八年级数学下册19.2.2一次函数教案2(新版)新人教版
- 格式:doc
- 大小:36.00 KB
- 文档页数:2
19.2.2 一次函数——待定系数法求一次函数解析式教案引言本教案旨在教授八年级下册数学课程中的一次函数待定系数法求解问题。
一次函数是初等数学中最基本的函数之一,待定系数法则是解决一次函数问题中常用的一种方法。
本教案将帮助学生掌握待定系数法的基本原理,并通过具体例题的讲解,引导学生能够独立解决一次函数问题,并运用所学知识解决实际生活中的问题。
目标•理解一次函数的概念及特征•掌握待定系数法求解一次函数的步骤和方法•能够独立解决一次函数相关问题•运用所学知识解决实际问题教学内容1.一次函数回顾2.待定系数法求一次函数解析式的步骤和方法3.实例分析与解题训练4.应用案例分析教学步骤一、一次函数回顾1.提问:什么是一次函数?2.引导学生回顾一次函数的定义和示例,并讨论函数的特征。
二、待定系数法求一次函数解析式的步骤和方法1.引入待定系数法的概念,解释其基本原理。
2.解释待定系数法的求解步骤:–步骤一:列方程–步骤二:解方程–步骤三:找到解析式3.用具体例子演示待定系数法的求解过程,并解释其中的关键步骤和技巧。
三、实例分析与解题训练1.展示一些具体的一次函数问题,并引导学生运用待定系数法解决这些问题。
2.让学生分组进行练习,相互交流并解答问题。
四、应用案例分析1.提供一些实际生活中的问题,要求学生运用所学知识解决这些问题。
2.引导学生思考如何用一次函数和待定系数法来建立模型和解决问题。
总结与反思通过本节课的学习,学生应该对一次函数的特点和待定系数法有较为全面的理解,并能够灵活运用待定系数法解决一次函数问题。
同时,学生应该能够将所学知识运用到实际生活中,解决与一次函数相关的问题。
希望学生们能够通过课后的复习和实践,进一步巩固所学内容,并提升自己的问题解决能力。
课后作业1.自选一个实际生活中的问题,并用一次函数和待定系数法解决。
2.阅读教材相关章节,复习一次函数的相关知识。
注意:以上内容仅供参考,老师可以根据班级实际情况和教学需要进行适当调整。
19.2.2 一次函数的概念-2022-2023学年人教版八年级数学下册教案(含详解)教学目标1.了解一次函数的定义和概念;2.学会绘制一次函数的图像;3.掌握一次函数的性质和使用方法。
教学准备1.教材:2022-2023学年人教版八年级数学下册;2.教具:白板、黑板、彩色粉笔、直尺、铅笔。
教学过程1. 导入新知•引出问题:我们在前几节课学过的函数都是二次函数或三次函数,那么一次函数是如何定义的呢?它和其他函数有什么不同之处?•学生思考并回答问题。
2. 学习新知•引导学生打开教材第19页,阅读19.2.2节的内容,了解一次函数的定义和概念。
•进行示范演示,并让学生一起完成例题。
3. 拓展应用•将学生分成小组,进行小组赛。
•每组从现实生活中选择一个具体问题,使用一次函数解决,并讲解解题步骤和思路。
•学生通过小组讨论,提出问题并解决问题,培养团队合作能力和问题解决能力。
4. 巩固练习•随堂练习:教师提供一些练习题,让学生进行课堂练习。
•将答案在黑板上进行公开讲解,指导学生进行自我纠错。
5. 归纳总结•总结本节课学习的要点,强调一次函数的特点和性质。
课后作业1.阅读教材第19页的相关内容,加深对一次函数的理解;2.完成课后习题第2、3题。
教学反思本节课通过引入问题的方式激发了学生的学习兴趣,使学生主动思考和回答问题,培养了他们的思维能力。
同时,采用了小组赛的形式,增强了学生的合作意识和团队精神。
在拓展应用环节中,学生通过解决具体问题的方式,将理论知识应用到实践中,提高了他们的问题解决能力。
通过课堂练习和归纳总结等环节,巩固了学生对一次函数的理解和掌握程度。
在以后的教学中,可以在导入新知环节引入更多的问题,加强学生的探究性学习。
人教版八年级下第19章第二节________ 1922 —次函数(2)《一次函数的图像和性质》教学设计一、教学目标1.掌握一次函数图象及其画法,理解一次函数的性质;2.体会数形结合思想、分类讨论思想在分析问题和解决问题中的作用;3.体会从特殊到一般的研究问题的方法;4.提高学生动手实践的能力和与他人交流合作的意识.二、教学重点掌握一次函数的图象和性质。
