最新高中数学直线与方程单元测试题
- 格式:doc
- 大小:186.50 KB
- 文档页数:3
苏教版高中数学选择性必修第一册第1章直线与方程单元测试卷(满分150分,时间120分钟)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.两平行线x +y -1=0与2x +2y -7=0之间的距离是()A .32B .322C .542D .62.已知直线l 经过点P (2,1),且与直线2x +3y +1=0垂直,则直线l 的方程是()A .2x +3y -7=0B .3x +2y -8=0C .2x -3y -1=0D .3x -2y -4=03.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a 的值是()A .1B .-1C .-2或-1D .-2或14.直线x cos α+3y +2=0的倾斜角的取值范围是()A .π6,,5π6B .0,π6∪5π6,C .0,5π6D .π6,5π65.若直线x +ny +3=0与直线nx +9y +9=0平行,则实数n 的值为()A .3B .-3C .1或3D .3或-36.若直线y =kx +2k +1与直线y =-12x +2的交点在第一象限,则实数k 的取值范围是()A -12,B -16,C D -12,+∞7.已知直线l :x -y -1=0,直线l 1:2x -y -2=0.若直线l 2与直线l 1关于直线l 对称,则直线l 2的方程是()A .x -2y +1=0B .x -2y -1=0C.x+y-1=0D.x+2y-1=08.数学家欧拉在其所著的《三角形几何学》一书中提出:“任意三角形的外心、重心、垂心在同一条直线上.”后人称这条直线为欧拉线.已知△ABC的顶点A(2,0),B(0,4),若其欧拉线的方程为x-y+2=0,则顶点C的坐标是()A.(-4,0)B.(0,-4)C.(4,0)D.(4,0)或(-4,0)二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法中正确的有()A.截距相等的直线都可以用方程xa+ya=1表示B.方程x+my-2=0(m∈R)能表示与y轴平行的直线C.经过点P(1,1)且倾斜角为θ的直线方程为y-1=tanθ(x-1)D.经过点P1(x1,y1),P2(x2,y2)的直线方程为(y2-y1)(x-x1)-(x2-x1)(y-y1)=010.若直线l1:ax+(1-a)y-3=0与直线l2:(a-1)x+(2a+3)y-2=0互相垂直,则实数a的值是() A.-3B.1C.-1D.311.光线自点(2,4)射入,经倾斜角为135°的直线l:y=kx+1反射后经过点(5,0),则反射光线还经过()A B.点(14,1)C.点(13,2)D.点(13,1)12.下列m的值中,不能使三条直线4x-y=4,mx-y=0和2x+3my=4构成三角形的有()A.4B.-6C.-1D.23三、填空题:本题共4小题,每小题5分,共20分.其中第15题第一个空2分、第二个空3分.13.若直线l的倾斜角α满足4sinα=3cosα,且它在x轴上的截距为3,则直线l的方程是________________.14.无论实数k取何值,直线(k+2)x+(k-3)y+k-3=0都恒过定点,则该定点的坐标为________.15.过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和直线l 2:x -3y +10=0截得的线段的中点恰好为P ,则直线l 的方程为________,此时被截得的线段长为________.16.已知动直线l 0:ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),且点Q (4,0)到动直线l 0的最大距离为3,则12a +2c的最小值为________.四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(10分)有下列3个条件:①l ′与l 平行且过点(-1,3);②l ′与l 垂直,且l ′与两坐标轴围成的三角形的面积为4;③l ′是l 绕原点旋转180°而得到的直线.从中任选1个,补充到下面的问题中并解答.问题:已知直线l 的方程为3x +4y -12=0,且________,求直线l ′的方程.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)已知△ABC 的顶点A (-1,5),B (-1,-1),C (3,7).(1)求边BC 上的高AD 所在直线的方程;(2)求边BC 上的中线AM 所在直线的方程;(3)求△ABC 的面积.19.(12分)设直线l 的方程为(a +1)x +y -2-a =0(a ∈R ).(1)若直线l 不经过第二象限,求实数a 的取值范围;(2)若直线l 与x 轴、y 轴分别交于点M ,N ,求△MON (O 为坐标原点)面积的最小值及此时直线l 的方程.20.(12分)已知点A (0,3),B (-1,0),C (3,0),求点D 的坐标,使四边形ABCD 是直角梯形(点A ,B ,C ,D 按逆时针方向排列).21.(12分)在平面直角坐标系中,点A (2,3),B (1,1),直线l :x +y +1=0.(1)在直线l 上找一点C 使得AC +BC 最小,并求这个最小值和点C 的坐标;(2)在直线l 上找一点D 使得|AD -BD |最大,并求这个最大值和点D 的坐标.22.(12分)已知直线l 1:2x -y +a =0(a >0),直线l 2:-4x +2y +1=0,直线l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求实数a 的值.