北师大七年级下数学第一章整式的乘除练习题
- 格式:docx
- 大小:137.60 KB
- 文档页数:3
北师大版七年级数学下册第一章整式的乘除1.1~1.3计算综合专项训练1.计算:(1)a2•a3(2)(﹣a2)3(3)a10÷a9(4)(﹣bc)4÷(﹣bc)22.计算:(1)x2•x5﹣x3•x4;(2)m3•m3+m•m5;(3)a•a3•a2+a2•a4;(4)x2•x4+x3•x2•x.3.计算:(1)x3•x3;(2)m2•m3;(3)a3+a3;(4)x2•x2•x2;(5)102•10•105;(6)y3•y2•y4.4.计算:(1)(﹣x)3•x2•(﹣x)4;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b);(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5.5.计算:(1)a3•a2•a (2).6.计算:(﹣x)•(﹣x)2•(﹣x)3+(﹣x)•(﹣x)5.7.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.8.计算:y3•(﹣y)•(﹣y)5•(﹣y)2.9.计算:(1)(﹣8)2011•(﹣0.125)2012;(2)(a﹣b)5(b﹣a)3.10.计算:a3•a•a5+a4•a2•a3.11.计算;(1)x•x2•x3+(x2)3﹣2(x3)2;(2)[(x2)3]2﹣3(x2•x3•x)2;(3)(﹣2a n b3n)2+(a2b6)n;(4)(﹣3x3)2﹣(﹣x2)3+(﹣2x)2﹣(﹣x)3.12.计算:(1)59×0.28;(2)×(3)22×42×5613.计算:(1)(﹣8)12×83 (2)210×410 (3)(m4)2+m5•m3(4)﹣[(2a﹣b)4]2 (5)(3xy2)2 (6)(a﹣b)5(b﹣a)3(1)﹣12008×|﹣.(2).15.计算:(1)()﹣1+(﹣2)3×(π﹣2)0;(2)(﹣a2)3﹣a2•a4+(﹣2a4)2÷a2.16.计算:(1)(y2)3÷y6•y (2)y4+(y2)4÷y4﹣(﹣y2)217.计算:﹣()2×9﹣2×(﹣)÷+4×(﹣0.5)2(1)(﹣1)2019+(π﹣3.14)0﹣()﹣1.(2)(﹣2x2y)3﹣(﹣2x3y)2+6x6y3+2x6y219.计算(1)(m﹣n)2•(n﹣m)3•(n﹣m)4(2)(b2n)3(b3)4n÷(b5)n+1(3)(a2)3﹣a3•a3+(2a3)2;(4)(﹣4a m+1)3÷[2(2a m)2•a].20.计算:(1)(﹣2ab)•(﹣3ab)3(2)5x2•(3x3)2(4)(﹣0.16)•(﹣10b2)3(4)(2×10n)(×10n)21.计算:()100×(1)100×(0.5×3)2019×(﹣2×)2020.22.计算:(1)﹣2﹣17﹣(﹣27)+(﹣10);(2)﹣;(4)a2﹣2(a2﹣3ab)﹣ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3;(5)解方程:3(2x﹣1)=2x+3;(6)解方程:.答案提示1.解:(1)a2•a3=a5;(2)(﹣a2)3=﹣a6;(3)a10÷a9=a(a≠0);(4)(﹣bc)4÷(﹣bc)2=b2c2;2.解:(1)x2•x5﹣x3•x4=x7﹣x7=0;(2)m3•m3+m•m5=m6+m6=2m6;(3)a•a3•a2+a2•a4=a1+3+2+a2+4=a6+a6=2a6;(4)x2•x4+x3•x2•x=x6+x6=2x6.3.解:(1)x3•x3=x3+3=x6;(2)m2•m3=m2+3=m5;(3)a3+a3=2a3;(4)x2•x2•x2=x2+2+2=x6;(5)102•10•105=102+1+5=108;(6)y3•y2•y4=y3+2+4=y9.4.解:(1)(﹣x)3•x2•(﹣x)4=﹣x3•x2•x4=﹣x9;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4=﹣a2•(﹣a7)•a4=a13;(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b)=b4•b2﹣(﹣b5)•(﹣b)=b6﹣b6=0;(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5=(﹣x7)•x2﹣x4•x5=﹣x9﹣x9=﹣2x9.5.解:(1)原式=a3+2+1=a6;(2)原式=(﹣)2008×()2008×(﹣)=﹣.6.解:原式=﹣x•x2•(﹣x3)﹣x•(﹣x5)=x6+x6=2x6.7.解:原式=﹣(a﹣b)6+8(a﹣b)6=7(a﹣b)68.解:原式=y3•(﹣y)•(﹣y)5•y2=y3•(﹣y)•(﹣y5)•y2=y3•y•y5•y2=y3+1+5+2=y11.9.解:(1)原式=(﹣8)2011•(﹣)2011•(﹣),=[﹣8×(﹣)]2011×(﹣),=1×(﹣),=﹣;(2)原式=(a﹣b)5•[﹣(a﹣b)]3=﹣(a﹣b)8.10.解:a3•a•a5+a4•a2•a3=a9+a9=2a9.11.解:(1)原式=x6+x6﹣2x6=0;(2)原式=(x6)2﹣3(x6)2=x12﹣3x12=﹣2x12;(3)原式=4a2n b6n+a2n b6n=5a2n b6n;(4)原式=9x6﹣(﹣x6)+4x2﹣(﹣x3)=9x6+x6+4x2+x3=10x6+x3+4x2.12.解:(1)59×0.28=(5×0.2)8×5=1×5=5;(2)(﹣)9×()9=[(﹣)×]9=(﹣1)9=﹣1;(3)22×42×56=22×52×42×54=(2×5)2×42×252=102×(4×25)2=102×1002=102×104=106.13.