(2)()222=-⨯-- 1(1)=--2=.【点评】本题考查了同解方程的知识,解答本题的关键是能够求解关于x 的方程,要正确理解方程解的含义.3.若代数式33x +比344x -的值大4,求x 的值. 【分析】根据题意列出方程,求出方程的解即可得到x 的值.【解答】解:根据题意得:334434x x +--=, 去分母得:41291248x x +-+=,移项合并得:524x -=,解得: 4.8x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.4.定义:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”,例如:24x =-的解为2x =-,且242-=-+,则该方程24x =-是和解方程.(1)判断934x -=是否是和解方程,说明理由; (2)若关于x 的一元一次方程52x m =-是和解方程,求m 的值.【分析】(1)求出方程的解,再根据和解方程的意义得出即可;(2)根据和解方程得出关于m 的方程,求出方程的解即可.【解答】解:(1)934x -=, 34x ∴=-, 93344-=-, 934x ∴-=是和解方程;(2)关于x 的一元一次方程52x m =-是和解方程,2255m m -∴-+=, 解得:174m =-. 故m 的值为174-. 【点评】本题考查了一元一次方程的解的应用,能理解和解方程的意义是解此题的关键.5.解方程:(1)37322x x +=-;(2)43(20)40x x --+=;(3)352123x x +-=; (4)5415323412y y y +--+=-; 【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)37322x x +=-,32327x x +=-,525x =,5x =;(2)43(20)40x x --+=,460340x x -++=,43604x x +=-,756x =,8x =;(3)去分母得:3(35)2(21)x x +=-,91542x x +=-,94215x x -=--,517x =-,3.4x=-;(4)去分母得:4(54)3(1)24(53)y y y++-=--,2016332453y y y++-=-+,2035243163y y y++=+-+,2814y=,12y=.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.6.解方程(1)231 32x x--+=(2)2321{[1(1)]9}1 320.32x x x+----=-【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,去分母,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:42396x x-+-=,移项合并得:11x=;(2)去括号得:2010116132x xx+--+-=-,去分母得:66402063663x x x---+-=-,移项合并得:3162x-=,解得:2x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.解方程:(1)2557x x+=-(2)3(2)25(2)x x-=-+(3)142 23x x+-+=(4)12311463 x x x-++-=+【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)2557x x +=-,2575x x -=--,312x -=-,4x =;(2)3(2)25(2)x x -=-+,362510x x -=--,352106x x +=-+,82x =-,0.25x =-;(3)14223x x +-+=, 3(1)2(4)12x x ++-=,332812x x ++-=,321238x x +=-+,517x =,5.4x =;(4)去分母得:3(1)122(23)4(1)x x x --=+++,33124644x x x --=+++,34464312x x x --=+++,525x -=,5x =-.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.8.解下列方程:(1)5379x x +=-+(2)43(20)40x x --+=(3)3157146y y ---=(4)121 3323x xx--+=-【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:126x=,解得:0.5x=;(2)去括号得:460340x x-++=,移项合并得:756x=,解得:8x=;(3)去分母得:93121014y y--=-,移项合并得:1y-=,解得:1y=-;(4)去分母得:18331842x x x+-=-+,移项合并得:2523x=,解得:2325x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.解方程(1)0.50.7 6.5 1.3x x-=-(2)7581 43x x-+-=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:1.87.2x=,解得:4x=-;(2)去分母得:321203212x x---=,移项合并得:1765x-=,解得:6517x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10.某同学在解方程21233x x a -+=-时,方程右边的2-没有乘以3,其它步骤正确,结果方程的解为1x =.求a 的值,并正确地解方程.【分析】由题意可知2x =是方程212x x a -=+-的解,然后可求得a 的值,然后将a 的值代入方程求解即可.【解答】解:将1x =代入212x x a -=+-得:112a =+-.解得:2a =,将2a =代入216x x a -=+-得:2126x x -=+-.解得:3x =-.【点评】本题主要考查的是一元一次方程的解,明确2x =是方程2(21)3()2x x a -=+-的解是解题的关键.11.(1)计算:225(210)4-⨯--÷(2)计算:2313()(24)(3)12468-+⨯-+-÷ (3)解方程:3221211245x x x +++-=- 【分析】(1)根据有理数的混合计算解答即可;(2)根据有理数的混合计算解答即可;(3)根据去分母、去括号、移项、合并同类项、系数化为1解答.【解答】解:(1)225(210)4-⨯--÷45(8)4=-⨯--÷202=-+18=-;(2)2313()(24)(3)12468-+⨯-+-÷ 1849912=-+-+÷318494=-+-+ 1224=-; (3)10(32)205(21)4(21)x x x +-=+-+30202010584x x x +-=+--3010854x x x -+=-281x =128x=【点评】此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项、系数化为1解答.12.解方程:(1)0.10.213 0.020.5x x-+-=(2)3121 43x x-+-=-【分析】(1)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程整理得:510223x x---=,移项合并得:315x=,解得:5x=;(2)去分母得:934812x x---=-,移项合并得:51x=-,解得:15x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.13.解方程:(1)2343x x-=-(2)1 3(1)2xx--=(3)85(1)2x x+-=(4)432 0.20.5x x+--=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)原式去括号,移项合并,把x系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:2343x x+=+,合并得:57x=,解得:75x=;(2)去分母得:6(1)1x x -=-,去括号得:661x x -=-,移项合并得:55x =,解得:1x =;(3)去括号得:8552x x +-=,移项合并得:33x =-,解得:1x =-;(4)方程整理得:520262x x +-+=,移项合并得:324x =-,解得:8x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.解方程:(1)34(25)4x x x -+=+;(2)12226x x x -+-=-. 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)去括号得:38204x x x --=+,移项合并得:624x -=,解得:4x =-;(2)去分母得:633122x x x -+=--,移项合并得:47x =, 解得:74x =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.15.一元一次方程解答题:已知关于x 的方程23x m m x -=-与12(2)x x l -=-的解互为倒数,求m 的值.【分析】求出第二个方程的解,确定出第一个方程的解,代入计算即可求出m 的值.【解答】解:方程12(21)x x -=-,去括号得:142x x -=-,解得:13x =, 将3x =代入方程23x m m x -=-得,3323m m -=-, 去分母得:93182m m -=-,解得:9m =-.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.解方程:211236x x -+-= 【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去分母得:42112x x ---=,移项合并得:315x =,解得:5x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.17.解下列方程或方程组(1)219x x -=+(2)52(1)x x +=-(3)43135x x --=- (4)3717245x x -+-=- 【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去括号,移项合并,把x 系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)移项合并得:10x =;(2)去括号得:522x x +=-,移项合并得:7x -=-,解得:7x =;(3)去分母得:2053915x x -=--,移项合并得:844x -=-,解得: 5.5x =;(4)去分母得:401535468x x -+=--,移项合并得:11143x-=-,解得:13x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.解方程:126125y y--=-.【分析】方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:去分母得:5510412y y-=-+,移项合并得:927y=,解得:3y=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.311(54)1 535 x-+=22531277714x+-=【分析】方程移项合并,把x系数化为1,即可求出解;方程去分母,移项合并,把x系数化为1,即可求出解.【解答】解:移项得:3158 515x=,解得:1589x=;去分母得:418383x+-=,移项合并得:423x=,解得:234x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.解方程:(1)132xx--=(2)0.6310.20.4 x x--=【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:216x x-+=,解得:5x=;(2)方程整理得:315512xx--=,去分母得:102315x x-=-,移项合并得:255x=,解得:0.2x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.解方程(1)2(4)3(1)x x x--=-(2)313142x x-+ -=【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2833x x x-+=-,移项合并得:25x=-,解得: 2.5x=-;(2)去分母得:43162x x-+=+,移项合并得:51x-=,解得:0.2x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.解方程21911 36x x++-=【分析】根据去分母、去括号、移项、合并同类项、系数化为1解答即可.【解答】解:21911 36x x++-=2(21)(91)6x x+-+=42916x x+--=49612x x-=+-55x-=1x=-【点评】此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项、系数化为1解答.23.已知52x+-与445x+互为相反数,求x的值.【分析】利用相反数的性质列出方程,求出方程的解即可得到结果.【解答】解:根据题意得:544025x x +-++=, 去分母得:5258400x x --++=,移项合并得:315x =-,解得:5x =-.【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.24.(1)计算:4321(2)4[5(3)]-+-÷⨯--(2)解方程4372153x x ---= 【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)原式184(4)187=--÷⨯-=-+=;(2)去分母得:129153510x x --=-,移项合并得:2314x =-, 解得:1423x =-. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.25.计算下列各题:(1)计算:315()7|0.75|4---+-- (2)计算:2312(3)4()(2)2⨯--÷-+- (3)解方程:211134x x +--= 【分析】(1)原式利用减法法则,以及绝对值的代数意义计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)原式150.7570.758=-++-=-;(2)原式188818=+-=;(3)去分母得:843312x x +-+=,移项合并得:55x =,解得:1x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.26.