(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5?若能,求点P 的坐标,若不能,请说明理由.参考答案与解析综合测试第1章直线与方程1.C 提示方程x +y -1=0可化为2x +2y -2=0,所以两平行线之间的距离为|-2-(-7)|22+22=5422.D 提示由题意知k l =-1-23=32,故直线l 的方程为y -1=32(x -2),即3x -2y -4=0 3.D 提示由题意知a ≠0.当x =0时,y =a +2;当y =0时,x =a +2a .因此a +2a=a +2,解得a =-2或a =14.B 提示直线的斜率k =-33cos α∈-33,33.设直线的倾斜角为θ,则-33≤tan θ≤33,所以0≤θ≤π6或5π6≤θ<π5.B 提示由题意知1n =n9,解得n =±3.当n =3时,3x +9y +9=0,即x +3y +3=0,两直线重合(舍去)6.B 提示=kx +2k +1,=-12x +2,=2-4k 2k +1,=6k +12k +1.因为直线y =kx +2k +1与直线y=-12x +20,0,解得-16<k <127.B 提示因为l 1与l 2关于l 对称,所以l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知点(0,-2)在l 1上,设其关于l的对称点为(x ,y )-y -22-1=0,1,=-1,=-1,所以点(1,0),(-1,-1)在l 2上,从而可得l 2的方程为x -2y -1=08.A提示设C (m ,n ).由重心坐标公式得△ABC线的方程得2+m 3-4+n3+2=0,整理得m -n +4=0①.易得边AB 的中点为(1,2),k AB =4-00-2=-2,所以边AB 的垂直平分线的方程为y -2=12(x -1),即x -2y +3=0.-2y +3=0,-y +2=0,=-1,=1,所以△ABC 的外心为(-1,1),则(m +1)2+(n -1)2=32+12=10,整理得m 2+n 2+2m -2n =8②.联立①②解得m =-4,n=0或m =0,n =4.当m =0,n =4时,点B ,C 重合,应舍去,所以顶点C 的坐标是(-4,0)9.BD 提示对于A ,若直线过原点,横、纵截距都为0,则不能用方程x a +ya =1表示,所以A 不正确;对于B ,当m =0时,与y 轴平行的直线方程为x =2,所以B 正确;对于C ,若直线的倾斜角为90°,则该直线的斜率不存在,不能用y -1=tan θ(x -1)表示,所以C 不正确;对于D ,设P (x ,y )是经过点P 1(x 1,y 1),P 2(x 2,y 2)的直线上的任意一点,根据P 1P 2∥P 1P 可得(y 2-y 1)(x -x 1)-(x 2-x 1)(y -y 1)=0,所以D 正确.故选BD 10.AB 提示若两直线垂直,则a (a -1)+(1-a )(2a +3)=0,即a 2+2a -3=0,解得a =-3或a =1.故选AB 11.AD提示由题意得k =tan135°=-1.设点(2,4)关于直线l :y =-x +1的对称点为(m ,n ),则1,=-m +22+1,=-3,=-1,所以反射光线所在直线的方程为y =0-(-1)5-(-3)·(x -5)=18(x -5).当x =13时,y =1;当x =14时,y =98.故反射光线过点(13,1)12.ACD 提示①当l 1:4x -y =4平行于l 2:mx -y =0时,m =4;②当l 1:4x -y =4平行于l 3:2x +3my =4时,m =-16;③当l 2:mx -y =0平行于l 3:2x +3my =4时,3m 2+2=0,无解;④当三条直线经过同一个点时,把直线l 1与l 22x +3my =4中得84-m +12m 24-m -4=0,解得m =-1或23.综上,满足条件的m 为4或-16或-1或2313.3x -4y-9=0提示因为4sin α=3cos α,所以tan α=34,从而直线l 的方程为y =34(x -3),即3x -4y -9=014.(0,-1)提示方程(k +2)x +(k -3)y +k -3=0可化为k (x +y +1)+2x -3y-3=0x -3y -3=0,+y +1=0,解得=0,=-115.x +4y -4=0217提示设l 1与l 的交点为A (a,8-2a ),则由题意知点A 关于点P 的对称点B (-a,2a -6)在l 2上,把点B 的坐标代入l 2的方程中得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以由两点式得直线l 的方程为x +4y -4=0.易求得两交点分别为(-4,2),(4,0),所以截得的线段长为21716.94提示因为动直线l 0:ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),所以a +bm +c -2=0.又点Q (4,0)到动直线l 0的最大距离为3,所以(4-1)2+(0+m )2=3,解得m =0,所以a +c =2.又a >0,c >0,所以12a +2c =12(a +c+c 2a +=94,当且仅当c =2a =43,即c =43,a =23时等号成立17.选择条件①:因为直线l :3x +4y -12=0,所以k l =-34.因为l ′∥l ,所以k l ′=k l =-34,从而直线l ′:y =-34(x +1)+3,即3x +4y -9=0选择条件②:因为l ′⊥l ,所以k l ′=43.设l ′在x 轴上的截距为b ,则l ′在y 轴上的截距为-43b .