解:(1)(﹣8)12×83=812×83=815;(2)210×410=210×(22)10=210×220=230;(3)(m4)2+m5•m3=m8+m8=2m8;(4)﹣[(2a﹣b)4]2=﹣(2a﹣b)8;(5)(3xy2)2=9x2y4;(6)(a﹣b)5(b﹣a)3=﹣(a﹣b)5(a﹣b)3=﹣(a﹣b)8.14.解:(1)原式=﹣1×+1﹣=﹣+=0;(2)原式=224×()8﹣()100×()100×=(2×)24﹣(×)100×=1﹣=﹣.15.解:(1)原式=3+(﹣8)×1=﹣5;(2)原式=﹣a6﹣a6+4a6=2a6.16.解:(1)(y2)3÷y6•y=y6÷y6•y=y;(2)y4+(y2)4÷y4﹣(﹣y2)2=y4+y8÷y4﹣y4=y4+y4﹣y4=y4.17.解:=×××+4×=+1=118.解:(1)原式=﹣1+1﹣3=﹣3;(2)原式=﹣8x6y3﹣4x6y2+6x6y3+2x6y2=﹣2x6y3﹣2x6y2.19.解:(1)(m﹣n)2•(n﹣m)3•(n﹣m)4=(n﹣m)2+3+4,=(n﹣m)9;(2)(b2n)3(b3)4n÷(b5)n+1=b6n•b12n÷b5n+5=b6n+12n﹣5n﹣5=b13n﹣5;(3)(a2)3﹣a3•a3+(2a3)2=a6﹣a6+4a6=4a6;(4)(﹣4a m+1)3÷[2(2a m)2•a]=﹣64a3m+3÷8a2m+1=﹣8a m+220.解:(1)(﹣2ab)•(﹣3ab)3=(﹣2ab)•(﹣27a3b3)=54a4b4;(2)5x2•(3x3)2=5x2•(9x6)=45x8;(3)(﹣0.16)•(﹣1000b6)=160b6;(4)(2×10n)(×10n)=102n.21.解:原式=×===.22.解:(1)﹣2﹣17﹣(﹣27)+(﹣10)=﹣19+27﹣10=﹣2;﹣(2)==;(3)a2﹣2(a2﹣3ab)﹣ab=a2﹣2a2+6ab﹣ab=﹣a2+5ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3=a6+4a6﹣27a6=﹣22a6;(5)解方程:3(2x﹣1)=2x+3去括号,得6x﹣3=2x+3移项,得6x﹣2x=3+3合并同类项,得4x=6系数化为1,得;(6)解方程:去分母,得2(x+3)=4﹣(2x﹣1)去括号,得2x+6=4﹣2x+1移项,得2x+2x=4+1﹣6合并同类项,得4x=﹣1系数化为1,得.。
2023年七年级数学下册第1章《整式的乘除》检测卷(满分100分)一、选择题(共10小题,每小题3分,共30分)1.若2a=5,2b=3,则2a+b=()A.8B.2C.15D.12.计算(-x2)·(-x)4的结果是()A.x6B.x8C.-x6D.-x83.下列式子能用平方差公式计算的是()A.(2x-y)(-2x+y)B.(2x+1)(-2x-1)C.(3a+b)(3b-a)D.(-m-n)(-m+n)4.(2022江苏泰州泰兴济川中学月考)下列运算中,正确的是()A.a8÷a2=a4B.(-m)2·(-m3)=-m5C.x3+x3=x6D.(a3)3=a65.(2022江苏淮安洪泽期中)若a>0且a x=2,a y=3,则a x-y的值为()A.23B.1C.−1D.326.4a7b5c3÷(-16a3b2c)18432等于()A.aB.1C.-2D.-17.已知m-n=1,则m2-n2-2n的值为()A.1B.-1C.0D.28.如果x2-(a-1)x+9是一个完全平方式,则a的值为()A.7B.-4C.7或-5D.7或-49.若a=(π-2023)0,b=20222-2021×2023,c=-23,则a-b-c的值为()A.2021B.2022C.8D.110.从前,一位庄园主把一块长为a米,宽为b米(a>b>100)的长方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的长增加10米,宽减少10米,继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.变小了B.变大了C.没有变化D.无法确定二、填空题(共6小题,每小题3分,共18分)11.计算:−13×3101=.12.(2022广东佛山月考)已知a+b=8,ab=15,则a2+b2=.13.(2022江苏盐城滨海第一初级中学月考)已知4×16m×64m=421,则m的值为.14.已知一个三角形的面积等于8x3y2-4x2y3,一条边长等于8x2y2,则这条边上的高等于.15.调皮的弟弟把小明的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮小明算出被除式等于.÷(5x)=x2-3x+6.16.【学科素养·几何直观】有两个大小不同的正方形A和B,现将A、B并列放置后构造新的正方形如图1,其阴影部分的面积为16.将B放在A的内部得到图2,其阴影部分(正方形)的面积为3,则正方形A,B的面积之和为.三、解答题(共5小题,共52分)17.(2022宁夏银川三中月考)(14分)计算:(1)4y·(-2xy2);(2)32+12−232·−12B2;(3)(2a2+5;(4)(6x3y3+4x2y2-3xy)÷(-3xy).18.(12分)计算:(1)-12+(π-3.14)0-13+(-2)3;(2)2001×1999(运用乘法公式);(3)(x+y+3)(x+y-3).19.(6分)先化简,再求值:(2x+3y)2-(2x+y)(2x-y),其中x=13,y=-1.20.(2022江苏泰州二中月考)(10分)(1)已知m+4n-3=0,求2m·16n的值;(2)已知n为正整数,且x2n=4,求(x3n)2-2(2)2的值.21.