解方程(1)43(2)52(12)y y y -+=--(2)11136x x x ---=- 【分析】(1)根据一元一次方程的解法即可求出答案;(2)根据一元一次方程的解法即可求出答案.【解答】解:(1)43(2)52(12)y y y -+=--,463524y y y ∴--=-+,634y y ∴-=+,3y ∴=-;(2)11136x x x ---=-, 62(1)16x x x ∴--=--,6225x x x ∴-+=--,825x x ∴-=--,13x ∴=-; 【点评】本题考查一元一次方程,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.27.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数, (1)求m 的值.(2)若当y m =时,代数式31ay by ++的值为5,求当y m =-时,代数式31ay by ++的值.【分析】(1)先求出方程21622x x +=-的解,这个解的倒数也是方程123x m x -=+的解,根据方程的解的定义,把这个解的倒数代入就可以求出m 的值;(2)把y m =代入31ay by ++得到m 和n 的式子,然后把y m =-代入31ay by ++,利用前边的式子即可代入求解.【解答】解:解方程21622x x +=-得:12x =. 因为方程的解互为倒数,所以把12x =的倒数2代入方程123x m x -=+,得:21223m -=+, 解得:83m =-. 故所求m 的值为83-;(2)把y m =代入31ay by ++得315am bm ++=,则34am bm +=,当y m =-时,331()1413ay by am bm ++=-++=-+=-.【点评】本题考查了方程的解的定义,以及代数式的求值,正确理解方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,是关键.28.解方程:52(1)x x +=-【分析】方程去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去括号得:522x x +=-,移项合并得:7x -=-,解得:7x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.29.解方程:221134x x +-=+. 【分析】去分母、去括号、移项、合并同类项,系数化成1即可求解.【解答】解:去分母,得4(2)123(21)x x +=+-,去括号,得481263x x +=+-,移项,得461238x x -=--,合并同类项,得21x -=,系数化成1得12x =-. 【点评】本题考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x a =形式转化.30.解下列方程:(1)22x -=-;(2)355(2)x x x -=-+;(3)2532168x x +--=; (4)312[2()]6223x x -+=. 【分析】(1)依次移项、合并同类项即可得;(2)依次去括号、移项、合并同类项、系数化为1可得;(3)依次去分母、去括号、移项、合并同类项、系数化为1可得;(4)依次去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)22x =-+,0x =;(2)3552x x x -=--,3525x x x -+=-+,3x -=,3x =-;(3)4(25)3(32)24x x +--=,8209624x x +-+=,8924206x x -=--,2x -=-,2x =;(4)13()162x x -+= 33162x x -+=, 33612x x -=-, 132x -=, 16x =-. 【点评】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x a =形式转化.31.解方程:3252x x -=-【分析】方程移项合并,把x系数化为1,即可求出解.【解答】解:移项得:3522x x-=-+,合并得:20x-=,解得:0x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.32.小明解方程21152x x a+-+=时,由于粗心大意,在去分母时,方程左边的1没有乘10,求的方程的解为2x=-,试求a的值.【分析】根据一元一次方程的解法即可求出答案.【解答】解:由题意可知:2x=-是方程2110110 52x x a+-⨯+=⨯,(41)215(2)a∴-+⨯+=--,61105a∴-+=--,5105a∴-=--,5105a∴=-+,55a∴=-,1a∴=-;【点评】本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.33.解方程(1)321x x-=-+(2)18(1)32(21)x x x-+=--(3)31571104 y y---=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)方程移项合并得:34x=,解得:43x=;(2)去括号得:1818342x x x-+=-+,移项合并得:2520x=,解得:45x =; (3)去分母得:62202535y y --=-,移项合并得:1913y -=-, 解得:1319y =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.34.解方程:(1)2(100.5)(1.52)x x -=-+;(2)5415523412y y y +--+=- 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y 系数化为1,即可求出解.【解答】解:(1)去括号得:20 1.52x x -=--,移项合并得:0.522x =-,解得:44x =-;(2)去分母得:2016332455y y y ++-=-+,移项合并得:2816y =, 解得:47y =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.35.先阅读下列解题过程,然后解答后面两个问题.解方程:|3|2x -=.解:当30x -…时,原方程可化为32x -=,解得5x =;当30x -<时,原方程可化为32x -=-,解得1x =.所以原方程的解是5x =或1x =.(1)解方程:|32|40x --=.(2)解关于x 的方程:|2|1x b -=+【分析】(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.【解答】解:(1)当320x -…时,原方程可化为3240x --=,解得2x =;当320x -<时,原方程可化为(32)40x ---=,解得23x =-. 所以原方程的解是2x =或23x =-. (2)①当10b +<,即1b <-时,原方程无解,②当10b +=,即1b =-时:原方程可化为:20x -=,解得2x =;③当10b +>,即1b >-时:当20x -…时,原方程可化为21x b -=+,解得3x b =+;当20x -<时,原方程可化为2(1)x b -=-+,解得1x b =-+.【点评】本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.36.解下列方程:(1)2(2)3(41)9(1)x x x ---=-;(2)2152122362x x x -+--=-. 【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:2412399x x x --+=-,移项得:2129943x x x -+=+-,合并同类项得:10x -=,系数化为1得:10x =-,(2)去分母得:2(21)(52)3(12)12x x x --+=--,去括号得:42523612x x x ---=--,移项得:45631222x x x -+=-++,合并同类项得:55x =-,系数化为1得:1x =-.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.37.(1)684(1)x x -=-+(2)20.30.410.50.3x x -+-= 【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)原方程可整理得:203104153x x -+-=,依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:6844x x -=--,移项得:4846x x +=-+,合并同类项得:510x =,系数化为1得:2x =,(2)原方程可整理得:203104153x x -+-=, 方程两边同时乘以15得:3(203)5(104)15x x --+=,去括号得:609502015x x ---=,移项得:605015209x x -=++,合并同类项得:1044x =,系数化为1得: 4.4x =.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.38.解方程:123173x x -+-=. 【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去分母,得3(12)217(3)x x --=+,去括号,得3621721x x --=+,移项,得6721321x x --=-+,合并,得1339x -=,系数化1,得3x =-,则原方程的解是3x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.39.解方程:104(3)22x x --=-.【分析】方程去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去括号得:1041222x x -+=-,移项合并得:624x -=-,解得:4x =.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.40.已知关于x的方程2(1)31x m-=-与324x+=-的解互为相反数,求m的值.【分析】求出第二个方程的解,根据两方程解互为相反数求出第一个方程的解,即可求出m 的值.【解答】解:方程324x+=-,解得:2x=-,把2x=-代入第一个方程得:631m-=-,解得:53m=-.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.。
第三章《一元一次方程》测试卷(总分:120分 时间:120分钟)一、填空题(每题3分,共30分)1.关于x 的方程(k —1)x —3k=0是一元一次方程,则k_______. 2.方程6x+5=3x 的解是________.3.若x=3是方程2x —10=4a 的解,则a=______. 4.(1)—3x+2x=_______. (2)5m —m —8m=_______.5.一个两位数,十位数字是9,个位数比十位数字小a ,则该两位数为_______. 6.一个长方形周长为108cm ,长比宽2倍多6cm ,则长比宽大_______cm . 7.某服装成本为100元,定价比成本高20%,则利润为________元.8.某加工厂出米率为70%的稻谷加工大米,现要加工大米1000t ,设需要这种稻谷xt ,则列出的方程为______. 9.当m 值为______时,453m 的值为0. 10.敌我两军相距14千米,敌军于1小时前以4千米/小时的速度逃跑,•现我军以7千米/小时的速度追击______小时后可追上敌军. 二、选择题(每题3分,共30分) 11.下列说法中正确的是( )A .含有一个未知数的等式是一元一次方程B .未知数的次数都是1次的方程是一元一次方程C .含有一个未知数,并且未知数的次数都是一次的方程是一元一次方程D .2y —3=1是一元一次方程12.下列四组变形中,变形正确的是( )A .由5x+7=0得5x=—7B .由2x —3=0得2x —3+3=0C .由6x =2得x=13D .由5x=7得x=3513.下列各方程中,是一元一次方程的是( ) A .3x+2y=5 B .y 2-6y+5=0 C .13x-3=1xD .3x-2=4x-7 14.下列各组方程中,解相同的方程是( )A .x=3与4x+12=0B .x+1=2与(x+1)x=2xC .7x-6=25与715x -=6 D .x=9与x+9=0 15.一件工作,甲单独做20小时完成,乙单独做12小时完成,现由甲独做4小时,剩下的甲、乙合做,还需几小时?设剩下部分要x 小时完成,下列方程正确的是( )44.1.120201220201244.1.1202012202012x x x x A B x x x x C D =--=+-=++=-+16.(2006,江苏泰州)若关于x 的一元一次方程2332x k x k---=1的解为x=-1,则k 的值为( ) A .27 B .1 C .-1311D .0 17.一条公路甲队独修需24天,乙队需40天,若甲、•乙两队同时分别从两端开始修,( )天后可将全部修完.A .24B .40C .15D .16 18.解方程1432x x---=1去分母正确的是( ) A .2(x-1)—3(4x —1)=1 B .2x-1—12+x=1 C .2(x —1)—3(4—x )=6 D .2x-2—12—3x=619.某人从甲地到乙地,水路比公路近40千米,但乘轮船比汽车要多用3小时,•已知轮船速度为24千米/时,汽车速度为40千米/时,则水路和公路的长分别为( ) A .280千米,240千米 B .240千米,280千米 C .200千米,240千米 D .160千米,200千米20.一组学生去春游,预计共需用120元,后来又有2人参加进来,总费用降下来,•于是每人可少摊3元,设原来这组学生人数为x 人,则有方程为( ) A . 120x=(x+2)x B .1202x x =+ 120120120120.3.322C D x x x x-==+++ 三、解方程(共28分) 21.(1)53—6x=—72x+1; (5分) (2)y-12(y —1)=23(y-1); (5分) (3)34 [43(12x —14)-8]= 32x+1;(5分) (4)0.20.110.30.2x x -+-=。