由题意可知S =12|b |·|-43b |=4,解得b =±6,所以直线l ′:y =43(x +6)或y =43(x -6)选择条件③:因为l ′是l 绕原点旋转180°而得到的直线,所以l ′与l 关于原点对称.任取点(x 0,y 0)在l 上,设其在l ′上的对称点为(x ,y ),所以x =-x 0,y =-y 0,从而-3x -4y -12=0,因此直线l ′:3x +4y +12=018.(1)因为k BC =7-(-1)3-(-1)=2,所以k AD =-12,从而边BC 上的高AD 所在直线的方程为y -5=-12(x +1),即x +2y -9=0(2)因为M 是BC 的中点,所以M (1,3),从而边BC 上的中线AM 所在直线的方程为y -35-3=x -1-1-1,即y =-x +4(3)由题意知边BC 所在直线的方程为y -(-1)7-(-1)=x -(-1)3-(-1),即2x -y +1=0,BC =(3+1)2+(7+1)2=45,所以点A 到直线BC 的距离h =|2×(-1)-5+1|22+1=655,从而△ABC 的面积=12BC ·h =1219.(1)直线l 的方程可化为y =-(a +1)x +a +2.因为l 不过第二象限,所以(a +1)≥0,+2≤0,解得a ≤-2,从而a 的取值范围为(-∞,-2](2)直线l 的方程可化为y =-(a +1)x +a +2,所以OM =|a +2a +1|,ON =|a +2|,从而S △MON =12OM ·ON =12(a +2)2|a +1|=|a +1|+2,当且仅当|a +1|=1|a+1|,即a =0时等号成立,因此△MON 面积的最小值为2,此时直线l 的方程为x +y -2=0(第20题)20.设所求点D 的坐标为(x ,y ).如图,由于k AB =3,k BC =0,所以k AB ·k BC =0≠-1,即AB 与BC 不垂直.①若BC ⊥CD ,AD ⊥CD .因为k BC =0,所以直线CD 的斜率不存在,从而有x =3.又k AD =k BC ,所以y -3x =0,即y =3,此时AB 与CD 不平行,故所求点D 的坐标为(3,3).②若AD ⊥AB ,AD ⊥CD .因为k AD =y -3x,k CD =y x -3,又AD ⊥AB ,所以y -3x ·3=-1.又AB∥CD ,所以yx -3=3.=185,=95,此时AD与BC 不平行,故所求点D综上可知,使四边形ABCD 为直角梯形的点D 的坐标可以为(3,3)21.(1)设点A 关于直线l 的对称点为A ′(x ,y )1,+y+32+1=0,=-4,=-3,即A ′(-4,-3),所以直线A ′B 的方程为y +31+3=x +41+44x -5y +1=0.当C 为直线4x -5y +1=0与直线x +y +1=0的交点时,AC +BCx -5y +1=0,+y +1=0,=-23=-13所以-23,-AC +BC 的最小值为A ′B =(1+4)2+(1+3)2=41(2)由题意知直线AB 的方程为y -31-3=x -21-2,即2x -y -1=0.当D 为直线2x -y -1=0与直线x +y +1=0的交点时,|AD -BD |x -y -1=0,+y +1=0,=0,=-1,所以D (0,-1),从而|AD -BD |的最大值为AB =(2-1)2+(3-1)2=522.(1)直线l 2的方程可化为2x -y -12=0,所以两条平行线l 1与l 2间的距离d =7510,即|a +12|5=7510,亦即|a +12|=72.又a >0,解得a =3(2)假设存在点P ,设点P (x 0,y 0).若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12·|c +12|5,解得c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0.若点P 满足条件③,由点到直线的距离公式有|2x 0-y 0+3|5=25·|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y0+4=0或3x 0+2=0.由于点P 在第一象限,所以3x 0+2=0x 0-y 0+132=0,0-2y 0+4=0,0=-3,0=12(舍去);联立x 0-y 0+116=0,0-2y 0+4=0,0=19,0=3718.所以存在点P。
精品文档 2第三章《直线与方程》单元测试题必修姓名班别 50分)小题,每小题5分,共一、选择题(本大题共10(4,2+),则此直线的倾斜角是()1.若直线过点(1,2),3A30°B45°C60°D90°2. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=23、、 DA、 -3 B、-6 C?323.点P(-1,2)到直线8x-6y+15=0的距离为()17)(D (C)2 (A)(B)1 224. 点M(4,m)关于点N(n, - 3)的对称点为P(6,-9),则()A m=-3,n=10B m=3,n=10C m=-3,n=5D m=3,n=55.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是()A 3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=06.过点M(2,1)的直线与X轴,Y轴分别交于P,Q两点,且|MP|=|MQ|,则L的方程是()A x-2y+3=0 B 2x-y-3=0 C 2x+y-5=0 D x+2y-4=07. 直线mx-y+2m+1=0经过一定点,则该点的坐标是A(-2,1) B (2,1) C (1,-2) D (1,2)8. 直线的位置关系是0?n?x?0和?2y2x?y?m(A)平行(B)垂直(C)相交但不垂直(D)不能确定x?y?2≤0,?y?y,x则的取值范围是(满足约束条件9. 