【代数推理】(2022河北保定十七中期中)(10分)阅读下列材料:利用完全平方公式,将多项式x2+bx+c 变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求x2-12x+37的最小值.解:x2-12x+37=x2-2x·6+62-62+37=(x-6)2+1,∵不论x取何值,(x-6)2总是非负数,即(x-6)2≥0,∴(x-6)2+1≥1,∴当x=6时,x2-12x+37有最小值,最小值是1.根据上述材料,解答下列问题:(1)填空:x2-14x+=(x-)2;(2)将x2+10x-2变形为(x+m)2+n的形式,并求出x2+10x-2的最小值;(3)如图,第一个长方形的长和宽分别是(3a+2)和(2a+5),面积为S1,第二个长方形的长和宽分别是5a和(a+5),面积为S2,试比较S1与S2的大小,并说明理由.答案全解全析1.C当2a=5,2b=3时,2a+b=2a×2b=5×3=15,故选C.2.C(-x2)·(-x)4=-x2·x4=-x6,故选C.3.D A.原式=-(2x-y)(2x-y)=-(2x-y)2,故原式不能用平方差公式进行计算,此选项不符合题意;B.原式=-(2x+1)(2x+1)=-(2x+1)2,故原式不能用平方差公式进行计算,此选项不符合题意;C.原式=(3a+b)(-a+3b),故原式不能用平方差公式进行计算,此选项不符合题意;D.原式=(-m)2-n2=m2-n2,原式能用平方差公式进行计算,此选项符合题意.故选D.4.B a8÷a2=a6,故A选项错误;(-m)2·(-m3)=-m5,故B选项正确;x3+x3=2x3,故C选项错误;(a3)3=a9,故D选项错误.故选B.5.A a x-y=a x÷a y=2÷3=23.故选A.6.C4a7b5c3÷(-16a3b2c)18432=-14a4b3c218432=-2.故选C.7.A∵m-n=1,∴原式=(m+n)(m-n)-2n=m+n-2n=m-n=1,故选A.8.C∵x2-(a-1)x+9是一个完全平方式,∴x2-(a-1)x+9=(x+3)2或x2-(a-1)x+9=(x-3)2,∴a-1=±6,解得a=-5或a=7,故选C.9.C∵a=(π-2023)0=1,b=20222-(2022-1)×(2022+1)=20222-20222+1=1,c=-23=-8,∴a-b-c=1-1+8=8.故选C.10.A由题意可知原土地的面积为ab平方米,第二年按照庄园主的想法,土地的面积变为(a+10)(b-10)=ab-10a+10b-100=[ab-10(a-b)-100]平方米,∵a>b,∴ab-10(a-b)-100<ab,∴租地面积变小了,故选A.11.3解析原式13×310113×3100×3=3.故答案是3.12.34解析∵a+b=8,ab=15,∴(a+b)2=a2+2ab+b2=a2+30+b2=64,则a2+b2=34.故答案为34.13.4解析∵4×16m×64m=421,∴4×42m×43m=421,∴41+5m=421,∴1+5m=21,∴m=4.故答案为4.14.2x-y解析易知该边上的高=2(8x3y2-4x2y3)÷(8x2y2)=16x3y2÷(8x2y2)-8x2y3÷(8x2y2)=2x-y.故答案为2x-y.15.5x3-15x2+30x解析由题意可得被除式等于5x·(x2-3x+6)=5x3-15x2+30x.故答案为5x3-15x2+30x.16.19解析设正方形A的边长为a,正方形B的边长为b,由题图1得(a+b)2-a2-b2=16,∴2ab=16,∴ab=8,由题图2得a2-b2-2(a-b)b=3,∴a2+b2-2ab=3,∴a2+b2=3+2ab=3+2×8=19,∴正方形A,B的面积之和为19.故答案为19.17.解析(1)4y·(-2xy2)=-8xy3.(2)原式=32+12−232·14x2y2=34Ay+18yz−16x2y4.(3)(2a2+5=ab+10a+32b+15.(4)(6x3y3+4x2y2-3xy)÷(-3xy)=-2x2y2-43xy+1.18.解析(1)原式=-1+1-9-8=-17.(2)2001×1999=(2000+1)(2000-1)=20002-1=3999999.(3)(x+y+3)(x+y-3)=[(x+y)+3][(x+y)-3]=(x+y)2-9=x2+2xy+y2-9.19.解析(2x+3y)2-(2x+y)(2x-y)=(4x2+12xy+9y2)-(4x2-y2)=4x2+12xy+9y2-4x2+y2=12xy+10y2.当x=13,y=-1时,原式=12×13×(-1)+10×(-1)2=6.20.解析(1)∵m+4n-3=0,∴m+4n=3,∴2m·16n=2m·24n=2m+4n=23=8.(2)原式=x6n-2x4n=(x2n)3-2(x2n)2=64-2×16=64-32=32.21.解析(1)49;7.(2)x2+10x-2=x2+10x+25-25-2=x2+10x+25-27=(x+5)2-27≥-27,∴当x=-5时,x2+10x-2有最小值,为-27.(3)由题意得,S1=(2a+5)(3a+2)=6a2+19a+10,S2=5a(a+5)=5a2+25a,∴S1-S2=6a2+19a+10-(5a2+25a)=a2-6a+10=(a-3)2+1,∵(a-3)2≥0,∴(a-3)2+1≥1,∴S1-S2>0,∴S1>S2.。