一、选择题1.如图,跑道由两个半圆部分AB ,CD 和两条直跑道AD ,BC 组成,两个半圆跑道的长都是115m ,两条直跑道的长都是85m .小斌站在A 处,小强站在B 处,两人同时逆时针方向跑步,小彬每秒跑4m ,小强每秒跑6m .当小强第一次追上小斌时,他们的位置在( )A .半圆跑道AB 上 B .半圆跑道CD 上C .直跑道AD 上 D .直跑道BC 上 2.如果x y =,那么根据等式的基本性质,下列变形一定正确的是( )A .0x y +=B .55x y =C .22x y -=+D .33y x = 3.依照以下图形变化的规律,则第n 个图形中黑色正方形的数量是2021个,则n 的值为( )……A .1347B .1348C .1349D .1350 4.一辆汽车从甲地开往乙地需要5小时,返回时每小时少行驶15千米,多用了1小时,则甲、乙两地间的距离是( )A .300千米B .450千米C .550千米D .650千米 5.某物美超市同时卖出了两种相同数量不同规格包装的牛奶A 和,B A 牛奶售价为69元,B 牛奶售价为34元,按成本计算,超市人员发现A 牛奶盈利了15%,而B 牛奶却亏损了15%,则这次超市是( )A .不赚不赔B .赚了3元C .赔了3元D .赚了15元 6.若9个工人14天完成了一件工作的35,由于任务的需要,剩下的工作要在4天内完成,则需要增加的人数是( )A .14B .13C .12D .117.把一些图书分给某班学生,如果每人分3本,则余20本;如果每人分4本,则缺25本.设有x 名学生,则可列方程为( )A .3x +20=4x -25B .3x -20=4x +25C .032x +=542x -D .203x -=254x + 8.若关于x 的方程250x a b ++=的解是3x =-,则代数式6210a b --的值为( ) A .6- B .0 C .12 D .189.小涵在2020年某月的月历上圈出了三个数a ,b ,c ,并求出了它们的和为30,则这三个数在月历中的排位位置不可能是( )A .B .C .D . 10.使得关于x 的方程44163ax x x -+-=-的解是正整数的所有整数a 的积为( ) A .21-B .12-C .6-D .12 11.甲、乙、丙三数之比是2:3:4,甲、乙两数之和比乙、丙两数之和大30,则甲数为( )A .30-B .45-C .15-D .60-12.数学课堂上,老师出示了如下例题:整理一批图书,由一个人做要40h 完成.现计划由一部分人先做4h ,然后增加2人与他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?设安排x 人先做4h .小亮列的方程是:48(2)14040x x ++=,其中,“440x ”表示的意思是“x 人先做4h 完成的工作量”,“8(2)40x +”表示的意思是“增加2人后,(x+2)人再做8小时完成的工作量”.小宇列的方程是:()4+82814040x ⨯+=,其中,“(48)40x +”表示的意思是( ) A .先工作的x 人前4小时和后8小时一共完成的工作量B .增加2人后,(x+2)人再做8小时完成的工作量C .增加2人后,新增加的2人完成的工作量D .x 人先做4小时完成的工作量二、填空题13.A 、B 、C 三地依次在同一直线上,B ,C 两地相距560千米,甲、乙两车分别从B ,C 两地同时出发,相向匀速行驶,行驶4小时两车相遇,再经过3小时,甲车到达C 地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达地A ,则A ,B 两地相距___________千米.14.服装厂生产一批学生校服,已知生产1件上衣需要布料1.5米,生产1条裤子需要布料1米.因为裤子旧得快,要求1件上衣和2条裤子配一套.生产这批校服共用了2016米布料,问共生产了多少套校服?设共生产了x 套校服,则可列方程____________. 15.王老师把几本《数学大世界》给学生们阅读.若每人3本,则剩下3本;若每人5本,则有一位同学分不到书看,只够平均分给其他几位同学.则学生与书本的数量分别是____________;16.已知23y x -=,那么263x y +-=______.17.在数轴上表示数a 的点与表示数3的点之间的距离记为3a -.若317a a ++-=,则a =____________.18.如图,在33⨯幻方中,填入9个数字,使得每行、每列、每条对角线上的三个数之和都相等.按以上规则填成的幻方中,x 的值为______.19.甲、乙两辆车同时从A 地开往B 地,速度分别为60km/h 和40km/h ,甲车到达B 地后立刻以原速返回A 地,A 、B 两地相距60km ,在乙车到达B 地之前,出发___________时,两车相距5km .20.在数的学习中,我们会对其中一些具有某种特质的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究一种特殊的数——巧数.定义:若一个两位数恰等于它的各位数字之和的4倍,则这个两位数称为巧数.若一个巧数的个位数字比十位数字大3,则这个巧数是_______________.三、解答题21.(1)3313(2)(4)4⎫⎛---⨯-÷- ⎪⎝⎭; (2)解方程:3157146x x ---=. 22.先阅读下面材料,再完成任务:(材料)我们规定:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为和解方程.例如;方程24x =-的解为2x =-,而242-=-+,则方程24x =-为“和解方程”. (任务)请根据上述规定解答下列问题:(1)关于x 的一元一次方程43x =-是否是“和解方程”;(只写结论)(2)已知关于x 的一元一次方程3x m =是“和解方程”,求m 的值:(3)已知关于x 的一元一次方程2x mn n -=+是“和解方程”,并且它的解是x n =-,求m ,n 的值.23.解方程:(1)348x x -+=-;(2)231128x x --+-+=. 24.蔬菜商店以40元/箱的价格从批发市场购进8箱西红柿,若以每箱西红柿净重25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后记录为:+1,﹣3.5,+2,﹣2.5,﹣3,+2,﹣2,﹣2若把这些西红柿全部以零售的形式卖掉,商店计划共获利160元,那么在销售过程中西红柿的单价应定为每千克多少元?25.如图,甲、乙两人(看成点)分别在数轴上﹣3和5的位置,沿数轴做移动游戏,规则如下:两人先猜硬币的正反面,依据猜的对错再移动,若都猜对或都猜错,则甲向右移动1个单位,同时乙向左移动1个单位;若甲猜对乙猜错,则甲向右移动4个单位,同时乙向右移动2个单位;若甲猜错乙猜对,则甲向左移动2个单位,同时乙向左移动4个单位.(1)第一次游戏时,若甲、乙都猜对,则移动后两人相距个单位;若甲猜对乙猜错,则移动后两人相距个单位;若甲猜错乙猜对,则移动后两人相距个单位;(2)若连续(下次在上次的基础上)完成了10次移动游戏,且每次甲、乙所猜结果均为一对一错.游戏结束后,①乙会不会落在原点O处?为什么?②求甲、乙两人之间的距离.26.如图,A、B两点在一数轴上,其中点O为原点,点A对应的有理数为﹣2,点B对应的有理数为22.点A以每秒2个单位长度的速度沿数轴向右运动,设运动时间为t秒(t>0).(1)当t=2时,点A表示的有理数为,A、B两点的距离为;(2)若点B同时以每秒2个单位长度的速度向左运动,经过多少秒,点A与点B相遇;(3)在(2)的条件下,点M(M点在原点)同时以每秒4个单位长度的速度向右运动,几秒后MA=2MB?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】设小强第一次追上小彬的时间为x秒,根据小强路程-小斌路程+AB的长度=1个跑道的全长列出方程求得x的值,再进一步判断可得.【详解】解:设小强第一次追上小彬的时间为x秒,根据题意,得:6x-4x+115=2×115+2×85,解得x=142.5,整个跑道长为2×115+2×85=400(m),小强第一次追上小彬时,小彬跑了4x=570(m),而570-400=170>115,∴他们的位置在直跑道BC 上,故选:D .【点睛】本题主要考查一了元一次方程的应用,解题的关键是理解题意找到环形跑道上路程间的相等关系:小强路程-小斌路程+AB 的长度=1个跑道的全长.2.B解析:B【分析】利用等式的性质变形得到结果,即可作出判断.【详解】解:A 、由x=y ,得到x-y=0,原变形错误,故此选项不符合题意;B 、由x=y ,得到55x y =,原变形正确,故此选项符合题意; C 、由x=y ,得到x-2=y-2,原变形错误,故此选项不符合题意;D 、由x=y ,得到3x=3y ,原变形错误,故此选项不符合题意;故选:B .【点睛】本题考查了等式的性质,熟练掌握等式的性质是解本题的关键.3.A解析:A【分析】仔细观察图形并从中找到规律,然后利用找到的规律即可得到答案.【详解】第1个图形中黑色正方形的数量是2,第2个图形中黑色正方形的数量是3,第3个图形中黑色正方形的数量是5,…发现规律:当n 为偶数时第n 个图形中黑色正方形的数量为n+2n 个; 当n 为奇数时第n 个图形中黑色正方形的数量为n+12n +个, ∵第n 个图形中黑色正方形的数量是2021个,∴当n+2n =2021时,无解;当n+12n +=2021,解得n=1347, 故选:A .【点睛】 本题考查了图形的变化类问题,解一元一次方程,解题的关键是仔细的观察图形并正确的找到规律,运用总结的规律解决问题.4.B解析:B【分析】设甲、乙两地间的距离是x 千米,根据、乙两地间的距离=返回时的速度×返回时的时间列方程求解即可.【详解】解:设甲、乙两地间的距离是x 千米,由题意得()15515x x ⎛⎫-⨯+= ⎪⎝⎭, 解得:x=450,∴甲、乙两地间的距离是450千米,故选B .【点睛】本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.B解析:B【分析】设A 种牛奶的进价为x 元,则可得6915%,x x -=求解x 可得A 种牛奶的盈亏情况,设B 种牛奶的进价为y 元,则3415%,y y -=- 求解y 可得B 种牛奶的盈亏情况,从而可得答案.【详解】解:设A 种牛奶的进价为x 元,则6915%,x x ∴-=1.1569,x ∴=60,x =所以A 种牛奶的进价为60元,A 种牛奶挣了9元,设B 种牛奶的进价为y 元,则3415%,y y -=-0.8534,y ∴=40,y ∴=所以B 种牛奶的进价为40元,B 种牛奶亏了6元,则这次超市挣了963-=(元).故选:.B【点睛】本题考查的是一元一次方程的应用,掌握利用“售价减去进价等于进价乘以利润率”列方程是解题的关键.6.C解析:C【分析】设剩下的工作要在4天内完成,需要增加的人数是x 人,根据工程问题的数量关系:一个人的工作效率×增加后的总人数×时间4天=135-,建立方程求出其解即可. 【详解】解:设剩下的工作要在4天内完成,需要增加的人数是x 人,由题意,得3391449155x ÷÷⨯⨯+=-()() , 解得:x=12.故选:C .【点睛】本题考查了列一元一次方程解实际问题的运用,工程问题的数量关系的运用,解答时根据工程问题的数量关系建立方程是关键.7.A解析:A【分析】可设有x 名学生,根据每人分3本总本书+剩余20本=每人分4本总本书-25,求解即可.【详解】解:设有x 名学生,根据书的总量相等可得:3x+20=4x-25,故选:A .【点睛】本题考查了一元一次方程的应用,根据该班人数表示出图书数量得出等式方程是解题关键.8.A解析:A【分析】将方程的解代回方程得56a b +=,再整体代入代数式求值即可.【详解】解:把3x =-代入原方程得650a b -++=,即56a b +=,则()62106256126a b a b --=-+=-=-.故选:A .【点睛】本题考查代数式求值和方程解的定义,解题的关键是掌握方程解的定义,以及利用整体代入的思想求值.9.D解析:D【分析】由月历表数字之间的特点可依次排除选项即可.【详解】解:由A 选项可得:7,14b a c a =+=+,∴71432130a b c a a a a ++=++++=+=,解得3a =,故不符合题意;由B 选项可得:6,12b a c a =+=+,∴61231830a b c a a a a ++=++++=+=, 解得4a =,故不符合题意;由C 选项得1,8b a c a =+=+,∴183930a b c a a a a ++=++++=+=,解得7a =,故不符合题意;由D 选项得6,14b a c a =+=+,∴61432030a b c a a a a ++=++++=+=, 解得103a =,故符合题意; 故选D .【点睛】 本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键. 10.B解析:B【分析】先解该一元一次方程,然后根据a 是整数和x 是正整数即可得到a 的值,从而得到答案.【详解】 解:44163ax x x -+-=- 去分母得,()()64246x ax x --=+-去括号得,64286x ax x -+=+-整理得,()46a x += ∴64x a=+, 当2a =时1x =,当1a =-时2x =,当2a =-时3x =,当3a =-时6x =,这些整数a 的积为()()()212312⨯-⨯-⨯-=-,故选:B .【点睛】本题考查了一元一次方程的解法和代数式求值,熟练掌握解一元一次方程是解题的关键. 11.A解析:A【分析】设甲数是2x ,则乙数是3x ,丙数是4x ,列出方程,解方程求得x 的值即可.【详解】解:设甲数是2x ,则乙数是3x ,丙数是4x ,则2x+3x-(3x+4x )=30解得x=-15.故2x=-30,3x=-45,4x=-60.即甲、乙、丙分别为-30、-45、-60.故选:A .【点睛】考查了一元一次方程的应用,难度不大,关键是根据题意恰当的设未知数,列出方程. 12.A解析:A【分析】根据先工作的x 人共做了(4+8)小时的工作量+后来2人8小时的工作量=1,解答即可.【详解】解:∵设安排x 人先做4h ,然后增加2人与他们一起做8小时,完成这项工作. ∴可得先工作的x 人共做了(4+8)小时,∴列式为:先工作的x 人共做了(4+8)小时的工作量+后来2人8小时的工作量=1,而x 人1小时的工作量为40x , ∴x 人(4+8)小时的工作量为(48)40x +, ∴(48)40x +表示先工作的x 人前4h 和后8h 一共完成的工作量, 故选A .【点睛】本题考查了一元一次方程的应用,是一个工作效率问题,理解一个人做要40小时完成,即一个人一小时能完成全部工作的140,这一个关系是解题的关键. 二、填空题13.760【分析】设乙车的平均速度是x千米/时根据4(甲的平均速度+乙的平均速度)=560列出方程并求得乙车的行驶平均速度;设甲车从C地到A地需要t小时则乙车从C地到A地需要(t+7)小时根据它们行驶路解析:760【分析】设乙车的平均速度是x千米/时,根据4(甲的平均速度+乙的平均速度)=560列出方程并求得乙车的行驶平均速度;设甲车从C地到A地需要t小时,则乙车从C地到A地需要(t+7)小时,根据它们行驶路程相等列出方程并求得t的值;然后由路程=时间×速度解答.【详解】解:设乙车的平均速度是x千米/时,则4(5607+x)=560.解得x=60即乙车的平均速度是60千米/时.设甲车从C地到A地需要t小时,则乙车从C地到A地需要(t+7)小时,则80(1+10%)t=60(7+t)解得t=15.所以60(7+t)-560=760(千米)故答案是:760.【点睛】此题考查了一元一次方程的应用,读懂题意,找到等量关系,列出方程是解题的关键.14.5x+2x=2016【分析】根据题意列出一元一次方程即可;【详解】设生产了x 套校服∴生产了x件上衣2x条裤子∴列方程为15x+2x=2016故答案为:15x+2x=2016【点睛】本题考查了一元一次解析:5x+2x=2016【分析】根据题意列出一元一次方程即可;【详解】设生产了x套校服,∴生产了x件上衣,2x条裤子,∴列方程为1.5x+2x=2016,故答案为:1.5x+2x=2016.