已知变量)x≥1,?x?,07≤x?y??9??9????????,??6,??3,6,[36]...DC B.A6??,??,????55????10.已知A (1,2)、B(-1,4)、C(5,2),则ΔABC的边AB上的中线所在的直线方程为()(A)x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0选择题答题表精品文档.精品文档分)4分,共20二、填空题(本大题共5小题,每小题 . 的距离相等的直线方程为和则过点且与11.已知点B,A)1,B(3,2),2C(?,A(?54). .过点P(1,2)且在X轴,Y轴上截距相等的直线方程是12 . 的距离是与直线10x+24y+5=013.直线5x+12y+3=0 . ,则直线L的方程为14.原点O在直线L上的射影为点H(-2,1)03??x?y??0y?x?________yx,y满足约束条件的最小值为,则2x+15.已设变量??3x??2??分)10分,共30(本大题共三、解答题3小题,每小题2x+3my+2m=0)(m-2直线17.x+my+6=0与直线16. ①求平行于直线3x+4y-12=0,且与它的.的值;没有公共点,求实数m距离是7的直线的方程P(-1,0)且与点②求垂直于直线x+3y-5=0,3的直线的方程.的距离是105l0??6?3xy03??yx和3?,且直3被两平行直线*18.已知直线所截得的线段长为精品文档.精品文档l的方程.),求直线线过点(1,0参考答案:1.A;2.B;3.B;4.D;5.B;6.D;7.A;8.C;9. ;10.A.1;14.2x-y+5=0; 或2x-y=0;13.11.x+4y-7=0或x=-1;12.x+y-3=02615. (1)3x+4y+23=0或3x+4y-47=0;(2)3x-y+9=0或3x-y-3=0.16.m=0或m=-1;17.x=1或3x-4y-3=0.精品文档.。
⎥ 第三章《直线与方程》单元测试题一、选择题1. 直线l 经过原点和点(-1,1) ,则它的倾斜角是( )A.3π B. 5 π π 5 C. 或 π D. - π 4 4 4 4 42. 斜率为2 的直线过(3,5),( a ,7),(-1, b )三点,则a , b 的值是( )A. a = 4 , b = 0 C. a = 4 , b = -3 B. a = -4 , b = -3 D. a = -4 , b = 33. 设点 A (2,- 3) , B (-3,- 2) ,直线过 P (1,1) 且与线段 AB 相交,则l 的斜率 k 的取值范围是 ()A. k ≥ 3 4 或k ≤ -4 B. -4 ≤ k ≤ 3 4 C. - 3 ≤ k ≤ 4 4 D.以上都不对4. 直线(a + 2)x + (1- a ) y - 3 = 0 与直线(a -1)x + (2a + 3) y + 2 = 0 互相垂直,则a = ( )A. -1B.1C. ±1D. - 325. 直线l 过点 A (1,2) ,且不过第四象限,那么直线l 的斜率的取值范围是()A. [0,2] B. [0,1] C. ⎡0 1 ⎤D. ⎛ 0 1 ⎫, ⎣ 2 ⎦, ⎪ ⎝ 2 ⎭6. 到两条直线3x - 4 y + 5 = 0 与5x -12 y +13 = 0 的距离相等的点 P (x ,y ) 必定满足方程()A. x - 4 y + 4 = 0B. 7x + 4 y = 0C. x - 4 y + 4 = 0 或4x - 8 y + 9 = 0D. 7x + 4 y = 0 或32x - 56 y + 65 = 07. 已知直线3x + 2 y - 3 = 0 和6x + my +1 = 0 互相平行,则它们之间的距离是()A. 4B.2 1313C. 5 1326 D. 7 13268.已知等腰直角三角形 ABC 的斜边所在的直线是3x - y + 2 = 0 ,直角顶点是C (3,- 2) ,则两条直角边 AC , BC 的方程是( )A. 3x - y + 5 = 0 , x + 2 y - 7 = 0B. 2x + y - 4 = 0 , x - 2 y - 7 = 0C. 2x - y + 4 = 0 , 2x + y - 7 = 0D. 3x - 2 y - 2 = 0 , 2x - y + 2 = 09. 入射光线线在直线l 1 : 2x - y - 3 = 0 上,经过 x 轴反射到直线l 2 上,再经过 y 轴反射到直线l 3 上,则直线l 3 的方程为( )⎢3⎨ ⎩ ⎨ ⎩ A. x - 2 y + 3 = 0 B. 2x - y + 3 = 0 C. 2x + y - 3 = 0 D. 2x - y + 6 = 0⎧x - y + 5 ≥ 0 10. 已知 x ,y 满足⎪x ≤ 3 ⎪x + y + k ≥ 0,且 z =2x +4y 的最小值为-6,则常数 k =()A.2B.9C. D.0二、填空题 11. 已知三点(2,- 3) , (4,3) 及(5 k ) 在同一条直线上,则k 的值是., 2 12. 在 y 轴上有一点 m , 它与点 (- 为.3,1) 连成的直线的倾斜角为 120þ , 则点 m 的坐标13. 设点 P 在直线 x + 3y = 0 上,且 P 到原点的距离与 P 到直线 x + 3y - 2 = 0 的距离相等,则点 P 坐标是 .14. 直线l 过直线2x - y + 4 = 0 与 x - 3y + 5 = 0 的交点,且垂直于直线 y = 1x ,则直线l 的方程2是 . ⎧x + y - 3 ≥ 0 15. 若 x ,y 满足⎪x - y + 1 ≥ 0 ⎪3x - y - 5 ≤ 0,设 y = kx ,则 k 的取值范围是 .三、解答题16. 已知 ∆ABC 中, 点 A(1,2), AB 边和 AC 边上的中线方程分别是 5x - 3y - 3 = 0 和7x - 3y - 5 = 0 ,求 BC 所在的直线方程的一般式。