☆☆☆ 北师大版数学七年级【下册】第一章 整式的乘除一、 同底数幂的乘法同底数幂的乘法法则: n m n ma a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是 一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n ma a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m nm a a a⋅=+(m 、n 均为正整数)二.幂的乘方与积的乘方1。
幂的乘方法则:mnnm a a =)((m ,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.2. ),()()(都为正数n m a a a mn mn nm ==.3。
底数有负号时,运算时要注意,底数是a 与(-a )时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成—a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n4.底数有时形式不同,但可以化成相同。
5.要注意区别(ab )n与(a+b)n意义是不同的,不要误以为(a+b )n=a n+b n(a 、b 均不为零).6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即nnnb a ab =)((n 为正整数)。
7.幂的乘方与积乘方法则均可逆向运用。
三. 同底数幂的除法1。
同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n ma a a -=÷ (a ≠0,m 、n 都是正数,且m 〉n ).2。
在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除"而且0不能做除数,所以法则中a ≠0。
北师大版数学七下第一章《整式的乘除》计算题专项训练1、4(a+b)+2(a+b)-5(a+b)化简得:(4+2-5)(a+b)=a+b答案为:a+b2、(3mn+1)(3mn-1)-8mn化简得:9m^2n^2-1-8mn=9m^2n^2-8mn-1答案为:9m^2n^2-8mn-13、-2-3×(1-(-1)÷2^2)×22÷7化简得:-2-3×(1-(-1)÷4)×2= -2-3×(1+0.25)×2=-16.5答案为:-16.54、[(xy-2)(xy+2)-2xy+4]÷(xy)化简得:(x^2y-4+2xy+4)÷xy=(x^2y+2xy)÷xy=x+2答案为:x+25、(2a-1)^2+(2a-1)(a+4),其中a=-2化简得:(2(-2)-1)^2+(2(-2)-1)(-2+4)=(-5)^2+(-10)(2)=45答案为:456、(1÷2ab)×(-2ab^2)^2÷4÷(1÷2x)^3化简得:-2a^2b^4×8x^3=-16a^2b^4x^3答案为:-16a^2b^4x^37、2(x^2+5xy)-6(2xy-x^2)化简得:2x^2+10xy-12xy+6x^2=8x^2-2xy答案为:8x^2-2xy8、(x+2)(x-3)-(x+1)(x-2)化简得:x^2-x-6-x^2+x+2x-2=x-4答案为:x-410、(x+2y)^2-(x+y)(x-y),其中x=-2,y=3化简得:(2(-2)+6)^2-(2(-2)+3)(2(-2)-3)=16-(-13)=29 答案为:2911、(-x-y)(x-y)+(x+y)^2化简得:-x^2+xy+xy-y^2+x^2+2xy+y^2=4xy答案为:4xy13、x^2-(x+2)(x-2)化简得:x^2-(x^2-4)=4答案为:414、(-3x^3)^2-(-2x^2)^3化简得:9x^6-8x^6=x^6答案为:x^615、(2a+b)^4÷(2a+b)^2化简得:(2a+b)^2=4a^2+4ab+b^2答案为:4a^2+4ab+b^216、123-124×122利用乘法公式计算124×122=化简得:123-=-答案为:-17、[(x+1)(x+2)-2]÷(-x)化简得:-(x^2+3x)=-(x(x+3))答案为:-(x(x+3))18、(2xy)·(-7xy)÷(14xy)化简得:-1/2答案为:-1/219、[(2x+y)^2+(2x+y)(2x-y)-4xy]÷(-2x),其中x=2,y=1化简得:[(2(2)+1)^2+(2(2)+1)(2(2)-1)-4(2)]÷(-2(2))=-15 答案为:-1520、-2a(3a-4b^2)÷5化简得:6a^2-8b^2÷5=-8/5(5-3a)(5+3a)答案为:-8/5(5-3a)(5+3a)21、(a+2b)(a-2b)化简得:a^2-4b^2答案为:a^2-4b^222、(x-1)(2x+3)化简得:2x^2+x-3答案为:2x^2+x-323、(a-3b)^2-9b^2-3.14化简得:a^2-6ab+9b^2-9b^2-3.14=a^2-6ab-3.14答案为:a^2-6ab-3.1424、3x^2y(-4xy^2)+5xy(-6xy)^2,其中x=2,y=3化简得:-36x^4y^3+5(-216x^3y^3)=-36x^4y^3-1080x^3y^3 答案为:-36x^4y^3-1080x^3y^325、3+0+(-2)+(892-890)化简得:3+0+(-2)+2=3答案为:326、(9abc)÷(2ab)·(-abc)化简得:-18c答案为:-18c27、(15xy-12xy-3x)÷(-3x)化简得:-1答案为:-128、(a+b)-4(2a-3b)+(3a-2b)化简得:a+b-8a+12b+3a-2b=-4a+11b答案为:-4a+11b30、(x+2)^2-(x-1)(x+1)化简得:x^2+4x+4-(x^2-1)=5x+5答案为:5x+531、3+0+(-2)+(892-890)化简得:3+0+(-2)+2=3答案为:332、(a-b)(a+ab+b)+b(a+b)化简得:a^2+ab^2+2ab+b^2答案为:a^2+ab^2+2ab+b^21.题目中的符号应该使用正确的数学符号,比如乘号用*代替,除号用/代替。