三、教学难点理解一次函数的图象和性质,并能灵活应用.四、教学方法教师启发与学生自主探究相结合五、教学手段利用多媒体等教学手段六、过程设计的图象2•结合学过的函数y=x的图象,比较两个函数的解析式,你能说明函数y=x・2的图象为什么是直线吗?3.如何由函数y二x的图象得到函数y =x • 2的图象?4.一次函数y = kx • b的图象是什么形状,由直线y = kx可经过怎样的变换得到直线y 二kx b ?例画出函数y = x-2的图象5.画一次函数y = kx b的图象有哪些方法?活动3 :自主实践,深入研究在同一直角坐标系中画出以下函数的图象y=xT , y_-x-1 ,学生通过观察、比较得到函数y =x与y =x •2的图象之间的关系.学生讨论函数y = kx • b与y二kx图象的关系并发表自己的看法.教师利用《几何画板》进行演示.师生一起总结得到:(1) 一次函数y二kx • b的图象是一条直线;(2)由直线y =kx平移|b |个单位长度得到直线y = kx • b(当b 0时,向上平移;当b : 0时,向下平移).学生画图,交流画法,并总结画一次函数y = kx • b的图象的方法.在本次活动中教师应重点关注:(1)学生在描点画图的过程中,是否注意两个函数图象的关系;(2)学生能否通过函数解析式(数)对“平移”(形)作出解释;一位学生利用实物投影仪展示,并谈谈自己的画法.分析每条直线的变化趋势,观察k的正负对函数图象变化趋势的影响,让学生在动手操作的过程中从“形”的角度感知一次函数的图象的形状.让学生在描点的过程中感受正比例函数与一次函数图象之间的位置关系.(2)引导学生通过比较解析式,发现两个解析式仅在常数项上有区别,其他部分完全相同,因此,对于自变量的任一值,这两个函数相应的值总差同一个常数.这反映在图象上,就是在横坐标相同的情况下,两个函数图象上对应的纵坐标总差同一个值,即将正比例函数的图象经过向上或向下的平移得到相应的一次函数的图象.由此,引导学生从“数”的角度认识一次函数图象,进而在理解正比例函数图象的基础上来认识一般的一次函数的图象.(4)将以前学过的平移与现在讨论的函数图象联系起来,增强学生对函数y=kx,b与函数y = kx的认识,让学生体会数形结合思想的应用.(5)通过展示学生的不同画法,找到简便的画法,让学生感受到数学的简洁美.(1)通过动手实践,巩固两点法画图的方法,让学生通过观察直观地得到一次函数的y随x 的变化而变化的情况以及k的正y =0.5x —1, y = —2x —1 ;观察上面四个一次函数的图象,探究一次函数y = kx +b中k 的正负对函数图象有什么影响,并在此基础上表述函数的性质. 进而总结函数性质.当k >0时,直线y =kx +b从左向右上升,y随x的增大而增大;当kcO时,直线y = kx+b从左向右下降,y随x的增大而减小.在本次活动中教师应重点关注:(1)学生在用两点法画图时是否能选择合适的点;(2)学生是否注意到一次函数的性质与k有关,且与正比例函数的性质相同(3)学生从“数”与“形”两个方面去理解和掌握一次函数的性质.负对函数图象的影响,培养学生观察分析的能力和从图象中获取信息的能力.(2)通过类比正比例函数的性质,加深对一次函数的y随x 的变化而变化的情况的理解.(3)让学生经历画图类比一一归纳的数学活动过程.活动4:反馈练习,夯实基础1.直线y = 2x -3与x轴交点坐标为,与y轴交点坐标为,图象经过第象限,y随x的增大而2 .函数y = -3x - 2随x的增大而.它的图象可由直线y = -3x向平移个单位得到.学生独立完成,教师巡视,了解学生对知识的掌握情况.师生共评,及时纠正学生的错误.在本次活动中教师应重点关注:(1)学生在练习中反映出的问题,有针对性地讲解;(2)学生对数形结合思想和分类讨论思想的掌握与运用.通过一系列的练习,可以实现知识向能力的转化.学生在尝试运用一次函数的图象和性质解决问题的过程中,进一步加深了对一次函数的图象和性质的理解.同时训练学生运用数形结合思想解决问题的意识和能力.活动5 :小结评价,畅谈收获通过这节课的学习,你有什么收获?教师引导学生归纳总结本节课所学的知识.在本次活动中教师应重点关注:课堂小结不仅可以使学生从总体上把握知识,强化对知识的理解和记忆,还可以培养学生的数学语言表达能力.引导学生积。
人教版数学八年级下册19.2.2《一次函数》教案2一. 教材分析人教版数学八年级下册19.2.2《一次函数》是学生在学习了初中数学基础知识后,对函数概念、性质有了初步了解的基础上进行教学的。
本节内容主要让学生掌握一次函数的定义、性质和图像,进一步理解函数的概念,为后续学习其他类型的函数打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了函数的概念,对函数的性质有了初步了解,具备一定的抽象思维能力。