必修2第三章《直线与方程》单元测试题(时间:90 满分:120分)班别 座号 姓名 成绩一、选择题(本大题共10小题;每小题5分;共50分)1.若直线过点(1;2);(4;2+3);则此直线的倾斜角是( ) A 30° B 45° C 60° D 90° 2.直线x+6y+2=0在x 轴和y 轴上的截距分别是( ) A. B. C. D.-2;-33. 如果直线ax+2y+2=0与直线3x-y-2=0平行;则系数a=A 、 -3B 、-6C 、23- D 、324.点P (-1;2)到直线8x-6y+15=0的距离为( )(A )2 (B )21 (C )1 (D )275.以A(1;3);B(-5;1)为端点的线段的垂直平分线方程是( )A 3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=06.过点M(2;1)的直线与X轴;Y轴分别交于P;Q两点;且|MP|=|MQ|; 则L的方程是( )A x-2y+3=0 B 2x-y-3=0 C 2x+y-5=0 D x+2y-4=0 7. 直线mx-y+2m+1=0经过一定点;则该点的坐标是 A (-2;1) B (2;1) C (1;-2) D (1;2)8. 直线0202=++=++n y x m y x 和的位置关系是 (A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定 9. 如图1;直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3;则必有 A. k 1<k 3<k 2 B. k 3<k 1<k 2C. k 1<k 2<k 3D. k 3<k 2<k 110.已知A (1;2)、B (-1;4)、C (5;2);则ΔABC 的边AB 上的中线所在的直线方程为( )(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0选择题答题表 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(本大题共4小题;每小题5分;共30分)11线过原点且倾角的正弦值是54;则直线方程为 . 12已知点)4,5(-A 和),2,3(B 则过点)2,1(-C 且与B A ,的距离相等的直线方程为 . 13过点P(1;2)且在X轴;Y轴上截距相等的直线方程是 . 14直线5x+12y+3=0与直线10x+24y+5=0的距离是 . 15原点O在直线L上的射影为点H(-2;1);则直线L的方程为 . 16mx +ny =1(mn ≠0)与两坐标轴围成的三角形面积为 . 三、解答题(本大题共3小题;每小题10分;共40分) 17若N a ∈;又三点A(a ;0);B (0;4+a );C (1;3)共线;求a 的值.18直线062=++y ax 和直线0)1()1(2=-+++a y a a x 垂直;求a 的值.19 ①求平行于直线3x+4y-12=0;且与它的 距离是7的直线的方程;②求垂直于直线x+3y-5=0; 且与点P(-1;0)的距离是1053的直线的方程.20线x+m 2y+6=0与直线(m-2)x+3my+2m=0没有公共点;求实数m 的值.参考答案:1.A ;2.B ;3.B ;4.D ;5.B ;6.D ;7.A ;8.C ;9.A ;10.A. 11. x y 34±=;12.x+y-3=0或2x-y=0;14261; 15.-y+5=0; 16.mn21 17.点共线说明AC AB k k =;即可求出a18.示:斜率互为负倒数;或一直线斜率为0;另一直线斜率不存在 19.(1)(2)3x-y+9=0或3x-y-3=0. 20.0或m=-1;。
第三章《直线与方程》单元检测试题 时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题 5分,共60分,在每小题给出的四个选项中 只有一个是符合题目要求的 )1 .已知点A (1 ,邓),B (-1, 3>/3),则直线AB 的倾斜角是()A. 60°B. 30°C. 120°D. 150°[答案]C2 .直线l 过点P ( —1,2),倾斜角为45° ,则直线l 的方程为()A. x —y+1=0B. x-y- 1 = 0C. x-y-3= 0D. x-y+3=0[答案]D3 .如果直线 ax+ 2y+2=0与直线3x —y —2=0平行,则a 的值为(A. - 3 C. [答案]B4 .直线二—1在y 轴上的截距为()a b2A. | b |B. — bC. b 2D. ± b[答案]B5 .已知点A (3,2) , B ( -2, a ), C (8,12)在同一条直线上,则 a 的值是( )A. 0B. - 4C. — 8D. 4[答案]C6 .如果 AB :0, B «0,那么直线 Ax+ By+ C= 0不经过( )A.第一象限B.第二象限C.第三象限D.第四象限[答案]D7 .已知点A (1 , —2), B ( m,2),且线段 AB 的垂直平分线的方程是 x+2y-2=0,则实数m 的值是()B. - 6 D.A. - 2 D. 1[答案]C8.经过直线l i : x —3y+4=0和l 2: 2x + y=5= 0的交点,并且经过原点的直线方程是 ()A. 19x-9y= 0B. 9x+19y=0C. 3x+ 19y =0D. 19x-3y=0[答案]C9.已知直线(3k-1)x+(k+2)y-k=0,则当k 变化时,所有直线都通过定点 ( )_ 1 2 A. (0,0) B. (7,-) 2 1 1 1 c (7,7) D (7, ―)[答案]C10 .直线x-2y+ 1 = 0关于直线x=1对称的直线方程是( )A. x + 2y-1 = 0B. 2x+y-1 = 0C. 2x+ y —3=0D. x+2y-3=0[答案]D11 .已知直线l 的倾斜角为135° ,直线11经过点A (3,2) , B(a, —1),且11与l 垂直, 直线 g 2x + by+1 = 0与直线l 1平行,则a+ b 等于()A. - 4B. - 2C. 0D. 2[答案]B12 .等腰直角三角形 ABC\ / C= 90。