北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±2二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
一、选择题1.如图(1),把一个长为m ,宽为n 的长方形(m >n )沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .2m n -B .m ﹣nC .2mD .2n 2.若x 2+5x +m =(x +n )2,则m ,n 的值分别为( ). A .m =254,n =52 B .m =254,n =5 C .m =25,n =5 D .m =5,n =52 3.若x 2+kx +16能写成一个多项式的平方形式,则k 的值为( ) A .±8 B .8 C .±4 D .44.已知长方形ABCD ,AD AB >,10AD =,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S .当213S S b -=时,AB 的值是( )A .7B .8C .9D .105.下列运算中正确的是( )A .235x y xy +=B .()3253x y x y =C .826x x x ÷=D .32622x x x ⋅= 6.若2,32,,m n a b m n ==为正整数,则3102m n +的值等于( )A .32a bB .23a bC .32a b +D .32a b + 7.黄种人头发直径约为85微米,已知1纳米=10-3微米,数据“85微米”用科学记数法可以表示为( )A .38.510-⨯纳米B .38.510⨯纳米C .48.510⨯纳米D .48.510-⨯纳米 8.下列计算中,错误的是( )A .()()2131319x x x -+=-B .221124a a a ⎛⎫-=-+ ⎪⎝⎭ C .()()x y a b ax ay bx by --=--+D .()m x y m my -+=-+9.计算下列各式,结果为5x 的是( )A .()32xB .102x x ÷C .23x x ⋅D .6x x - 10.()()()2483212121+++···()32211++的个位数是( )A .4B .5C .6D .8 11.计算()3222()m m m -÷⋅的结果是( ) A .2m -B .22mC .28m -D .8m - 12.计算()233a a ⋅的结果是( ) A .9a B .8a C .11a D .18a二、填空题13.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()n a b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中的系数等等.根据上面的规律,写出5()a b +的展开式:5()a b +=_________.利用上面的规律计算:5432252102102521-⨯+⨯-⨯+⨯-=_________.14.已知a b m -=,4ab =-,化简()()22a b -+的结果是__________.15.若221231ax bx x x ++-+与的积不含x 的一次项和二次项,则a+b=______________.16.计算:(﹣2x )3(﹣xy 2)=_____,(﹣23a 5b 7)÷32a 5b 5=_____. 17.计算:248(21)(21)(21)(21)1+++++=___________.18.计算:()221842a b abab -÷=(-)________.19.观察下列各式:(a ﹣b )(a +b )=a 2﹣b 2(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4………这些等式反映出多项式乘法的某种运算规律.当n 为正整数,且n ≥2时,请你猜想: (a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2+……+a 2b n ﹣3+ab n ﹣2+b n ﹣1)=______________.20.若0a >,且2x a =,3y a =,则x y a +的值等于________.三、解答题21.计算题(1)()031321()223⎛⎫-+---⨯- ⎪⎝⎭ (2) 22222222353a b c a bc a c ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭22.计算:2(2)()()2(2)3x y x y x y x x y x ⎡⎤-+-+--÷⎣⎦.23.先化简,再求值: ()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y ++-=.24.在日历上,我们可以发现其中某些数满足一定的规律,如下图是2021年1月份的日历,我们任意用一个22⨯的方框框出4个数,将其中4个位置上的数两两交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规律,结果为______.(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.25.(1)2020151(23)(1)2-⎛⎫--+- ⎪⎝⎭;(2)()()223234a b b c ab ⋅-÷ 26.