但部分学生对函数图像的识别和理解还有待提高,因此,在教学过程中,需要关注这部分学生的学习情况,通过具体实例和实际问题,引导学生理解和掌握一次函数的性质和图像。
三. 教学目标1.了解一次函数的定义、性质和图像,掌握一次函数的解析式表示方法。
2.能够运用一次函数解决实际问题,提高学生的应用能力。
3.培养学生的抽象思维能力,提高学生的学习兴趣。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数图像的特点和识别。
3.一次函数在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探究、讨论、总结,掌握一次函数的知识。
2.利用多媒体课件和实物模型,直观展示一次函数的图像,帮助学生理解和记忆。
3.结合实际问题,让学生运用一次函数解决实际问题,提高学生的应用能力。
4.采用分组合作、讨论交流的教学方式,培养学生的团队合作意识和沟通能力。
六. 教学准备1.多媒体课件和教学素材。
2.实物模型和教学工具。
3.练习题和实际问题。
七. 教学过程1.导入(5分钟)利用多媒体课件展示一次函数的图像,引导学生关注一次函数的斜率和截距,激发学生的学习兴趣。
2.呈现(10分钟)介绍一次函数的定义、性质和图像,让学生通过观察、分析、总结,理解一次函数的基本特点。
3.操练(10分钟)让学生分组讨论,分析给定的一次函数实例,判断它们的性质和图像,培养学生的动手操作能力和团队协作精神。
4.巩固(10分钟)利用多媒体课件和实物模型,让学生直观地感受一次函数的图像,加深对一次函数性质的理解。
人教版八年级下册19.2.2一次函数教学设计一、教学目标通过本节课的学习,学生应该能够:1.理解一次函数的概念和基本形式;2.掌握一次函数的图像特征和变化规律;3.运用一次函数解决实际问题;4.提高数学思维能力和实际问题解决能力;二、教学内容1. 一次函数的概念和基本形式•一次函数的定义;•一次函数的基本形式:y=kx+b;•解析式与图像的关系。
2. 一次函数的图像特征和变化规律•平移;•伸缩;•翻折。
3. 运用一次函数解决实际问题•根据问题列出一次函数表达式;•根据实际情况确定函数的参数;•利用函数解决实际问题。
三、教学过程设计1. 导入新知识为了导入新知识并激发学生的兴趣,老师可以提出如下问题:•小明同学每天在校园里跑步,他想记录自己跑步时的速度和时间之间的关系。
你有什么方法来表示这种关系呢?通过引入这种实际的问题,帮助学生认识新知识的实际应用,激发学生的兴趣。
2. 学习新知识接下来,老师可以介绍一次函数的定义和基本形式,并利用图例展示一次函数的图像特征和变化规律。
然后,老师可以组织学生在课堂上完成一些简单的练习题,以检验他们理解的深度和广度。
3. 解决实际问题最后,老师可以解决一些实际的问题,例如:•小明同学每天在校园里跑步,他发现他的速度和时间之间的关系可以用一次函数表示,即y=2x+5。
如果小明同学跑步2小时,他跑了多远呢?•小李同学想用一条斜率为3,截距为−2的直线去近似表示下列表中的数值数据,写出这条直线的解析式并绘制出它的图像。
这些问题可以帮助学生结合实际问题来学习新知识,并提高他们的数学思维能力和实际问题解决能力。
四、教学评估在课堂结束时,老师可以通过以下方式对学生的学习情况进行评估:•随堂测试;•课堂练习;•课堂讨论。
五、教学后记在课堂结束后,老师应该根据学生的学习情况,调整后续教学计划和课程安排,及时对学生提出改进建议和意见,帮助他们提高学习成绩和素质。
人教版数学八年级下册19.2.2《一次函数》教学设计教师版一. 教材分析人教版数学八年级下册19.2.2《一次函数》是学生在学习了初中数学基础知识后,进一步深入研究函数的性质和应用。
本节内容主要包括一次函数的定义、表达式、图像和性质等方面。
通过本节课的学习,使学生能够理解一次函数的概念,掌握一次函数的表达式和图像特点,能够运用一次函数解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了初中数学的基本知识,具备了一定的逻辑思维和分析问题的能力。
但是对于一次函数的图像和性质的理解还需要进一步引导和培养。
因此,在教学过程中,要注重启发学生思考,引导学生通过观察、分析、归纳等方法自主学习一次函数的相关知识。