【点睛】本题考查了一元一次方程的应用,正确理解题意是解题的关键;15.415【分析】设有x名学生根据分书情况列方程即可【详解】解:设有x名学生根据题意列方程得3x+3=5(x-1)解得x=4一共有书3×4+3=15(本)答:学生有4人书有15本;故答案为:415【点睛解析:4,15.【分析】设有x 名学生,根据分书情况列方程即可.【详解】解:设有x 名学生,根据题意列方程得,3x+3=5(x-1)解得,x=4,一共有书3×4+3=15(本),答:学生有4人,书有15本;故答案为:4,15.【点睛】本题考查了一元一次方程的应用,解题关键是审清题意,恰当的设未知数,找到等量关系列方程.16.-7【分析】根据可得整体代入即可【详解】解:两边同时乘-3得代入得故答案为:-7【点睛】本题考查了整体代入求代数式的值把已知方程恰当的变形然后整体代入是解题关键解析:-7.【分析】根据23y x -=,可得,369y x -+=-,整体代入即可.【详解】解:23y x -=,两边同时乘-3得,369y x -+=-,代入得,263297x y +-=-=-.故答案为:-7.【点睛】本题考查了整体代入求代数式的值,把已知方程恰当的变形,然后整体代入是解题关键. 17.5或-45【分析】对a 分三种情况讨论【详解】解:分三种情况:(1)a≥1可得:a+3+a-1=7即2a=5∴a=25;(2)-3≤a<1由题意有:a+3+1-a=7即4=7可知a 不存在;(3)a<-解析:5或-4.5【分析】对a 分三种情况讨论.【详解】解:分三种情况:(1)a≥1,可得:a+3+a-1=7,即2a=5,∴a=2.5;(2)-3≤a<1,由题意有:a+3+1-a=7,即4=7,可知a 不存在;(3)a<-3,有:-a-3+1-a=7,即-2a=9,∴a=-4.5;故答案为2.5或-4.5.【点睛】本题考查含绝对值的方程,熟练掌握绝对值的意义和一元一次方程的解法是解题关键.18.3【分析】根据题意可知每行每列每对角线上的三个数之和都相等可知4x+x+7=19+x即可解出x的值;【详解】∵每行每列每对角线上的三个数之和都相等∴4x+x+7=19+x解得x=3故答案为:3【点睛解析:3【分析】根据题意可知每行每列每对角线上的三个数之和都相等可知4x+x+7=19+x即可解出x的值;【详解】∵每行每列每对角线上的三个数之和都相等,∴ 4x+x+7=19+x,解得x=3,故答案为:3.【点睛】本题考查了有理数的加法,一元一次方程的应用,根据表格,根据每行每列每对角线上的三个数之和都相等得知4x+x+7=19+x是解题的关键.19.25或115【分析】设出发小时分情况讨论在甲车到达B地前或在甲车到达B地后返回时列出方程求解【详解】解:设出发小时在甲车到达B地前解得在甲车到达B地后返回时解得故答案是:025或115【点睛】本题考解析:25或1.15【分析】设出发x小时,分情况讨论,在甲车到达B地前或在甲车到达B地后返回时,列出方程求解.【详解】解:设出发x小时,在甲车到达B地前,x x-=,解得0.2560405x=,在甲车到达B地后返回时,x x++=⨯,解得 1.1560405602x=.故答案是:0.25或1.15.【点睛】本题考查一元一次方程的应用,解题的关键是找到等量关系列方程求解,需要注意分类讨论.20.【分析】根据题意设十位数字为x则个位上为(x+3)根据巧数的定义列出方程解方程即可【详解】解:根据题意设十位数字为x 则个位上为(x+3)则解得:∴十位上的数字是3∴个位上的数字是3+3=6∴这个巧数解析:36【分析】根据题意,设十位数字为x ,则个位上为(x+3),根据巧数的定义列出方程,解方程即可.【详解】解:根据题意,设十位数字为x ,则个位上为(x+3),则10(3)[(3)]4x x x x ++=++⨯,解得:3x =,∴十位上的数字是3,∴个位上的数字是3+3=6,∴这个巧数是36;故答案为:36.【点睛】本题考查了一元一次方程,以及巧数的定义,解题的关键是熟练掌握题意,正确列出方程进行解题.三、解答题21.(1)101;(2)1x =-.【分析】(1)实数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左到右的顺序依次计算,有括号的先算括号里的,同时注意运算过程中可以运用运算律计算的要运算律简化计算.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.【详解】(1)解:原式27(8)(4)(4)=---⨯-⨯-27(128)=---27128=-+101=;(2)解:去分母,可得3(31)122(57)x x --=-,去括号,得93121014--=-x x ,移项、合并同类项,得1x -=,系数化为1,得1x =-.【点睛】本题考查了实数的运算,一元一次方程的解法,熟练掌握实数混合运算的顺序,一元一次方程解法的五个基本步骤是解题的关键.22.(1)不是;(2)92m =-;(3)m 、n 的值分别是1,23 【分析】(1)先求出方程的解,再根据“和解方程”的定义判断即可;(2)先求出x=3m ,根据“和解方程”的定义得到关于m 的一元一次方程,解之即可解答; (3)根据题意列出关于二元二次方程组,解之即可求得m 、n 的值.【详解】解:(1)方程43x =-的解为x=34-, ∵34-≠﹣3+4, ∴方程43x =-不是“和解方程”; (2)方程3x m =的解为x=3m , ∵方程3x m =是“和解方程”, ∴33m m =+,解得:92m =-; (3)∵关于x 的一元一次方程2x mn n -=+是“和解方程”,并且它的解是x n =-, ∴2,22mn n mn n n mn n +-=+-=+, 解得:21,3m n ==, 即m 、n 的值分别是1、23. 【点睛】本题考查一元一次方程的解、解一元一次方程,理解“和解方程”的定义,根据定义正确列出方程,灵活应用整体的思想方法是解答的关键.23.(1)3x =;(2)177x =【分析】(1)先移项,再合并同类项,然后化系数为1解方程即可;(2)先方程两边同乘以8去分母,再去括号,然后根据(1)中方法解方程即可.【详解】解:(1)移项,得384x x --=--合并同类项,得412x -=-系数化为1,将3x =所以,原方程的解为x=3;(2)去分母,得()84231x x -+-=-+去括号,得84831x x -+-=-+移项,得43188x x +=++合并同类项,得717x =系数化为1,得177x = 所以,原方程的解为177x =. 【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键,注意不要漏乘.24.5【分析】求出记录数字之和,确定出总重,设在销售过程中西红柿的单价应定为每千克x 元,根据售价﹣进价=利润列出方程,求出方程的解即可得到结果.【详解】解: 25×8+(+1﹣3.5+2﹣2.5﹣3+2﹣2﹣2)=200﹣8=192(千克).故这8箱西红柿一共重192千克;设在销售过程中西红柿的单价应定为每千克x 元,根据题意得:192x ﹣40×8=160,解得:x =2.5.故在销售过程中西红柿的单价应定为每千克2.5元.【点睛】本题考查一元一次方程的应用,正数和负数,解答本题的关键是明确题意,列出相应的方程求解.25.(1)6;6;6;(2)①乙不会落在原点O 处;理由见解析;②12【分析】(1)根据题意列式计算即可;(2)①设甲猜对了n 次,则甲猜对乙猜错n 次,甲猜错乙猜对(10﹣n )次,根据题意列方程即可得到结论;②游戏结束时,得到甲的位置落在﹣3+4n ﹣2(10﹣n )=6n ﹣23处,游戏结束时,得到乙的位置落在5﹣4(10﹣n )+2n =6n ﹣35处,列式计算即可得到结论.【详解】解:(1)第一次游戏时,若甲、乙都猜对,则移动后两人相距:5-1-(-3+1)=6个单位;若甲猜对乙猜错,则移动后两人相距:5+2-(-3+4)=6个单位;若甲猜错乙猜对,则移动后两人相距:5-4-(-3-2)=6个单位;故答案为:6,6,6;(2)设甲猜对了n次,则甲猜对乙猜错n次,甲猜错乙猜对(10﹣n)次,①根据题意得,乙猜错了n次,向右移动了2n,猜对了(10﹣n)次,向左移动4(10﹣n),则5﹣4(10﹣n)+2n=0,解得:n=356,∵n=356≠整数,∴乙不会落在原点O处;②游戏结束时,甲的位置落在﹣3+4n﹣2(10﹣n)=6n﹣23处,游戏结束时,乙的位置落在5﹣4(10﹣n)+2n=6n﹣35处,∴甲、乙两人之间的距离=|(6n﹣23)﹣(6n﹣35)|=12;【点睛】本题考查一元一次方程的应用,数轴,代数式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于常考题型.26.(1)2,20;(2)经过6秒,点A与点B相遇;(3)3秒或235秒后,MA=2MB【分析】(1)根据点A的出发点、运动速度及运动时间,可找出当t=2时点A表示的有理数,再利用数轴上两点间的距离公式可求出AB得出长;(2)当运动时间为t秒时,点A表示的有理数为2t﹣2,点B表示的有理数为﹣2t+22,由点A,B相遇,可得出关于t的一元一次方程,解之即可得出结论;(3)当运动时间为t秒时,点A表示的有理数为2t﹣2,点B表示的有理数为﹣2t+22,点M表示的数为4t,分0<t≤113及t>113两种情况考虑,根据MA=2MB,即可得出关于t的一元一次方程,解之即可得出结论.【详解】解:(1)当t=2时,点A表示的有理数为﹣2+2×2=2,∴AB=22﹣2=20.故答案为:2;20.(2)当运动时间为t秒时,点A表示的有理数为2t﹣2,点B表示的有理数为﹣2t+22,依题意得:2t﹣2=﹣2t+22,解得:t=6.答:经过6秒,点A与点B相遇.(3)当运动时间为t秒时,点A表示的有理数为2t﹣2,点B表示的有理数为﹣2t+22,点M表示的数为4t.令﹣2t+22=4t,解得:t=11 3.当0<t≤113时,4t﹣(2t﹣2)=2(﹣2t+22﹣4t),解得:t=3;当t>113时,4t﹣(2t﹣2)=2[4t﹣(﹣2t+22)],解得:t=235.答:3秒或235秒后,MA=2MB.【点睛】本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)利用数轴上两点间的距离公式,求出AB的长;(2)找准等量关系,正确列出一元一次方程;(3)分0<t≤113及t>113两种情况,找出关于t的一元一次方程.。
人教版七年级数学《一元一次方程》计算题专项练习学校:班级:姓名:得分:1.解方程:x﹣4=2x+3﹣x.2.解方程:2(x﹣1)﹣3(x+2)=12.3.解方程:=1﹣.4.解方程:.5.解方程:.7.解方程:2(x+8)=3(x﹣1)8.解方程:3(2x+3)=11x﹣6.9.解方程:8y﹣3(3y+2)=6.10.解方程:3﹣(5﹣2x)=x+2.11.解方程:=.12.解方程:+1=x﹣.13.解方程:3﹣(5﹣2x)=x+2.14. 解方程:.15.解方程:.16.解方程:﹣=1.17.解方程:=﹣1 18.解方程:4﹣3(2﹣x)=5x;19. 解方程:﹣2=x﹣.20.解方程:3(x+4)=5﹣2(x﹣1)21. 解方程:=1﹣.22.解方程:=﹣1.23.解方程:.24.解方程:=.25.解方程:.26.解方程:.人教版七年级数学《一元一次方程》计算题专项练习参考答案1.x﹣4=2x+3﹣x.【解答】解:去分母得,x﹣8=4x+6﹣5x,移项得,x﹣4x+5x=6+8,合并同类项得,2x=14,系数化为1得,x=7.2.解下列方程:2(x﹣1)﹣3(x+2)=12.【解答】解:去括号得,2x﹣2﹣3x﹣6=12,移项得,2x﹣3x=12+2+6,合并同类项得,﹣x=20,系数化为1得,x=﹣20.3.=1﹣.【解答】解:去分母得,2(x+3)=12﹣3(3﹣2x),去括号得,2x+6=12﹣9+6x,移项得,2x﹣6x=12﹣9﹣6,合并同类项得,﹣4x=﹣3,系数化为1得,x=.4..【解答】解:去分母得,6x﹣2(2x﹣1)=6+3(x﹣3),去括号得,6x﹣4x+2=6+3x﹣9,移项得,6x﹣4x﹣3x=6﹣9﹣2,合并同类项得,﹣x=﹣5,系数化为1得,x=5.5.解方程:.【解答】解:去分母得,(2x﹣5)﹣3(3x+1)=6,去括号得,2x﹣5﹣9x﹣3=6,移项得,2x﹣9x=6+5+3,合并同类项得,﹣7x=14,系数化为1得,x=﹣2.6.解方程:4x﹣3=2(x﹣1)【解答】解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=7.2(x+8)=3(x﹣1)【解答】解:去括号,得2x+16=3x﹣3,移项、合并同类项,得﹣x=﹣19,化未知数的系数为1,得x=19.8.解方程:3(2x+3)=11x﹣6.【解答】解:3(2x+3)=11x﹣6,6x+9=11x﹣6,9+6=11x﹣6x,15=5x,x=3.9.解方程8y﹣3(3y+2)=6.【解答】解:8y﹣9y﹣6=6﹣y=12y=﹣1210.3﹣(5﹣2x)=x+2.【解答】解:3﹣(5﹣2x)=x+2,去括号得:3﹣5+2x=x+2,移项得:2x﹣x=2﹣3+5,解得:x=4.11.解方程:=.【解答】解:去分母,得4(x﹣2)=3(3﹣2x),去括号,得4x﹣8=9﹣6x,移项,得4x+6x=9+8,合并同类项,得10x=17,系数化为1,得x=.12.解方程:+1=x﹣.【解答】解:去分母得:2(x+1)+6=6x﹣3(x﹣1),去括号得:2x+2+6=6x﹣3x+3,移项合并得:﹣x=﹣5,解得:x=5.13.解方程:3﹣(5﹣2x)=x+2.【解答】解:去括号,得:3﹣5+2x=x+2,移项,得:2x﹣x=2﹣3+5,合并同类项得:x=4;14.解方程:.【解答】解:去分母,得:3(4﹣x)﹣2(2x+1)=6,去括号,得:12﹣3x﹣4x﹣2=6,移项,得:﹣3x﹣4x=6﹣12+2合并同类项得:﹣7x=﹣4,系数化成1得:x=.15..【解答】解:等式的两边同时乘以12,得4(x+1)=12﹣3(2x+1)…(2分)去括号、移项,得4x+6x=12﹣4﹣3…(4分)合并同类项,得10x=5…(5分)化未知数的系数为1,得…(6分)16.解方程:﹣=1.【解答】解:3(x﹣1)﹣4(x+2)=123x﹣3﹣4 x﹣8=123x﹣4 x=12+3+8x=﹣2317.解方程=﹣1【解答】解:去分母得:5(3x﹣1)=2(4x+2)﹣10移项得:15x﹣8x=4﹣10+5合并同类项得:7x=﹣1系数化为得:x=﹣.18.解方程:4﹣3(2﹣x)=5x;【解答】解:去括号得:4﹣6+3x=5x,移项、合并同类项得:﹣2x=2,系数化为1得:x=﹣1.19.解方程:﹣2=x﹣.【解答】解:去分母、去括号得:2x+2﹣12=6x﹣3x+3,移项、合并同类项得:﹣x=13,系数化为1得:x=﹣13.20.解方程:3(x+4)=5﹣2(x﹣1)【解答】解:去括号,得:3x+12=5﹣2x+2,移项,得:3x+2x=5+2﹣12,合并同类项,得:5x=﹣5,系数化为1,得:x=﹣1;21.解方程:=1﹣.【解答】解:去分母,得:3(x+2)=6﹣2(x﹣5),去括号,得:3x+6=6﹣2x+10,移项及合并,得:5x=10,系数化为1,得:x=2.22.解方程:=﹣1.【解答】解:去分母得:4(2x﹣1)=3(x+2)﹣12移项得:8x﹣3x=6﹣12+4合并得:5x=﹣2系数化为1得:x=﹣.23.解方程:.【解答】解:去分母,得4(2x﹣1)=3(3x﹣5)+24,去括号,得8x﹣4=9x﹣15+24,移项、合并同类项,得﹣x=13,系数化为1,得x=﹣13.24.解方程:=.【解答】解:=方程两边同时乘以6,得3(x+1)=2(2﹣x)﹣63x+3=4﹣2x﹣65x=﹣5x=﹣1、25.解方程:.【解答】解:去分母得,5(3x+1)﹣20=3x﹣2,去括号得,15x+5﹣20=3x﹣2,移项合并得,12x=13,系数化为1得,x=.26.解方程:.【解答】解:去分母得,2(x+1)﹣4=8+2﹣x,去括号得,2x+2﹣4=8+2﹣x,移项得,2x+x=8+2﹣2+4,合并同类项得,3x=12,系数化为1得,x=4.。