已知a +b =7,ab =11,求代数式211()22a ab b --的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】此题的等量关系:大正方形的面积=原长方形的面积+小正方形的面积.特别注意剪拼前后的图形面积相等.【详解】解:设去掉的小正方形的边长为x ,则有()22n x mn x +=+, 解得:2m n x -=. 故选:A .【点睛】本题考查同学们拼接剪切的动手能力,解决此类问题一定要联系方程来解决. 2.A解析:A【分析】根据完全平方公式和整式的性质计算,得到m 和n 的关系式,通过计算即可得到答案.【详解】∵x 2+5x+m =(x+n )2=x 2+2nx+n 2∴2n =5,m =n 2∴m =254,n =52故选:A .【点睛】 本题考查了整式、乘法公式、一元一次方程、乘方的知识;解题的关键是熟练掌握整式、完全平方公式的性质,从而完成求解.3.A解析:A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.【详解】解:∵x2+kx+16=x2+kx+42,x2+kx+16能写成一个多项式的平方形式,∴kx=±2•x•4,解得k=±8.故选:A.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.4.A解析:A【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差,再由S2-S1=3b,AD=10,列出方程求得AB便可.【详解】解:S1=(AB-a)•a+(CD-b)(AD-a)=(AB-a)•a+(AB-b)(AD-a),S2=AB(AD-a)+(a-b)(AB-a),∴S2-S1=AB(AD-a)+(a-b)(AB-a)-(AB-a)•a-(AB-b)(AD-a)=(AD-a)(AB-AB+b)+(AB-a)(a-b-a)=b•AD-ab-b•AB+ab=b(AD-AB),∵S2-S1=3b,AD=10,∴b(10-AB)=3b,∴AB=7.故选:A.【点睛】本题考查了列代数式,整式的混合运算,整体思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.5.C解析:C【分析】按照合并同类项,幂的运算法则计算判断即可.【详解】∵2x与3y不是同类项,∴无法计算,∴选项A错误;∵()3263=,x y x y∴选项B错误;∵88262x x x x -==÷,∴选项C 正确;∵32325222x x x x +⋅==,∴选项D 错误;故选C.【点睛】本题考查了幂的基本运算,准确掌握幂的运算法则,并规范求解是解题的关键. 6.A解析:A【分析】根据同底数幂的乘法法则和幂的乘方法则的逆运用,即可求解.【详解】∵2,32m n a b ==,∴3102m n +=31022m n ⨯=()()31022n m ⨯=()()23232n m ⎡⎤⨯⎣⎦=32a b , 故选A .【点睛】本题主要考查同底数幂的乘法法则和幂的乘方法则的逆运用,熟练掌握同底数幂的乘法法则和幂的乘方法则是解题的关键.7.C解析:C【分析】把微米转化为纳米,再写成科学记数法即可.【详解】解:85微米=38510-÷纳米=85×103纳米=8.5×104纳米.故选:C .【点睛】本题考查了单位转换和科学记数法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.D解析:D【分析】根据平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式依次求出每个式子的值,再判断即可.【详解】A. ()()2131319x x x -+=-,计算正确,不符合题意; B. 221124a a a ⎛⎫-=-+ ⎪⎝⎭,计算正确,不符合题意;C. ()()x y a b ax ay bx by --=--+,计算正确,不符合题意;D. ()m x y mx my -+=--,计算错误,符合题意;故选D .【点睛】本题考查了平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式,能正确求出每个式子的值是解此题的关键.9.C解析:C【分析】分别计算每个选项然后进行判断即可.【详解】A 、()326x x =,选项错误;B 、1028x x x =÷,选项错误;C 、235x x x ,选项正确;D 、6x x -不能得到5x ,选项错误.故选:C【点睛】此题考查同底数幂的运算,熟练掌握运算法则是解题的关键.10.C解析:C【分析】原式中的3变形为22-1,反复利用平方差公式计算即可得到结果.【详解】解:3(22+1)(24+1)(28+1)…(232+1)+1=(22-1)(22+1)(24+1)(28+1)…(232+1)+1=(24-1)(24+1)(28+1)…(232+1)+1…=264-1+1=264,∵21=2,22=4,23=8,24=16,25=32,…,∴个位上数字以2,4,8,6为循环节循环,∵64÷4=16,∴264个位上数字为6,即原式个位上数字为6.故选:C .【点睛】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.11.C解析:C【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可.【详解】解:()3222()m m m -÷⋅ =()468m m -÷=()468m m -÷ =28m -,故选:C .【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.12.A解析:A【分析】根据幂的乘方运算、同底数幂的乘法法则即可得.