三. 教学目标1.知识与技能目标:使学生掌握一次函数的定义、表达式、图像和性质,能够运用一次函数解决实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生的逻辑思维和分析问题的能力。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.教学重点:一次函数的定义、表达式、图像和性质。
2.教学难点:一次函数图像的特点和应用。
五. 教学方法1.情境教学法:通过生活实例引入一次函数的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生通过观察、分析、归纳等方法自主学习一次函数的相关知识。
3.小组合作学习:引导学生分组讨论,培养学生的团队合作意识和自主学习能力。
六. 教学准备1.教学课件:制作一次函数的相关课件,包括图片、动画等素材,以便于学生更直观地理解一次函数的图像和性质。
2.教学素材:准备一些实际问题,以便于学生在课堂上进行练习和讨论。
七. 教学过程1.导入(5分钟)通过一个生活实例引入一次函数的概念,例如:某商品的售价为100元,商家进行打折活动,打八折后的售价为80元,求打折的折扣率。
让学生思考:这个问题可以用数学中的哪个知识点来解决?从而引出一次函数的概念。
人教版数学八年级下册19.2.2《一次函数》说课稿2一. 教材分析《一次函数》是人民教育出版社出版的初中数学八年级下册第19.2.2节的内容。
本节课的主要内容是让学生了解一次函数的定义、性质以及一次函数图象与系数的关系。
通过学习本节课,使学生能运用一次函数解决实际问题,提高学生的数学应用能力。
二. 学情分析学生在学习本节课之前,已经掌握了小学数学的基本知识,具备了一定的逻辑思维能力和运算能力。
但对于一次函数的定义、性质以及一次函数图象与系数的关系可能还比较陌生。
因此,在教学过程中,教师需要结合学生的实际情况,循序渐进地引导学生理解和掌握一次函数的相关知识。
三. 说教学目标1.知识与技能目标:使学生了解一次函数的定义、性质,学会绘制一次函数图象,掌握一次函数图象与系数的关系。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生独立思考、合作交流的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的数学素养,使学生感受数学在生活中的应用。
四. 说教学重难点1.教学重点:一次函数的定义、性质,一次函数图象与系数的关系。
2.教学难点:一次函数图象与系数的关系的推导和理解。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组讨论法等。
2.教学手段:多媒体课件、黑板、粉笔、教学卡片等。
六. 说教学过程1.导入新课:通过生活中的实际例子,引出一次函数的概念,激发学生的学习兴趣。
2.知识讲解:讲解一次函数的定义、性质,引导学生通过观察、分析、归纳等方法,发现一次函数图象与系数的关系。
3.案例分析:分析具体的一次函数案例,使学生进一步理解和掌握一次函数的相关知识。
4.实践操作:让学生动手绘制一次函数图象,巩固所学知识。
5.小组讨论:学生进行小组讨论,分享学习心得,互相学习,共同进步。
6.总结提升:对本节课的主要内容进行总结,强化学生对一次函数的理解和记忆。
七. 说板书设计板书设计要清晰、简洁、明了,能够突出一次函数的重点知识。
人教版数学八年级下册19.2.2第2课时《一次函数的图象与性质》说课稿一. 教材分析《一次函数的图象与性质》是人教版数学八年级下册第19.2.2节的内容,这部分内容是在学生已经掌握了函数的概念、一次函数的定义和表达式的基础上进行讲解的。
本节课的主要内容是一次函数的图象与性质,包括一次函数的图象是一条直线,直线的斜率和截距的概念,以及一次函数的单调性和特殊点。
这部分内容不仅是学生对函数知识的深化,也是对函数知识在实际问题中的应用。
二. 学情分析八年级的学生已经具备了一定的函数知识,对一次函数的概念和表达式已经有了一定的了解。
但是,学生对一次函数的图象与性质的理解还需要进一步的引导和启发。
此外,学生对数学知识的应用能力还需要加强,需要通过实际问题来引导学生理解和运用一次函数的图象与性质。
三. 说教学目标1.知识与技能目标:学生能够理解一次函数的图象与性质,包括一次函数的图象是一条直线,直线的斜率和截距的概念,以及一次函数的单调性和特殊点。
2.过程与方法目标:学生能够通过实际问题来运用一次函数的图象与性质,提高学生对数学知识的应用能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,提高学生对数学学科的兴趣和热情。