七年级上册数学《第三章一元一次方程》专题训练解一元一次方程计算题(50题)步骤依据具体做法注意事项等式的性质2方程两边同时乘各分母的最小公倍数.(1)不要漏乘不含分母的项.(2)当分子是多项式时,去分母后应将分子作为一个整体加上括号.乘法分配律、去括号法则先去小括号,再去中括号,最后去大括号(也可以先去大括号,再去中括号,最后去小括号).(1)不要漏乘括号里的任何一项.(2)不要弄错符号.等式的性质1把含未知数的项移到方程的一边,常数项移到方程的另一边.(1)移项一定要变号.(2)不移的项不要变号.合并同类项法则系数相加,字母及字母的指数不变,把方程化成ax =b (a ≠0)的形式.未知数的系数不要弄错.等式的性质2在方程ax =b (a ≠0)的两边同除以a (或乘),得到方程的解为x=.不要将分子、分母的位置颠倒.1.(2022秋•宁津县校级期中)解下列方程:(1)﹣3x+3=1﹣x﹣4x;(2)﹣4x+6=5x﹣3;【分析】(1)根据解一元一次方程——移项合并同类项进行计算即可;(2)根据解一元一次方程——移项合并同类项进行计算即可.【解答】解:(1)移项得﹣3x+x+4x=1﹣3,合并得2x=﹣2,系数化为1得x=﹣1;(2)移项得﹣4x﹣5x=﹣3﹣6,合并得﹣9x=﹣9,系数化为1得x=1.【点评】本题考查解一元一次方程——移项合并同类项,掌握一元一次方程的解法是解决此题的关键.2.(2023秋•洛阳期中)解下列方程:(1)−3=12+1;(2)9+3x=4x+3.【分析】(1)先去分母,然后移项,合并同类项即可;(2)通过移项,合并同类项,系数化为1解方程即可.【解答】解:(1)原方程去分母得:2x﹣6=x+2,移项得:2x﹣x=2+6,合并同类项得:x=8;(2)原方程移项得:3x﹣4x=3﹣9,合并同类项得:﹣x=﹣6,系数化为1得:x=6.【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.3.(2023秋•西丰县期中)解方程:(1)3x﹣2=4+2x;(2)6x﹣7=9x+8.【分析】(1)根据等式的性质,移项、合并同类项即可;(2)根据等式的性质,移项、合并同类项系数化为1即可.【解答】解:(1)移项,得3x﹣2x=4+2,合并同类项,得x=6.(2)移项,得6x﹣9x=7+8,合并同类项,得﹣3x=15,系数化1,得x=﹣5.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的基本步骤是解题的关键.4.(2023秋•郧阳区期中)解方程:(1)2x﹣x+3=1.5﹣2x;(2)7x+2=5x+8.【分析】利用解一元一次方程的步骤:移项,合并同类项,系数化为1解各方程即可.【解答】解:(1)原方程移项得:2x﹣x+2x=1.5﹣3,合并同类项得:3x=﹣1.5,系数化为1得:x=﹣0.5;(2)原方程移项得:7x﹣5x=8﹣2,合并同类项得:2x=6,系数化为1得:x=3.【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.5.(2022秋•莲湖区校级月考)解方程:(1)3x﹣2=5x﹣4;(2)2x+3(x﹣1)=2(x+3).【分析】(1)根据解一元一次方程的步骤,移项,合并同类项,最后将x的系数化为1即可求解.(2)根据解一元一次方程的步骤,先去括号,然后移项,合并同类项,最后将x的系数化为1即可求解.【解答】解:(1)3x﹣2=5x﹣4移项得,3x﹣5x=2﹣4,合并同类项得,﹣2x=﹣2,将x的系数化为1得,x=1.(2)2x+3(x﹣1)=2(x+3)去括号得,2x+3x﹣3=2x+6,移项得,2x+3x﹣2x=6+3,合并同类项得,3x=9,将x的系数化为1得,x=3.【点评】本题主要考查一元一次方程的解法,掌握解方程的基本步骤是解题的关键.6.(2023秋•青秀区校级期中)解下列方程:(1)3x+6=31﹣2x;(2)1−8(14+0.5p=3(1−2p.【分析】根据一元一次方程的解法,经历去括号、移项、合并同类项以及系数化为1进行计算即可.【解答】解:(1)移项得,3x+2x=31﹣6,合并同类项得,5x=25,两边都除以5得,x=5;(2)去括号得,1﹣2﹣4x=3﹣6x,移项得,﹣4x+6x=3+2﹣1,合并同类项得,2x=4,两边都除以2得,x=2.【点评】本题考查解一元一次方程,掌握一元一次方程的解法,理解去括号、移项、合并同类项以及系数化为1的依据是正确解答的前提.7.(2023秋•西城区校级期中)解下列方程:(1)3x﹣4=2x+8;(2)5﹣2x=3(x﹣2).【分析】(1)移项,合并同类项即可;(2)去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣4=2x+8,移项,得3x﹣2x=8+4,合并同类项,得x=12;(2)5﹣2x=3(x﹣2),去括号,得5﹣2x=3x﹣6,移项,得﹣2x﹣3x=﹣6﹣5,合并同类项,得﹣5x=﹣11,系数化成1,得x=115.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.8.(2023秋•海珠区校级期中)解方程:(1)x+5=8;(2)3x+4=5﹣2x;(3)8(2x﹣1)﹣(x﹣1)=﹣2(2x﹣1).【分析】根据一元一次方程的解法,经历去括号、移项、合并同类项以及系数化为1等过程,进而求出未知数x的值即可.【解答】解:(1)移项得,x=8﹣5,合并同类项得,x=3;(2)移项得,3x+2x=5﹣4,合并同类项得,5x=1,两边都除以5得,x=15;(3)去括号得,16x﹣8﹣x+1=﹣4x+2,移项得,16x﹣x+4x=2﹣1+8,合并同类项得,19x=9,两边都除以19得,x=919.【点评】本题考查解一元一次方程,掌握一元一次方程的解法和步骤是正确解答的前提,理解去括号、移项、合并同类项以及系数化为1的做法的依据是正确解答的关键.9.(2023秋•重庆期中)解方程:(1)2x﹣6=﹣3x+9;(2)−32−1=−+1.【分析】根据一元一次方程的解法,依次进行移项、合并同类项以及系数化为1进行计算即可.【解答】解:(1)移项得,2x+3x=9+6,合并同类项得,5x=15,两边都除以5得,x=3;(2)移项得,32x﹣x=﹣1﹣1,合并同类项得,12x=﹣2,两边都乘以2得,x=﹣4.【点评】本题考查解一元一次方程,掌握一元一次方程的解法步骤是正确解答的前提.10.(2023秋•新吴区校级期中)解下列方程:(1)3(2x﹣1)=5﹣2(x+2);(2)2(x﹣2)﹣3(4x﹣1)=5(1﹣x).【分析】根据解一元一次方程的步骤解答即可.【解答】解:(1)6x﹣3=5﹣2x﹣4,6x+2x=5﹣4+3,8x=4,x=12;(2)2x﹣4﹣12x+3=5﹣5x,2x﹣12x+5x=5+4﹣3,﹣5x=6,x=−65.【点评】本题考查解一元一次方程,理解并熟练掌握解一元一次方程的步骤是解题的关键.11.(2022秋•陵城区期末)解方程(1)18(x﹣1)﹣2x=﹣2(2x﹣1);(2)3K110−1=5K74.【分析】(1)先去括号,再移项、合并同类项、系数化为1即可;(2)先去分母,再去括号、移项、合并同类项、系数化为1即可.【解答】解:(1)去括号得,18x﹣18﹣2x=﹣4x+2,移项得,18x﹣2x+4x=2+18,合并同类项得,20x=20,x的系数化为1得,x=1;(2)去分母得,2(3y﹣1)﹣20=5(5y﹣7)去括号得,6y﹣2﹣20=25y﹣35,移项得,6y﹣25y=﹣35+20+2,合并同类项得,﹣19y=﹣13,x的系数化为1得,y=1319.【点评】本题考查的是解一元一次方程,熟知去分母、去括号、移项、合并同类项、系数化为1是解一元一次方程的一般步骤是解题的关键.12.(2023秋•九龙坡区校级期中)解下列一元一次方程:(1)3x+4=2﹣x;(2)1−r12=1−25.【分析】根据一元一次方程的解法,经过去分母、去括号、移项、合并同类项以及系数化为1进行解答即可.【解答】解:(1)移项得,3x+x=2﹣4,合并同类项得,4x=﹣2,两边都除以4得,x=−12;(2)两边都乘以10得,10﹣5(x+1)=2(1﹣2x),去括号得,10﹣5x﹣5=2﹣4x,移项得,5x﹣4x=10﹣5﹣2,合并同类项得,x=3.【点评】本题考查解一元一次方程,掌握一元一次方程的解法是正确解答的前提.13.(2022秋•青川县期末)解下列方程:(1)2x﹣(x+10)=3x+2(x+1);(2)K12−2K13=+1.【分析】(1)根据去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程;(2)根据去分母、去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程.【解答】解:(1)2x﹣(x+10)=3x+2(x+1),去括号,得2x﹣x﹣10=3x+2x+2,移项,得2x﹣x﹣3x﹣2x=2+10,合并同类项,得﹣4x=12,系数化为1,得x=﹣3;(2)K12−2K13=+1,去分母,得3(x﹣1)﹣2(2x﹣1)=6x+6,去括号,得3x﹣3﹣4x+2=6x+6,移项,得3x﹣4x﹣6x=6+3﹣2,合并同类项,得﹣7x=7,系数化为1,得x=﹣1.【点评】本题考查解一元一次方程的解法,掌握解一元一次方程的步骤,使方程逐渐向x=a形式转化是解题关键.14.(2022秋•安次区校级月考)解方程:(1)3x﹣4(x+1)=6﹣2(2x﹣5);(2)0.3K0.10.2−2r93=−8.【分析】(1)按照去括号,移项,合并同类项,系数化为1的步骤解方程即可;(2)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可.【解答】解:(1)3x﹣4(x+1)=6﹣2(2x﹣5)去括号得:3x﹣4x﹣4=6﹣4x+10,移项得:3x﹣4x+4x=6+10+4,合并同类项得:3x=20,系数化为1得;=203;(2)0.3K0.10.2−2r93=−8整理得:3K12−2r93=−8,去分母得:3(3x﹣1)﹣2(2x+9)=﹣48,去括号得:9x﹣3﹣4x﹣18=﹣48,移项得:9x﹣4x=﹣48+18+3,合并同类项得:5x=﹣27,系数化为1得;=−275.【点评】本题主要考查了解一元一次方程,熟知解一元一次方程的步骤是解题的关键.15.(2022秋•工业园区校级月考)解方程:(1)5(x﹣1)=8x﹣2(x+1);(2)3K14−1=5K76.【分析】(1)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)5(x﹣1)=8x﹣2(x+1)去括号得:5x﹣5=8x﹣2x﹣2,移项得:5x﹣8x+2x=﹣2+5,合并得:﹣x=3,解得:x=﹣3;(2)3K14−1=5K76去分母得:3(3x﹣1)﹣12=2(5x﹣7),去括号得:9x﹣3﹣12=10x﹣14,移项得:9x﹣10x=3+12﹣14,合并得:﹣x=1,解得:x=﹣1【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.16.(2022秋•青川县期末)解下列方程:(1)2x﹣(x+10)=3x+2(x+1);(2)K12−2K13=+1.【分析】(1)根据去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程;(2)根据去分母、去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程.【解答】解:(1)2x﹣(x+10)=3x+2(x+1),去括号,得2x﹣x﹣10=3x+2x+2,移项,得2x﹣x﹣3x﹣2x=2+10,合并同类项,得﹣4x=12,系数化为1,得x=﹣3;(2)K12−2K13=+1,去分母,得3(x﹣1)﹣2(2x﹣1)=6x+6,去括号,得3x﹣3﹣4x+2=6x+6,移项,得3x﹣4x﹣6x=6+3﹣2,合并同类项,得﹣7x=7,系数化为1,得x=﹣1.【点评】本题考查解一元一次方程的解法,掌握解一元一次方程的步骤,使方程逐渐向x=a形式转化是解题关键.17.(2022秋•平桥区校级月考)解方程:(1)8y﹣3(3y+2)=6;(2)r12−1=2+2−4.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:8y﹣9y﹣6=6,移项得:8y﹣9y=6+6,合并同类项得:﹣y=12,系数化为1得:y=﹣12;(2)方程两边同时乘4得:2(x+1)﹣4=8+(2﹣x),去括号得:2x+2﹣4=8+2﹣x,移项得:2x+x=8+2﹣2+4,合并同类项得:3x=12,系数化为1得:x=4.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法和步骤是解题的关键.18.(2022秋•汉阳区期末)解方程:(1)4x+3(2x﹣3)=12﹣(x+4);(2)3r22−1=2K14−2r15.【分析】(1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【解答】解:(1)4x+3(2x﹣3)=12﹣(x+4),去括号得:4x+6x﹣9=12﹣x﹣4,10x﹣9=8﹣x,移项得:10x+x=9+8,合并同类项得:11x=17,系数化1得:x=1711;(2))3r22−1=2K14−2r15,去分母得:10(3x+2)﹣20=5(2x﹣1)﹣4(2x+1),去括号得:30x+20﹣20=10x﹣5﹣8x﹣4,移项得:30x﹣10x+8x=﹣5﹣4﹣20+20,合并得:28x=﹣9,化系数为1得:x=−928.【点评】本题考查一元一次方程的解法,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.19.(2023秋•蜀山区校级期中)解方程.(1)3(x﹣7)+5(x﹣4)=15;(2)5r16=9r18−1−3.【分析】(1)根据去括号、移项、合并同类项、系数化1计算即可.(2)根据去分母、去括号、移项、合并同类项、系数化1计算即可.【解答】解:(1)去括号得:3x﹣21+5x﹣20=15,移项、合并同类项得:8x=56,系数化1得:x=7.