新课标数学必修 2 第三章直线与方程测试题一、选择题(每题 3 分,共 36 分)1.直线 x+6y+2=0 在 x 轴和 y 轴上的截距分别是( )A.2,1B.2, 1C.1, 3D.-2,- 33322.直线 3x+y+1=0 和直线 6x+2y+1=0 的地点关系是()A.重合B. 平行C.垂直D. 订交但不垂直3.直线过点 (- 3,- 2)且在两坐标轴上的截距相等,则这直线方程为()(A ) 2x - 3y = 0;(B ) x + y + 5= 0;(C ) 2x - 3y = 0 或 x +y + 5= 0 ( D )x + y + 5 或 x - y + 5= 04.直线 x=3 的倾斜角是( )A.0B.2 C.D. 不存在5.圆 x 2+y 2+4x=0 的圆心坐标和半径分别是()A.( - 2,0),2B.( - 2,0),4C.(2,0),2D.(2,0),46.点( 1, 2)对于直线 y = x 1 的对称点的坐标是(A )( 3, 2)( B )( 3, 2)( C )( 3,2) (D )( 3, 2)7.点( 2,1)到直线3x 4y + 2 = 0 的距离是(A )4(B )5(C )4(D )25542548.直线 xy 3 = 0 的倾斜角是()(A ) 30° ( B ) 45°( C ) 60°( D ) 90°9.与直线 l : 3x -4y + 5=0 对于 x 轴对称的直线的方程为(A ) 3x + 4y - 5= 0 (B ) 3x + 4y + 5= 0(C )- 3x + 4y - 5= 0 (D )- 3x + 4y + 5=10.设 a 、 b 、 c 分别为ABC 中 A 、 B 、 C 对边的边长,则直线xsinA + ay + c = 0 与直 线 bx - ysinB + sinC = 0 的地点关系()(A )平行;( B )重合;(C )垂直;(D )订交但不垂直11.直线 l 沿 x 轴负方向平移 3 个单位,再沿 y 轴正方向平 1 个单位后,又回到本来地点,那么 l 的斜率为()(A )- 1;( B )- 3;(C ) 1;3 3(D )312.直线 kxy 1 3k , 当 k 改动时,全部直线都经过定点()( A )( 0,0)( B )( 0,1)( C )( 3, 1)( D )( 2,1)一、填空题(每题4 分,共 16 分)13.直线过原点且倾角的正弦值是4,则直线方程为514.直线 mx+ ny=1( mn≠ 0)与两坐标轴围成的三角形面积为15.假如三条直线mx+y+3=0,x y 2=0,2x y+2=0 不可以成为一个三角形三边所在的直线,那么 m 的一个值是 _______...16.已知两条直线l1: y= x;l 2: ax-y= 0( a∈R),当两直线夹角在(0,)改动时,12则 a 的取值范围为三、解答题(共48 分)17.ABC 中,点A4, 1 ,AB的中点为M3,2 ,重心为P4,2 ,求边BC的长(6分).若a N ,又三点A(a ,,(,),C(,)共线,求 a 的值(6分)180) B0 a 4 1 319.已知直线 3 x+y—2 3 =0和圆x2+y2=4,判断此直线与已知圆的地点关系(7 分)20ax 2 y 60和直线x a(a1) y(a21)0垂直,求 a 的值(7分).若直线21.已知圆过点A(1 , 4), B(3 ,— 2),且圆心到直线AB 的距离为10,求这个圆的方程(10 分)22.如图,在ABC 中,C=90 O, P 为三角形内的一点,且S PAB S PBC S PCA,求证:│PA│2+│PB│2=5│PC│2(12 分)BPCA答案:一、二、 13.y 4x 14.115. - 1 16.(3,1)(1,3)3 2 mn3三、 17.提示:由已知条件,求出B、 C 两点的坐标,再用两点距离公式18.提示:三点共线说明k AB k AC,即可求出 a19.提示:比较圆的半径和圆心到直线的距离 d 的大小,进而可判断它们的地点关系20.提示:斜率互为负倒数,或向来线斜率为0,另向来线斜率不存在21.提示:经过已知条件求出圆心坐标,再求出半径,即可,所求圆的方程为:(x+1 )2+y2=20 或( x— 5)2+( y— 2)2=2022.提示:以边C A 、 CB 所在直线分别为 x 轴、 y 轴成立直角坐标系,,设 A (a,0)、 B(0, b), P 点的坐标为( x, y),由条件可知S PAB S PBC1SPCA=SABC,可求出1a ,y=13x=b,再分别用两点距离公式即可33。