【详解】原式63a a =⋅,9a =,故选:A .【点睛】本题考查了幂的乘方、同底数幂的乘法,熟练掌握各运算法则是解题关键.二、填空题13.a5+5a4b+10a3b2+10a2b3+5ab4+b51【分析】(1)直接根据图示规律写出图中的数字再写出(a+b )5的展开式;(2)发现这一组式子中是2与-1的和的5次幂由(1)中的结论得:2解析:a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5 1【分析】(1)直接根据图示规律写出图中的数字,再写出(a+b )5的展开式;(2)发现这一组式子中是2与-1的和的5次幂,由(1)中的结论得:25-5×24+10×23-10×22+5×2-1=(2-1)5,计算出结果.【详解】解:(1)如图,则(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;(2)25-5×24+10×23-10×22+5×2-1.=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5=(2-1)5=1.【点睛】本题考查了完全式的n 次方,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.14.【分析】根据多项式乘以多项式展开在把已知式子代入求解即可;【详解】由题可知∵∴原式;故答案是:【点睛】本题主要考查了整式的化简和代数式求值准确化简计算是解题的关键解析:28m -【分析】根据多项式乘以多项式展开,在把已知式子代入求解即可;【详解】由题可知()()()2222424-+=+--=+--a b ab a b ab a b ,∵a b m -=,4ab =-,∴原式42428m m =-+-=-;故答案是:28m -.【点睛】本题主要考查了整式的化简和代数式求值,准确化简计算是解题的关键.15.10【分析】根据多项式乘多项式的法则展开在根据题意列出关于ab 的方程进而即可求解【详解】=2ax4-3ax3+ax2+2bx3-3bx2+bx+2x2-3x+1∵和的积不含x 的一次项和二次项∴a-3解析:10【分析】根据多项式乘多项式的法则展开,在根据题意,列出关于a ,b 的方程,进而即可求解.【详解】22(1)(231)ax bx x x ++⋅-+=2ax 4-3ax 3+ax 2+2bx 3-3bx 2+bx+2x 2-3x+1∵21ax bx ++和2231x x -+的积不含x 的一次项和二次项,∴a-3b+2=0且b-3=0,∴a=7且b=3,∴a+b=10,故答案是:10.【点睛】本题主要考查多项式乘多项式的法则,根据多项式不含x 的一次项和二次项,列出方程,是解题的关键.16.8x4y2【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案【详解】解:(﹣2x )3(﹣xy2)=﹣8x3•(﹣xy2)=8x4y2(﹣a5b7)÷a5b5=a5﹣5b7﹣5=故解析:8x 4y 2 249b -【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案.【详解】解:(﹣2x )3(﹣xy 2)=﹣8x 3•(﹣xy 2)=8x 4y 2, (﹣23a 5b 7)÷32a 5b 5 =2233-⨯a 5﹣5b 7﹣5 =249b -. 故答案为:8x 4y 2;249b -. 【点睛】本题考查了整式的乘除运算,掌握相关运算法则是关键.17.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键解析:216【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解.【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++=448(21)(21)(21)1-+++=88(21)(21)1-++=16(21)1-+=216.故答案是:216.【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.18.【分析】直接根据多项式除单项式运算法则计算即可【详解】解:==故答案为:【点睛】本题主要考查了多项式除以单项式灵活运用多项式除以单项式的运算法则成为解答本题的关键解析:-168a b +【分析】直接根据多项式除单项式运算法则计算即可.【详解】解:()221842a b abab -÷(-) =22118422a b ab ab ab ÷-÷(-)(-) =-168a b +.故答案为:-168a b +.【点睛】本题主要考查了多项式除以单项式,灵活运用多项式除以单项式的运算法则成为解答本题的关键.19.an ﹣bn 【分析】根据所给信息可知各个等式的左边两因式中一项为(a-b )另一项每一项的次数均为n-1而且按照字母a 的降幂排列故可得答案【详解】解:由题意当n=1时有(a ﹣b )(a+b )=a2﹣b2;解析:a n ﹣b n【分析】根据所给信息,可知各个等式的左边两因式中,一项为(a-b ),另一项每一项的次数均为n-1,而且按照字母a 的降幂排列,故可得答案.【详解】解:由题意,当n=1时,有(a ﹣b )(a +b )=a 2﹣b 2;当n=2时,有(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3;当n=3时,有(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4;所以得到(a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2+……+a 2b n ﹣3+ab n ﹣2+b n ﹣1)=a n ﹣b n .