(2)去分母得:4(5y+1)=3(9y+1)﹣8(1﹣y),去括号得:20y+4=27y+3﹣8+8y,移项、合并同类项得:﹣15y=﹣9,系数化1得:=35.【点评】本题考查解一元一次方程,熟练掌握一元一次方程的解法是解答本题的关键.20.(2023秋•裕安区校级期中)解方程:(1)2(x﹣1)=2﹣5(x+2);(2)5r12−6r24=1.【分析】(1)方程去括号,移项,合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣2=2﹣5x﹣10,移项得:2x+5x=2﹣10+2,合并得:7x=﹣6,解得:x=−67;(2)去分母得:2(5x+1)﹣(6x+2)=4,去括号得:10x+2﹣6x﹣2=4,移项得:10x﹣6x=4﹣2+2,合并得:4x=4,解得:x=1.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并,把未知数系数化为1,求出解.20.(2023秋•越秀区校级期中)解方程:(1)3x+20=4x﹣25;(2)2K13=1−2K16.【分析】根据解一元一次方程的步骤,依次经过去分母,去括号、移项、合并同类项、系数化为1求出未知数x的值即可.【解答】解:(1)移项得,4x﹣3x=20+25,合并同类项得,x=45;(2)两边都乘以6得,2(2x﹣1)=6﹣(2x﹣1),去括号得,4x﹣2=6﹣2x+1,移项得,4x+2x=6+1+2,合并同类项得,6x=9,两边都除以6得,x=32.【点评】本题考查解一元一次方程,掌握一元一次方程的解法是正确解答的关键.21.(2023秋•工业园区校级期中)解方程:(1)3=1+2(4﹣x);(2)1−K56=r12.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)去括号,可得:3=1+8﹣2x,移项,可得:2x=1+8﹣3,合并同类项,可得:2x=6,系数化为1,可得:x=3.(2)去分母,可得:6﹣(x﹣5)=3(x+1),去括号,可得:6﹣x+5=3x+3,移项,可得:﹣x﹣3x=3﹣6﹣5,合并同类项,可得:﹣4x=﹣8,系数化为1,可得:x=2.【点评】此题主要考查了解一元一次方程的方法,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.22.(2023秋•富川县期中)解方程:(1)3(x﹣1)﹣4=2(1﹣3x);(2)K74−5r82=1.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【解答】解:(1)3(x﹣1)﹣4=2(1﹣3x),3x﹣3﹣4=2﹣6x,3x+6x=2+3+4,9x=9,x=1;(2)K74−5r82=1,x﹣7﹣2(5x+8)=4,x﹣7﹣10x﹣16=4,x﹣10x=4+16+7,﹣9x=27,x=﹣3.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解题的关键.23.(2022秋•丰都县期末)解下列方程:(1)2(x+3)=3(x﹣3);(2)K40.2−2.5=K30.05.【分析】(1)按解一元一次方程的步骤求解即可;(2)利用分数的基本性质先去分母,再按解一元一次方程的步骤求解即可.【解答】解:(1)去括号,得2x+6=3x﹣9,移项,得2x﹣3x=﹣6﹣9,合并同类项,得﹣x=﹣15,系数化为1,得x=15.(2)K40.2−2.5=K30.05,5(K4)5×0.2−2.5=20(K3)0.05×20,5(x﹣4)﹣2.5=20x﹣60,5x﹣20﹣2.5=20x﹣60,﹣15x=﹣37.5,x=2.5.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.24.(2023秋•天河区校级期中)解方程:(1)4x=3x+7;(2)r12−2K13=1.【分析】(1)方程移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)移项得:4x﹣3x=7,合并同类项得:x=7;(2)去分母得:3(x+1)﹣2(2x﹣1)=6,去括号得:3x+3﹣4x+2=6,移项得:3x﹣4x=6﹣3﹣2,合并同类项得:﹣x=1,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.25.(2023秋•南岗区校级期中)解方程:(1)2(x+6)=3(x﹣1);(2)K72−1+3=1.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项,据此求出方程的解即可.【解答】解:(1)去括号,可得:2x+12=3x﹣3,移项,可得:2x﹣3x=﹣3﹣12,合并同类项,可得:﹣x=﹣15,系数化为1,可得:x=15.(2)去分母,可得:3(x﹣7)﹣2(1+x)=6,去括号,可得:3x﹣21﹣2﹣2x=6,移项,可得:3x﹣2x=6+21+2,合并同类项,可得:x=29.【点评】此题主要考查了解一元一次方程的方法,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.26.(2023秋•武昌区期中)解方程:(1)2x+10=2(2x﹣1);(2)K35−r42=−2.【分析】(1)去括号、移项、合并同类项、系数化为1,解出x的值即可;(2)去分母、去括号、移项、合并同类项、系数化为1,解出x的值即可.【解答】解:(1)2x+10=2(2x﹣1),去括号得:2x+10=4x﹣2,移项得:2x﹣4x=﹣2﹣10,合并同类项得:﹣2x=﹣12,系数化为1得:x=6;(2)K35−r42=−2.去括号得:2(x﹣3)﹣5(x+4)=﹣20,去括号得:2x﹣6﹣5x﹣20=﹣20,移项得:2x﹣5x=﹣20+20+6,合并同类项得:﹣3x=6,系数化为1得:x=﹣2.【点评】本题考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.27.(2023秋•金安区校级期中)解下列方程:(1)3x+5=5x﹣7;(2)3K23=r26−1.【分析】(1)方程移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)移项合并得:2x=12,解得:x=6;(2)去分母得:6x﹣4=x+2﹣6,移项合并得:5x=0,解得:x=0.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.28.(2023秋•西城区校级期中)解方程:(1)3x﹣4=2x+5;(2)K34−2r12=1.【分析】(1)移项,合并同类项即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣4=2x+5,移项,得3x﹣2x=5+4,合并同类项,得x=9;(2)K34−2r12=1,去分母,得x﹣3﹣2(2x+1)=4,去括号,得x﹣3﹣4x﹣2=4,移项,得x﹣4x=4+3+2,合并同类项,得﹣3x=9,系数化成1,得x=﹣3.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.29.(2022秋•枣阳市期末)解方程:(1)2K13−10r16=2r14−1;(2)0.7−0.17−0.20.03=2.【分析】(1)按解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,求解即可;(2)先利用分数的基本性质,把分子、分母化为整数,再按解一元一次方程的一般步骤求解即可.【解答】解:去分母,得4(2x﹣1)﹣2(10x+1)=3(2x+1)﹣12,去括号,得8x﹣4﹣20x﹣2=6x+3﹣12,移项,得8x﹣20x﹣6x=3﹣12+4+2,合并,得﹣18x=﹣3,系数化为1,得x=16.(2)原方程可变形为:107−17−203=2,去分母,得30x﹣7(17﹣20x)=42,去括号,得30x﹣119+140x=42,移项,得30x+140x=119+42,合并,得170x=161,系数化为1,得x=161170.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.30.(2022秋•虎丘区校级月考)解方程:(1)2K13=2r16−2;(2)2K50.6−3r10.2=10.【分析】(1)去分母,去括号,移项,合并同类项可得结果;(2)去分母,去括号,移项,合并同类项可得结果.【解答】解:(1)2K13=2r16−2,去分母得,2(2x﹣1)=2x+1﹣2×6,去括号得,4x﹣2=2x+1﹣12,移项得,4x﹣2x=1﹣12+2,合并同类项得,2x=﹣9,系数化为1得,=−92;(2)2K50.6−3r10.2=10,去分母得,2x﹣5﹣3(3x+1)=6,去括号得,2x﹣5﹣9x﹣3=6,移项得,2x﹣9x=6+5+3,合并同类项得,﹣7x=14,系数化为1得,x=﹣2.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.31.(2023秋•鼓楼区期中)解方程:(1)2x﹣2(3x+1)=6;(2)r12−1=2−33.【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)2x﹣2(3x+1)=6,去括号,得2x﹣6x﹣2=6,移项,得2x﹣6x=6+2,合并同类项,得﹣4x=8,系数化成1,得x=﹣2;(2)r12−1=2−33,去分母,得3(x+1)﹣6=2(2﹣3x),去括号,得3x+3﹣6=4﹣6x,移项,得3x+6x=4﹣3+6,合并同类项,得9x=7,系数化成1,得x=79.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.32.(2022秋•连云港期末)解下列方程:(1)3(x+2)=5x;(2)r12−2=K34.【分析】(1)先去括号移项,然后合并后把x的系数化为1即可;(2)先去分母,再去括号,然后移项、合并后把x的系数化为1即可.【解答】解:(1)3(x+2)=5x,3x+6=5x,3x﹣5x=﹣6,﹣2x=﹣6,x=3;(2)r12−2=K34,2x+2﹣8=x﹣3,2x﹣x=﹣3﹣2+8,x=3.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.33.(2022秋•射阳县校级期末)解方程:(1)2(x﹣2)=3x﹣7;(2)K12−2r36=1.【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次方程;(2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次方程即可求解.【解答】解:(1)2(x﹣2)=3x﹣7,去括号,得:2x﹣4=3x﹣7,移项,得:2x﹣3x=﹣7+4,合并同类项,得:﹣x=﹣3,系数化为1:x=3;(2)K12−2r36=1,去分母,得:3(x﹣1)﹣(2x+3)=6,去括号,得:3x﹣3﹣2x﹣3=6,移项,得:3x﹣2x=6+3+3,合并同类项,得:x=12.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是解题的关键.34.(2022秋•硚口区期中)解方程:(1)2﹣3(x+1)=1﹣2(1+0.5x);(2)3+K12=3−2K13.【分析】(1)根据去括号、移项、合并同类项、化系数为1的步骤解一元一次方程即可;(2)根据去分母、去括号、移项、合并同类项、化系数为1的步骤解一元一次方程即可.【解答】解:(1)去括号,得2﹣3x﹣3=1﹣2﹣x,移项、合并同类项,得﹣2x=0,化系数为1,得x=0,∴原方程的解为x=0;(2)去分母,得18x+3(x﹣1)=18﹣2(2x﹣1),去括号,得18x+3x﹣3=18﹣4x+2,移项、合并同类项,得25x=23,化系数为1,得=2325,∴原方程的解为=2325.【点评】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤并正确求解是解答的关键.35.(2022秋•湖北期末)解方程:(1)2﹣(4﹣x)=6x﹣2(x+1);(2)r32−1=2−5−4.【分析】(1)通过去括号、移项、合并同类项、系数化成1,几个步骤进行解答;(2)通过去分母、去括号、移项、合并同类项、系数化成1,几个步骤进行解答.【解答】(1)解:去括号,得,2﹣4+x=6x﹣2x﹣2,移项,得,x﹣6x+2x=﹣2﹣2+4,合并同类项,得,﹣3x=0,系数化为1,得,x=0;(2)去分母得:2(x+3)﹣4=8x﹣(5﹣x),去括号得:2x+6﹣4=8x﹣5+x,移项得:2x﹣8x﹣x=﹣5﹣6+4,合并得:﹣7x=﹣7,解得:x=1.【点评】本题考查了解一元一次方程,解题关键是熟记解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化成1.36.(2023春•太康县期中)解方程:(1)3x﹣5=2x+3;(2)1−K32=2+3+2.【分析】(1)移项,合并同类项即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣5=2x+3,移项得:3x﹣2x=3+5,合并同类项得:x=8;(2)1−K32=2+3+2,去分母得:6﹣3(x﹣3)=2(2+x)+12,去括号得:6﹣3x+9=4+2x+12,移项得:﹣3x﹣2x=4+12﹣6﹣9,合并同类项得:﹣5x=1,系数化成1得:x=−15.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.37.(2022秋•万源市校级期末)解方程(1)4﹣3(2﹣x)=5x(2)K22−1=r13−r86.【分析】(1)方程去括号,移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)方程去括号得:4﹣6+3x=5x,移项合并得:2x=﹣2,解得:x=﹣1;(2)去分母得:3(x﹣2)﹣6=2(x+1)﹣(x+8),去括号得:3x﹣6﹣6=2x+2﹣x﹣8,移项合并得:2x=6,解得:x=3.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.38.(2023秋•五华区校级期中)解方程:(1)7x+2(3x﹣3)=20;(2)2K13=3r52−1.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x的系数化为1即可.【解答】解:(1)去括号得,7x+6x﹣6=20,移项得,7x+6x=20+6,合并同类项得,13x=26,x的系数化为1得,x=2;(2)去分母得,2(2x﹣1)=3(3x+5)﹣6,去括号得,4x﹣2=9x+15﹣6,移项得,4x﹣9x=15﹣6+2,合并同类项得,﹣5x=11,x的系数化为1得,x=−115.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解题的关键.39.(2023•开州区校级开学)解方程:(1)5x+34=2x+534;(2)K20.2=r10.5.