第三章 直线与方程A 组一、选择题1.若直线x =1的倾斜角为 α;则 α( ). A .等于0B .等于πC .等于2π D .不存在2.图中的直线l 1;l 2;l 3的斜率分别为k 1;k 2;k 3;则( ). A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 23.已知直线l 1经过两点(-1;-2)、(-1;4);直线l 2经过两点(2;1)、(x ;6);且l 1∥l 2;则x =( ).A .2B .-2C .4D .14.已知直线l 与过点M (-3;2);N (2;-3)的直线垂直;则直线l 的倾斜角是( ).A .3π B .32π C .4π D .43π 5.如果AC <0;且BC <0;那么直线Ax +By +C =0不通过( ). A .第一象限B .第二象限C .第三象限D .第四象限6.设A ;B 是x 轴上的两点;点P 的横坐标为2;且|P A |=|PB |;若直线P A 的方程为x -y +1=0;则直线PB 的方程是( ).A .x +y -5=0B .2x -y -1=0C .2y -x -4=0D .2x +y -7=07.过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为( ). A .19x -9y =0B .9x +19y =0C .19x -3y = 0D .3x +19y =08.直线l 1:x +a 2y +6=0和直线l 2 : (a -2)x +3ay +2a =0没有公共点;则a 的值 是( ).(第2题)A .3B .-3C .1D .-19.将直线l 沿y 轴的负方向平移a (a >0)个单位;再沿x 轴正方向平移a +1个单位得直线l';此时直线l' 与l 重合;则直线l' 的斜率为( ).A .1+a a B .1+-a aC .aa 1+ D .aa 1+-10.点(4;0)关于直线5x +4y +21=0的对称点是( ). A .(-6;8) B .(-8;-6)C .(6;8)D .(-6;-8)二、填空题11.已知直线l 1的倾斜角 1=15°;直线l 1与l 2的交点为A ;把直线l 2绕着点A 按逆时针方向旋转到和直线l 1重合时所转的最小正角为60°;则直线l 2的斜率k 2的值为 .12.若三点A (-2;3);B (3;-2);C (21;m )共线;则m 的值为 . 13.已知长方形ABCD 的三个顶点的坐标分别为A (0;1);B (1;0);C (3;2);求第四个顶点D 的坐标为 .14.求直线3x +ay =1的斜率 .15.已知点A (-2;1);B (1;-2);直线y =2上一点P ;使|AP |=|BP |;则P 点坐标为 .16.与直线2x +3y +5=0平行;且在两坐标轴上截距的和为6的直线方程是 .17.若一束光线沿着直线x -2y +5=0射到x 轴上一点;经x 轴反射后其反射线所在直线的方程是 .三、解答题18.设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y =2m -6(m ∈R ;m ≠-1);根据下列条件分别求m 的值:①l 在x 轴上的截距是-3;②斜率为1.19.已知△ABC 的三顶点是A (-1;-1);B (3;1);C (1;6).直线l 平行于AB ;交AC ;BC 分别于E ;F ;△CEF 的面积是△CAB 面积的41.求直线l 的方程.20.一直线被两直线l 1:4x +y +6=0;l 2:3x -5y -6=0截得的线段的中点恰好是坐标原点;求该直线方程..21.直线l 过点(1;2)和第一、二、四象限;若直线l 的横截距与纵截距之和为6;求直线l 的方程.第三章 直线与方程(第19题)参考答案A 组 一、选择题 1.C解析:直线x =1垂直于x 轴;其倾斜角为90°. 2.D解析:直线l 1的倾斜角 α1是钝角;故k 1<0;直线l 2与l 3的倾斜角 α2;α3 均为锐角且α2>α3;所以k 2>k 3>0;因此k 2>k 3>k 1;故应选D .3.A解析:因为直线l 1经过两点(-1;-2)、(-1;4);所以直线l 1的倾斜角为2π;而l 1∥l 2;所以;直线l 2的倾斜角也为2π;又直线l 2经过两点(2;1)、(x ;6);所以;x =2. 4.C解析:因为直线MN 的斜率为1-=2-3-3+2;而已知直线l 与直线MN 垂直;所以直线l 的斜率为1;故直线l 的倾斜角是4π. 5.C解析:直线Ax +By +C =0的斜率k =B A-<0;在y 轴上的截距BC D =->0;所以;直线不通过第三象限.6.A解析:由已知得点A (-1;0);P (2;3);B (5;0);可得直线PB 的方程是x +y -5=0. 7.D 8.D 9.B解析: 结合图形;若直线l 先沿y 轴的负方向平移;再沿x 轴正方向平移后;所得直线与l 重合;这说明直线 l 和l ’ 的斜率均为负;倾斜角是钝角.设l ’ 的倾斜角为 θ;则tan θ=1+-a a. 10.D解析:这是考察两点关于直线的对称点问题.直线5x +4y +21=0是点A (4;0)与所求点A'(x ;y )连线的中垂线;列出关于x ;y 的两个方程求解.二、填空题 11.-1.解析:设直线l 2的倾斜角为 α2;则由题意知: 180°-α2+15°=60°;α2=135°;∴k 2=tan α2=tan (180°-45°)=-tan45°=-1. 12.21. 解:∵A ;B ;C 三点共线; ∴k AB =k AC ;2+213-=2+33-2-m .解得m =21. 13.(2;3).解析:设第四个顶点D 的坐标为(x ;y ); ∵AD ⊥CD ;AD ∥BC ; ∴k AD ·k CD =-1;且k AD =k BC . ∴0-1-x y ·3-2-x y =-1;0-1-x y =1. 解得⎩⎨⎧1=0=y x (舍去)⎩⎨⎧3=2=y x所以;第四个顶点D 的坐标为(2;3). 14.-a3或不存在. 解析:若a =0时;倾角90°;无斜率. 若a ≠0时;y =-a 3x +a 1 ∴直线的斜率为-a3. 15.P (2;2).解析:设所求点P (x ;2);依题意:22)12()2(-++x =22)22()1(++-x ;解得x =2;故所求P 点的坐标为(2;2).16.10x +15y -36=0.(第11题)解析:设所求的直线的方程为2x +3y +c =0;横截距为-2c ;纵截距为-3c;进而得 c = -536. 