四. 说教学重难点1.教学重点:一次函数的图象与性质,包括一次函数的图象是一条直线,直线的斜率和截距的概念,以及一次函数的单调性和特殊点。
2.教学难点:一次函数的图象与性质在实际问题中的应用。
五. 说教学方法与手段本节课采用问题驱动的教学方法,通过实际问题引导学生理解和运用一次函数的图象与性质。
同时,利用多媒体手段,展示一次函数的图象和性质,帮助学生直观地理解和记忆。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考一次函数的图象与性质。
2.讲解:讲解一次函数的图象与性质,包括一次函数的图象是一条直线,直线的斜率和截距的概念,以及一次函数的单调性和特殊点。
3.练习:学生进行课堂练习,巩固对一次函数的图象与性质的理解。
第十九章一次函数
19.2 一次函数
19.2.2 一次函数 (2)
【教学目标】
知识与技能
1.会用“两点法”画出一次函数的图象。
2.结合图象,理解直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响。
过程与方法
1.通过对应描点来研究一次函数的图象,经历知识的归纳、探究过程。
2.通过一次函数的图象归纳函数的性质,体验数形结合的应用。
情感、态度与价值观
在探究函数的图象和性质的活动中,通过一系列的探究问题,渗透与人交流合作的意识和探究精神。
【教学重难点】
重点:会用“两点法”画出一次函数的图象。
难点:一次函数的图象及其性质。
【导学过程】
【知识回顾】
一次函数的概念
【情景导入】
你们知道一次函数是什么形状吗? 那就让我们一起做一做,看一看。
【新知探究】
探究一、
例2、画出函数y=-6x,y=-6x+5的图象(在同一坐标系内).
1.请你比较上面三函数的图象的相同点与不同点,填出你的观察结果:
函数的图象形状都是,并且倾斜程度;函数y=-6x的图象经过(0,0);函数y=-6x+5的图象与y轴交于点,即它可以看作由直线y=-6x向平移个单位长度而得到的;函数y=-6x-5的图象与y轴交点是,即它可以看作由直线y=-6x向平移个单位长度而得到的;比较三个函数解析式,试解释这是为什么?
2.联系上面例2,考虑一次函数y=kx+b的图象是什么形状,它与直线y=kx有什么关系?
3. 归纳平移法则:
一次函数y=kx+b的图象是一条,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移个单位长度而得到(当b>0时,向平移;当b<0时,向平移).
对于一次函数y=kx+b(其中k)b为常数,k≠0)的图象——直线,你认为有没有更为简便的方法
探究二、例3 :分别画出下列函数的图像(在练习本中完成)
(1)(2)y=-0.5x+1
分析:由于一次函数的图像是直线,所以只要确定两个点就能画出它,一般选取直线与x 轴,y轴的交点。
(1)(2)y=-0.5x+1
观察上面2个图像,(1)经过_________象限;y随x的增大而_______,函数的图像从左到右________;(2)y=-0.5x+1经过_________象限;y随x的增大而_______,函数的图像从左到右________;
归纳:
1.由此可以得到直线中,k ,b的取值决定直线的位置:
(1)直线经过___________象限;
(2)直线经过___________象限;
(3)直线经过___________象限;
(4)直线经过___________象限;
2.一次函数的性质:
(1)当时,y随x的增大而_______,这时函数的图像从左到右_______;
(2)当时,y随x的增大而_______,这时函数的图像从左到右_______;
3.一次函数y=kx+b图象的画法:在y轴上取(0,b)在x轴上取点(- ,0),过这两点的直线即所求图象.
【知识梳理】
一次函数y=kx+b的性质.
【随堂练习】
1、画出函数y=x+1, y=-x+1, y=2x+1 y=-2x+1的图象,由它们联系,一次函数解析式y=kx+b (k、b是常数,k≠0)中,k的正负对函数图象有什么影响?
2、练习直线y=2x-3与x轴交点坐标为_______,与y轴交点坐标为______。
图象经过第_____象限,y随x增大而______。
3、在同一坐标函数中画出下列函数图象归纳y=kx+b(k、b是常数,k≠0)中b对函数图象的影响。
1、y=x-1 y=x y=x+1
2、y=-2x+1 y=-2x y=-2x+1。