【分析】(1)按照解一元一次方程的步骤:移项,合并同类项,系数化为1,进行计算即可解答;(2)先把分母的系数化为整数,然后再按照解一元一次方程的步骤进行计算,即可解答.【解答】解:(1)5x+34=2x+534,5x﹣2x=534−34,3x=5,x=53;(2)K20.2=r10.5,5x﹣10=2x+2,5x﹣2x=2+10,3x=12,x=4.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.40.(2023秋•镇海区校级期中)解方程:(1)3(20﹣y)=6y﹣4(y﹣11);(2)0.4r30.2−2=0.45−0.3.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:60﹣3y=6y﹣4y+44,移项合并得:5y=16,解得:y=3.2;(2)去分母得:1.2x+9﹣1.2=0.9﹣2x,移项合并得:3.2x=﹣6.9,解得:x=−6932.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.41.(2022秋•张店区期末)解方程:(1)3(y﹣7)﹣5(4﹣y)=15;(2)r20.4−2K10.2=−0.5.【分析】(1)去括号,移项合并同类项,系数化为1即可得到答案;(2)去分母,去括号,移项合并同类项,系数化为1即可得到答案.【解答】解:(1)去括号得,3y﹣21﹣20+5y=15,移项得,3y+5y=15+21+20,合并同类项可得,8y=56系数化为1得,y=7;(2)去分母可得,10(x+2)﹣20(2x﹣1)=﹣2,去括号得,10x+20﹣40x+20=﹣2,移项得,10x﹣40x=﹣2﹣20﹣20,合并同类项得,﹣30x=﹣42,系数化为1得,=75.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.42.(2022秋•莲湖区校级月考)解方程:(1)K32−2r13=1.(2)r12−3K14=1.【分析】(1)去分母、去括号、移项、合并同类项、系数化为1即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1即可求解.【解答】解:(1)K32−2r13=1,3(x﹣3)﹣2(2x+1)=6,3x﹣9﹣4x﹣2=6,3x﹣4x=6+9+2,﹣x=17,x=﹣17;(2)r12−3K14=1,2(x+1)﹣(3x﹣1)=4,2x+2﹣3x+1=4,﹣x=4﹣2﹣1,x=﹣1.【点评】本题考查了解一元一次方程,解答本题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a的形式转化.43.解下列方程:(1)2r13−10r16=1;(2)4K1.50.5−5K0.80.2=1.2−0.1.【分析】(1)利用等式的性质先去分母,再求解一元一次方程;(2)利用分数的基本性质去分母后,再解一元一次方程.【解答】解:(1)2r13−10r16=1,去分母,得2(2x+1)﹣(10x+1)=6,去括号,得4x+2﹣10x﹣1=6,移项,得4x﹣10x=6﹣2+1,合并同类项,得﹣6x=5,系数化为1,得x=−56;(2)4K1.50.5−5K0.80.2=1.2−0.1.去分母,得2(4x﹣1.5)﹣5(5x﹣0.8)=10(1.2﹣x),去括号,得8x﹣3﹣25x+4=12﹣10x,移项,得8x﹣25x+10x=12+3﹣4,合并同类项,得﹣7x=11,系数化为1,得x=−117.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤,灵活运用等式的性质和分数的性质去分母是解决本题的关键.44.解方程;(1)2K366−33−23=−1﹣x;(2)K10.2−r10.05=3.【分析】(1)利用等式的性质去分母后,求解一元一次方程;(2)利用分数的性质去分母后,求解一元一次方程.【解答】解:(1)2K366−33−23=−1﹣x,去分母,得2x﹣36﹣2(33﹣2x)=6(﹣1﹣x),去括号,得2x﹣36﹣66+4x=﹣6﹣6x,移项,得2x+4x+6x=﹣6+36+66,合并同类项,得12x=96,系数化为1,得x=8;(2)K10.2−r10.05=3.去分母,得5(x﹣1)﹣20(x+1)=3,去括号,得5x﹣5﹣20x﹣20=3,移项,得5x﹣20x=3+5+20,合并同类项,得﹣15x=28系数化为1,得x=−2815.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤,灵活运用等式的性质和分数的性质去分母是解决本题的关键.45.(2023春•周口月考)解方程:(1)34[2(+1)+13p=3;(2)3−2K83=−r54.【分析】(1)按照解一元一次方程的步骤,进行计算即可解答;(2)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【解答】解:(1)34[2(+1)+13p=3,32(x+1)+14x=3x,6(x+1)+x=12x,6x+6+x=12x,6x+x﹣12x=﹣6,﹣5x=﹣6,x=1.2;(2)3−2K83=−r54,36﹣4(2x﹣8)=﹣3(x+5),36﹣8x+32=﹣3x﹣15,﹣8x+3x=﹣15﹣36﹣32,﹣5x=﹣83,x=835.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.46.(2022秋•文登区期末)解方程:(1)4﹣2(x+4)=2(x﹣1);(2)13(+7)=25−12(−5);(3)0.3K0.40.2+2=0.5K0.20.3.【分析】(1)去括号,移项,合并同类项,系数化为1,求解即可;(2)去分母,去括号,移项,合并同类项,系数化为1,求解即可;(3)分母化为整数,去分母,去括号,移项,合并同类项,系数化为1,求解即可.【解答】解:(1)4﹣2(x+4)=2(x﹣1),去括号得:4﹣2x﹣8=2x﹣2,移项得:2x+2x=4﹣8+2,合并同类项得:4x=﹣2,系数化为1得:x=−12;(2)13(+7)=25−12(−5),去分母得:10(x+7)=12﹣15(x﹣5),去括号得:10x+70=12﹣15x+75,移项得:10x+15x=12+75﹣70,合并同类项得:25x=17,系数化为1得:x=1725;(3)0.3K0.40.2+2=0.5K0.20.3,分母化为整数得:3K42+2=5K23,去分母得:3(3x﹣4)+12=2(5x﹣2),去括号得:9x﹣12+12=10x﹣4,合并同类项得:9x=10x﹣4,移项、合并同类项得:x=4.【点评】本题考查了解一元一次方程,解题的关键是熟练掌握一元一次方程的解题步骤.47.解下列方程:(1)(5x﹣2)×30%=(7x+8)×20%;(2)34[43(14−1)+8]=73+23;(3)4K1.50.5−5K0.80.2=1.2−0.1.【分析】(1)方程去括号,移项,合并同类项,即可求出解;(2)方程去括号,去分母,移项,合并同类项,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)(5x﹣2)×30%=(7x+8)×20%,去括号得:15x﹣6=14x+16,移项得:15x﹣14x=16+6,合并同类项得:x=22;(2)34[43(14−1)+8]=73+23;去括号得:14x﹣1+6=73+23,去分母得:3x+60=28+8x,移项得:3x﹣8x=28﹣60,合并同类项得:﹣5x=﹣32,解得:x=325;(3)4K1.50.5−5K0.80.2=1.2−0.1.去分母得:2(4x﹣1.5)﹣5(5x﹣0.8)=10(1.2﹣x),去括号得:8x﹣3﹣25x+4=12﹣10x,移项得:8x﹣25x+10x=12﹣4+3,合并同类项得:﹣7x=11,解得:x=−117.【点评】此题考查了解一元一次方程,解决本题的关键是掌握解一元一次方程的步骤,为:去分母,去括号,移项合并,把未知数系数化为1,求出解.48.(2023春•朝阳区校级月考)解下列方程:(1)2x﹣19=7x+6;(2)4(x﹣2)﹣1=3(x﹣1);(3)K12=23+1;(4)2K13−10r112=2r14−1.【分析】(1)方程移项,合并同类项,把x系数化为1,即可求出解;(2)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项,合并同类项,把m系数化为1,即可求出解;(4)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)移项得:2x﹣7x=6+19,合并同类项得:﹣5x=25,解得:x=﹣5;(2)去括号得:4x﹣8﹣1=3x﹣3,移项得:4x﹣3x=﹣3+8+1,合并同类项得:x=6;(3)去分母得:3(m﹣1)=4m+6,去括号得:3m﹣3=4m+6,移项得:3m﹣4m=6+3,合并同类项得:﹣m=9,解得:m=﹣9;(4)去分母得:4(2x﹣1)﹣(10x+1)=3(2x+1)﹣12,去括号得:8x﹣4﹣10x﹣1=6x+3﹣12,移项得:8x﹣10x﹣6x=3﹣12+4+1,合并同类项得:﹣8x=﹣4,解得:x=0.5.【点评】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.49.(2023秋•香坊区校级月考)解方程:(1)3x﹣8=x+4;(2)1﹣3(x+1)=2(1﹣0.5x);(3)16(3−6)=25x﹣3;(4)3K14−1=5K76.【分析】(1)按照解一元一次方程的步骤:移项,合并同类项,系数化为1,进行计算即可解答;(2)按照解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1,进行计算即可解答;(3)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答;(4)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【解答】解:(1)3x﹣8=x+4,3x﹣x=4+8,2x=12,x=6;(2)1﹣3(x+1)=2(1﹣0.5x),1﹣3x﹣3=2﹣x,﹣3x+x=2+3﹣1,﹣2x=4,x=﹣2;。
《解一元一次方程(二)》同步练习一、选择题1.解方程1443312=---x x 时,去分母正确的是( ) A .1129)12(4=---x x B .12)43(348=---x xC .1129)12(4=+--x xD .12)43(348=-+-x x2.将方程5)24(32=--x x 去括号正确的是( )A .52122=--x xB .56122=--x xC .56122=+-x xD .5632=+-x x3.将方程131212=--+x x 去分母正确的是( ) A .62216=+-+x x B .62236=--+x xC .12236=+-+x xD .62236=+-+x x4.解方程256133x x x -=--+,去分母所得结果正确的是( ) A .x x x -=+-+15132 B .x x x 315162-=+-+C .x x x -=--+15162D .x x x 315132-=+-+5.下列解方程的过程中正确的是( )A .将5174732+-=--x x 去分母得)17(4)75(52+-=--x x B .由102.07.015.03.0=--x x 得10027015310=--x x C .)28(2)73(540+=--x x 去括号得41671540+=--x xD .552=-x ,得225-=x 6.下列方程,解是0=x 的是( )A .8.034.057x x =- B .13423--=-x x C .()[]{}98765432=---x D .x x 322)73(72-=+ 7.方程)1(332+=-y y 的解是( )A .-6B .6C .54 D .0 8.式子33+x 的值比式子512-x 的值大1,则x 为( ) A .3 B .4 C .5 D .6 9.若代数式23-y 的值比312-y 的值大1,则y 的值是( ) A .15 B .13 C .-13 D .-1510.方程60)1(4)2(4=+--x x 的解是( )A .7=xB .76=x C .76-=x D .7-=x 11.若213+x 比322-x 小1,则x 的值为( ) A .513 B .-135 C .-513 D .135 12.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做一天,然后甲、乙合作完成此项工作,若甲乙共做了x 天,所列方程为( )A .1641=++x x B .1614=++x x C .1614=-+x x D .161414=+++x x 13.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①1431040-=+m m ②4314010+=+n n ③4314010-=-n n ④1431040+=+m m 其中符合题意的是( ) (A )①② (B )③④ (C )①③ (D )②④14.若方程)23()12(3+-=++a x a x 的解是0,则a 的值等于( )A .51B .53C .-51D .-53 15.甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5千米,则乙的时速是( )A .12.5千米/时B .15千米/时C .17.5千米/时D .20千米/时二、填空题1.____=m 时,式子212-m 的值是3; 2.如果4是关于x 的方程a a x x a 2)(353++=-的解,则____=a ;3.若x y x y -=+=8,3521,当1y 比2y 大于1时,____=x ;4.关于x 的方程054)2(2=-++k kx x k 是一元一次方程,则____=k5.若)9(312y --与)4(5-y 的值相等,则____=y6.当____=x 时,31-x 的值比21+x 的值大-3 7.当____=m 时,方程3445-=+x x 和方程)2(2)1(2-=-+m m x 的解相同.8.要使21+m 与23-m 不相等,则m 不能取的值是_______ 9.方程332=-x 与方程0331=--x a 有相同的解,则____=a . 10.某数x 的21倍比另一数y 的23倍多5,则____=y . 11.一个两位数,两个数位上的数字之和为12,且个位数字比十位数字大2,则这个两位数为________________;12.某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则它最后的单价是___________.13.甲能在11天内完成此项工作,乙的工作效率比甲高10%,那么乙完成这项工作的天数为_______天.14.某超市规定,如果购买不超过50元的商品时,按全额收费,购买超过50元的商品时,超过部分按九折消费,某顾客在一次消费中向售货员交纳了212元,那么在此消费中该顾客购买的是价值________________元的商品.15.下面是甲商场电脑产品的进货单,其中进价一栏被墨迹污染.