17.x +2y +5=0.解析:反射线所在直线与入射线所在的直线关于x 轴对称;故将直线方程中的y 换成 -y .三、解答题 18.①m =-35;②m =34. 解析:①由题意;得32622---m m m =-3;且m 2-2m -3≠0. 解得 m =-35. ②由题意;得123222-+--m m m m =-1;且2m 2+m -1≠0. 解得 m =34. 19.x -2y +5=0.解析:由已知;直线AB 的斜率 k =1311++=21. 因为EF ∥AB ;所以直线EF 的斜率为21. 因为△CEF 的面积是△CAB 面积的41;所以E 是CA 的中点.点E 的坐标是(0;25). 直线EF 的方程是 y -25=21x ;即x -2y +5=0. 20.x +6y =0.解析:设所求直线与l 1;l 2的交点分别是A ;B ;设A (x 0;y 0);则B 点坐标为 (-x 0;-y 0).因为A ;B 分别在l 1;l 2上;所以⎪⎩⎪⎨⎧0=6-5+3-0=6++40000y x y x①+②得:x 0+6y 0=0;即点A 在直线x +6y =0上;又直线x +6y =0过原点;所以直线l 的方程为x +6y =0.21.2x +y -4=0和x +y -3=0.①②解析:设直线l 的横截距为a ;由题意可得纵截距为6-a .∴直线l 的方程为1=-6+aya x .∵点(1;2)在直线l 上;∴1=-62+1a a ;a 2-5a +6=0;解得a 1=2;a 2=3.当a =2时;直线的方程为142=+y x ;直线经过第一、二、四象限.当a =3时;直线的方程为133=+yx ;直线经过第一、二、四象限.综上所述;所求直线方程为2x +y -4=0和x +y -3=0.。
高中数学直线与方程单元测试题
(时间:120分钟,满分:150分)
姓名 成绩
一、选择题(本大题共10小题,每小题5分,共50分)
1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是( )
A 30° B 45° C 60° D 90°
2. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=
A 、 -3
B 、-6
C 、23-
D 、32
3.点P (-1,2)到直线8x-6y+15=0的距离为( )
(A )2 (B )21 (C )1 (D )2
7 4. 点M(4,m )关于点N(n, - 3)的对称点为P(6,-9),则( )
A m =-3,n =10 B m =3,n =10
C m =-3,n =5 D m =3,n =5
5.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( )
A 3x-y-8=0 B 3x+y+4=0
C 3x-y+6=0
D 3x+y+2=0
6.过点M(2,1)的直线与X轴,Y轴分别交于P,Q两点,且|MP|=|MQ|, 则L的方程是( )
A x-2y+3=0 B 2x-y-3=0
C 2x+y-5=0
D x+2y-4=0
7. 直线mx-y+2m+1=0经过一定点,则该点的坐标是
A (-2,1)
B (2,1)
C (1,-2)
D (1,2)
8. 直线0202=++=++n y x m y x 和的位置关系是
(A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定
9. 如图1,直线l
1、l
2、l 3的斜率分别为k 1、k 2、k 3,则必有( )
A. k 1<k 3<k 2
B. k 3<k 1<k 2
C. k 1<k 2<k 3
D. k 3<k 2<k 1
10.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边
AB 上的中线所在的直线方程为( )
(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0
二、填空题(本大题共4小题,每小题5分,共25分)
11.已知点)4,5(-A 和),2,3(B 则过点)2,1(-C 且与B A ,的距离相等的直线方程为 .
12.过点P(1,2)且在x 轴,y 轴上截距相等的直线方程是 .
13.直线5x+12y+3=0与直线10x+24y+5=0的距离是 .
14.原点O在直线L上的射影为点H(-2,1),则直线L的方程为 .
15.直线12
y x =关于直线1x =对称的直线方程是 三、解答题(本大题共6小题, 75分)
16. ①求平行于直线3x+4y-12=0,且与它的 距离是7的直线的方程;
②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是105
3的直线的方程.
17.直线x+m 2y+6=0与直线(m-2)x+3my+2m=0没有公共点,求实数m 的值.
18.已知直线l 被两平行直线063=-+y x 033=++y x 和所截得的线段长为3,且直线过点(1,
0),求直线l 的方程.
19.过直线2x+y+8=0和x+y+3=0的交点P 作一直线l ,使它夹在两平行直线x -y -5=0和 x -y -2=0之间的线段长等于3,求直线l 的方程.
20.光线沿直线1l :250x y -+=射入,遇到直线2l :3270x y -+=反射,求反射光线所在的直线3l 的方程
21.(Ⅰ)若已知直线1l 上的点满足260ax y ++=,直线2l 上的点满足2(1)10(1)x a y a a +-+-=≠,
试求a 为何值时,⑴12//l l ;⑵12l l ⊥.
(Ⅱ)已知点()3,5A -,()2,15B ,试在直线l :3440x y -+=上找一点P ,使PA PB + 最小,并求出最小值.。