读了进货单后,请你求出这台电脑的进价,是__________元.元三、计算题1.解下列方程(1)521215++=--y y y (2)13.02.18.12.06.02.1=-+-x x (3)5162.15.032.08+-=--+x x x (4)23241233431=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x 2.解下列方程(1)250)104(2)3010(5-=--+x x(2)2233)5(54--+=--+x x x x (3)1612213-+=-x x (4)⎥⎦⎤⎢⎣⎡+-=⎪⎭⎫ ⎝⎛---4)3(551014224123x x x x (5)5:63:2=m(6)7:23:4t =(7))1(27)1(4)1(31)1(3+--=--+x x x x (8))1(32)1(2121-=⎥⎦⎤⎢⎣⎡--x x x 3.利用等式的性质解方程:(1))1(9)14(3)2(2x x x -=--- (2)37615=-y(3)14126110312-+=+--x x x (4)x x 5.12)73(72-=+ (5)103.02.017.07.0+-=x x (6)y y 535.244.2=-- 4.列方程求解:(1)已知6--x 的值与71互为倒数,求x ; (2)x 等于什么数时,133-+x 等于1752++x 的值? (3)x 取何值时,235x -和[])53(521--x x 互为相反数? (4)a 为何值时,关于x 的方程03=+a x 的解比方程0432=--x 的解大2? 5.已知2021at t v S +=,如果81,4,13===a t S ,求0v . 6.若4=y 是方程)(532m y m y -=-+的解,求13-m 的值. 四、应用题1.小王在超市中买了单价是2.8元的某品牌鲜奶若干袋,过了一段时间再去超市,发现这种鲜奶正进行让利销售,每袋让利0.3元,于是他比上次多买了2袋,却只比上次多花了2元钱,问上次买了多少袋这样的鲜奶?2.冷饮厅中A 种冰激凌比B 种冰激凌贵1元,小明和同学要了3个B 种冰激凌、2个A 种冰激凌,一共花了16元.两种冰激凌每个多少钱?3.班级的书架宽88厘米,某一层上摆满一种历史书和一种文学书,共90本.小明量得一本历史书厚0.8厘米,一本文学书厚1.2厘米.你知道这层书架上历史书和文学书各有多少本吗?4.一个两位数,十位上的数比个位上的数小1,十位与个位上的数的和是这个两位数的51,求这个两位数. 5.元旦期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到7折和9折,共付款386元,这两种商品的原销售价之和为500元.问,这两种商品的原销售价分别为多少钱?6.一个蓄水池装有甲、乙、丙三个进水管.单独开放甲管,45分钟可以注满全池;单独开放乙管,60分钟可以注满全池;单独开放丙管,90分钟可以注满全池.现将三管一齐开放,多少分钟可以注满水池?7.某中学开展校外植树活动,六年级学生单独种植,需要7.5小时完成;七年级学生单独种植,需要5小时完成.现在六年级、七年级学生先一起种植1小时,再由七年级学生单独完成剩余部分.共需多少时间完成?8.朝阳中学在预防“非典”的活动中,初二(2)班45名同学被平均分配到甲、乙、丙三处打扫环境卫生.甲处的同学最先完成打扫任务,班卫生委员根据实际情况及时把甲处的同学全部调到乙、丙两处支援,调动后乙处的人数恰好为丙处人数的1.5倍.问从甲处调往乙、丙两处各多少人?9.国家从多方面保障农民的根本利益,重视农业的发展.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,共用去了44 000元.其中种茄子每亩用了1700元,获纯利2 400元;种西红柿每亩用了1800元,获纯利2 600元.你知道王大伯今年一共获纯利多少元吗?10.我国古代数学问题:有大小两种盛米的桶,已经知道5个大桶加上1个小桶可以盛3斛米,1个大桶加上5个小桶可以盛2斛米.问1个大桶、1个小桶分别可以盛多少斛米?选自《九章算术》卷七“盈不足”.“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”11.我国古代数学问题:好马每天走240里,劣马每天走150里.劣马先走12天,好马几天可以追上劣马?选自《算学启蒙》.“良马日行二百四十里,劣马日行一百五十里.努马先行一十二日,问良马几何日追及之.”12.在城市中公交车的发车间隔时间是一定的.小明放学后走在回家的路上,他发现每隔6分钟从后面开来一辆公交车,每隔2分钟从前面开来一辆公交车,他想,公交车到底是几分钟发车一辆呢?你能帮他计算一下吗?13.某工程队每天安排120个劳力修建水库,平均每天每个劳力能挖土5方或运土3方,为了使挖出的土及时运走,问应如何安排挖土和运土的劳力?14.一个两位数,十位数字比个位数字的4倍多1,将两个数字调换顺序后所得数比原数小63,求原数.15.某商店为了促销G牌空调机,2000年元旦那天购买该机可分期付款,在购买时先付一笔款,余下部分及它的利息(年利率为5.6%)在2001年元旦付清,该空调机售价每台8224元.若两次付款数相同,问每次应付款多少元?16.某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原售价的7折出售给一山区学校,结果每件盈利0.2元.问该文具每件的进货价是多少元?17.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.在安全检查中,对4道门进行了测试.当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,1分钟内可以通过200名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤(尽管有老师组织),出门的效率将降低10%;安全检查规定,在紧急情况下全大楼的师生应在5分钟内通过这4道门安全撤离.假设每间教室可容纳50名学生,此校教师是学生数的10%,教师通过门的速度快于学生,问:建造的这4道门是否符合安全规定?参考答案一、选择题1.B 2.C 3.D 4.B 5.D 6.D 7.A 8.A 9.C10.D 11.C 12. A 13.B 14.D 15.B二、填空题1.27 2.-16 3.1 4.-2 5.25 6.413 7.38- 8.1 9.2 10.310-x 11.57 12.0.99a 13.10 14.答案:230.利用等量关系50元+九折消费=212元.设购买的是价值x 元的商品,则212%90)50(50=⨯-+x去括号整理得2079.0=x ,解得230=x (元).15.4470(设进价为x 元,则2101085850+=⨯x ,解得4470=x 三、计算题1.(1)两边乘以10得)2(210)1(52++=--y y y去括号,得95-=y 所以,59-=y(2)转化为1312182612=-+-x x 简化为14636=-+-x x 解得32=x (3)转化为5162.153********+-=--+x x x 去分母,得)16(212)3010(2)8010(5+-=--+x x x去括号整理得48032-=x ,解得15-=x(4)两边同乘以3,去掉中括号得632412334=-⎪⎭⎫ ⎝⎛-x 32-移到右边再乘以43,去掉小括号得 54123=-x 解得27=x 2.(1)10-=x (2)6=x (3)72-=x (4)4=x (5)8.1=m (6)314=t (7)5-=x (8)511=x 3.(1)10-=x (2)3=y (3)61=x (4)0=x (5)1714=x (6)4=y 4.(1)13,1)6(71-==--x x (2)36,1752133=++=-+x x x (3)10,0)]53(5[21235==--+-x x x x (4)解03=+a x 得,3a x -=,解0432=--x 得,6-=x ,依题意得2)6(3=---a ,∴12=a 5.3,48121413020=⨯⨯+=v v 6.将4=y 代入方程得)4(5324m m -=-+ 整理得m m 5202-=-,所以,29=m , 则22513=-m 四、应用题1.设上次买了x 袋鲜奶,则128.2)2)(3.08.2(=+=+-x x x2.设A 种冰激凌每个x 元,则8.3=x3.设书有x 本,则5088)90(2.18.0==-+x x x4.设个位数字为x ,则5])1(10[511=+-=-+x x x x x ,此数为45 5.设甲种商品的原售价为x 元,则320%38)500%(90%70==-+x x x6.设x 分可以注满水池,则201904560==++x x x x 7.设共需x 小时完成,则313)1(51515.711=-=⎪⎭⎫ ⎝⎛+-x x 8.设甲种调往乙处x 人,则12)1515(5.115=-+=+x x x9.设种茄子x 亩,则1044000)5(18001700==-+x x x ,总获利为:630002600)1025(240010=⨯-+⨯10.设1个小桶盛y 斛米,则247,3)52(5==+-y y y ,大桶可盛米:241352=-y 11.设好马x 天可以追上劣马,则1.20240)12(150==+⨯x x x12.设公交车x 分钟发车一辆,则32266=-=-x x x13.设安排x 人挖土,则安排)120(x -人运土,则75120,45),120(35=-=-=x x x x (人)14.设个位数字为x ,则十位数字为14+x .2,63])14(10[1410=-=++-++x x x x x ,所以原数是92.15.分析:设第一次付款x 元,则第二次付款%)6.51)(8224(+-x 元,由两次付款数相同,可得 %)6.51)(8224(+-=x x .解:设第一次付款x 元,则%)6.51)(8224(+-=x x解得4224=x答:每次应付款4224元.说明:本题是分期付款问题,是一道紧扣生活实际和社会热点的好题.16.分析:利用等量关系盈利=售价-进价.解:设每件文具进货价为x 元,则标价为)2(+x 元,则x x -⨯+=%70)2(2.0, 整理后,2.13.0=x ,所以,4=x (元).因此,该文具每件的进价为4元.17.(1)设平均每分钟一道正门可以通过x 名学生,则一道侧门可以通过)200(x -名学生,则560)]200(2[2=-+x x解得120=x (名) 80200=-x 名所以,平均每分钟一道正门可以通过120名学生,一道侧门可以通过80名学生(2)这栋楼可容纳50×8×4=1 600(名)师生总和为1 600+1 600×10%=1 760(名)5分钟4道门能通过(120+80)×2×5=2 000(名)拥护时可通过2 000×(1-10%)=1 800(名)而17601800>且教师出门又快于学生所以,建造的4道门符合规定.。
七年级数学上册一元一次方程计算题练
习 50题(含答案)
1.解方程:3x+2=3.
去括号得,3x+2=3,移项得,3x=1,系数化为1得,
x=1/3.
2.解方程:2{3[4(5x-1)-8]-20}-7=1.
先化简括号内的式子,4(5x-1)-8=20x-12,代入原式得,2{3[20x-12]-20}-7=1。
化简得,2{60x-56}-7=1,再化简得,60x-56=4,解得,x=1.
3.解方程:5x-7(x-1)=3-2(x+3)。
先化简括号内的式子,-7(x-1)=-7x+7,-2(x+3)=-2x-6,代入原式得,5x-7x+7=3-2x-6。
移项合并得,6x=-4,解得,x=-2/3.
4.解方程:3x+7=32-2x。
移项得,5x=25,系数化为1得,x=5.
5.解方程:2(3x-5)-3(4x-3)=0.
先化简括号内的式子,2(3x-5)=6x-10,3(4x-3)=12x-9,代入原式得,6x-10-12x+9=0。
移项合并得,-6x=-1,解得,x=1/6.
6.解方程:4-4(x-3)=2(9-x)。
化简得,4-4x+12=18-2x,移项合并得,-2x=2,解得,
x=-1.
7.解方程:-0.7=6.5-1.3x。
移项得,1.3x=7.2,化系数为1得,x=5.538.
8.解方程:-2(3x-3)+5=4x+1.
化简得,-6x+6+5=4x+1,移项合并得,-10x=-10,解得,x=1.
9.解方程:(x+1)/3-2=(x-1)/2.
化简得,2(x+1)-12=3(x-1),移项合并得,2x+2-12=3x-3,解得,x=13.
10.解方程:(2x+1)/(x-1)=(x+2)/(x+3)。
化简得,(2x+1)(x+3)=(x-1)(x+2),化简得,
2x^2+7x+3=x^2+x-2,移项合并得,x^2+6x+5=0。
解得,x=-1或x=-5.
11.解方程:(3x-1)/2-(x+1)/3=1/6.
化简得,9x-3-2x-2=1,移项合并得,7x=6,解得,x=6/7.
12.解方程:2{3[4(5x-1)-8]-20}-7=1.
已在第2题解答过,x=1.
13.解方程:(x+2)/3-2=(x-1)/2.
化简得,4(x+2)-18=3(x-1),移项合并得,x=5.
14.解方程:(x-1)/3+1=(x+2)/4.
化简得,4(x-1)+12=3(x+2),移项合并得,x=5.
15.删除此题,因为缺少方程。
16.解方程:5x+1.3x=6.5+0.7.
合并同类项得,6.3x=7.2,化系数为1得,x=1.143.
17.解方程:3x-7x+7=3-2x-6.
移项合并得,-6x=-10,解得,x=5/3.
18.删除此题,因为缺少方程。
19.解方程:2x-6-3x+1=1.
移项合并得,-x=6,解得,x=-6.
20.解方程:(x-1)/(x+2)+(x+1)/(x-2)=0.
化简得,(x-1)(x-2)+(x+1)(x+2)=0,化简得,2x^2+2=0,解得,x=±√2i。
21.解方程:(x+1)/2-(x-2)/3=1.
化简得,3(x+1)-2(x-2)=6,移项合并得,x=3.
22.解方程:2(x-1)-(3x-1)=8.
化简得,2x-2-3x+1=8,移项合并得,-x=9,解得,x=-9.
23.删除此题,因为缺少方程。
24.解方程:(x+3)/2-(x-1)/4=5.
化简得,4(x+3)-(x-1)=40,移项合并得,x=16.
25.解方程:(x+1)/2-2(x-3)/5=1/10.
化简得,5(x+1)-4(x-3)=1,移项合并得,x=11/3.
26.解方程:6(x+2)+3x-2(2x-1)-24=0.
化简得,9x+8=24,解得,x=16/9.
27.解方程:(3x+7)/6+3x-2(2x-1)-(15-30x)/3=0.
化简得,5x+12-4x+2-5x=12,解得,x=2.
28.x = -3;
31.x = 0;
34.x = 5;
35.x = -1.5;
37.x = 3;
39.x = 0.2;
42.x = 1;
44.-34;
45.-1;
48.x = -1;
49.x = -14;
50.x = 2.8;
以上是一些关于变量x的赋值操作。
其中,x被赋值为-3、0、5、-1.5、3、0.2、1、-34、-1、-1和2.8.。