故答案为:a n ﹣b n .【点睛】本题的考点是归纳推理,主要考查信息的处理,关键是根据所给信息,可知两因式中,一项为(a-b ),另一项每一项的次数均为n-1,而且按照字母a 的降幂排列.20.6【分析】根据同底数幂的乘法法则求解【详解】故答案为:6【点睛】本题考查了同底数幂的乘法解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加解析:6【分析】根据同底数幂的乘法法则求解.【详解】·236x y x y a a a +==⨯= .故答案为:6.【点睛】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.三、解答题21.(1)16;(2)235b c b -+. 【分析】(1)根据乘方,绝对值,零指数幂的知识换件,然后在计算即可;(2)运用整式的除法,直接计算即可.【详解】解:(1)()031321()223⎛⎫-+---⨯- ⎪⎝⎭ ()1211()23=-+-⨯- 1223=-+ 16= (2) 22222222353a b c a bc a c ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭ 22222223532a b c a bc a c ⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭ 22222222352332a b c a bc a c a c ⎛⎫⎛⎫=⨯--⨯- ⎪ ⎪⎝⎭⎝⎭235b c b =-+ 【点睛】本题考查了有理数运算和整式的混合运算,熟悉相关运算法则是解题的关键.22.x【分析】根据完全平方公式、平方差公式、单项式乘多项式的法则计算后合并同类项,然后再利用单项式除以单项式的法则进行计算.【详解】解:原式=()2222244243x xy y x y x xy x -++--+÷=233x x ÷=x【点睛】本题考查整式的混合运算,熟练运用运算法则是解题的关键.23.22x y -+,10【分析】首先利用平方差公式、完全平方公式、多项式乘以多项式计算中括号里面的式子,再合并同类项,化简后,计算括号外的除法,最后代入x 、y 的值即可.【详解】解:原式()()222222164425210x y x xy y x xy xy y x ⎡⎤=--++--+-÷⎣⎦()2222221644210420x y x xy y x xy xy y x =-----+-+÷()222x xy x =-+÷22x y =-+.∵()230x +=,∴30x +=,20y -=,∴3x =-,2y =.∴原式()23226410=-⨯-+⨯=+=.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘、除、加、减的各种运算法则. 24.(1)7;(2)有同样的规律,(a+1)(a+7)-a(a+8)=7,理由见解析【分析】(1)根据题意列出算式11×5-4×12,再进一步计算即可;(2)如换为3,4,10,11,按要求计算即可;设方框框出的四个数分别为a ,a+1,a+7,a+8,列出算式(a+1)(a+7)-a(a+8),再进一步计算即可得.【详解】(1)11×5-4×12=55-48=7,故答案为:7;(2)换为3,4,10,11,则10×4-3×11=40-33=7;设方框框出的四个数分别为a ,a+1,a+7,a+8,则(a+1)(a+7)-a(a+8)=a 2+7a+a+7-a 2-8a=7.【点睛】本题主要考查整式的混合运算,解题的关键是根据题意列出算式,并熟练掌握整式的混合运算顺序和运算法则.25.(1)4-;(2)32ac -; 【分析】(1)由零指数幂、负整数指数幂、以及乘方的运算法则进行计算,即可得到答案; (2)由单项式乘以单项式,单项式除以单项式进行计算,即可得到答案.【详解】解:(1)2020151(1)2-⎛⎫--+- ⎪⎝⎭=141--=4-;(2)()()223234a b b c ab⋅-÷=2336(4)a b c ab -÷ =32ac -; 【点睛】 本题考查了单项式乘以单项式,单项式除以单项式,零指数幂、负整数指数幂、以及乘方的运算法则,解题的关键是掌握运算法则进行解题.26.8【分析】由完全平方公式的变形,先把代数式进行化简,然后把a +b =7,ab =11,代入计算,即可得到答案.【详解】 解:211()22a a b b -- =22111222a ab b -+ =221)1(22ab b a -+ =223(2221)ab b a ab ++-=23)1(22ab b a -+, ∵a +b =7,ab =11, ∴原式=214933711822223⨯-⨯=-=. 【点睛】 本题考查了整式的加减,完全平方公式的变形求值,解题的关键是熟练掌握运算法则,正确的进行化简.。
(新北师大七下)第一单元整式的乘除基础知识+练习 姓名一.〈知识点〉回顾1、幂的运算法则:(1)同底数幂相乘:n m a a ∙= (m 、n 为正整数)=⋅⋅32a a a __ ; 108a a ∙= ;421010⋅=____ ;25()()()x x x ---=(2)幂的乘方:()n m a = (m 、n 为正整数) 22(10)= 22()a = ___)(32=a 25()x ⎡⎤-⎣⎦= (3)积的乘方:()nab = (n 为正整数) _____)(3=xy ; 32)2(mn -=_______ ; 23)102(⨯=_________ (4)同底数幂相除:m n a a ÷= (m 、n 为正整数,a ≠0) 87 a a ÷= ; 22b b ÷= ;(5)零指数0a = (a ≠ ) (-2)0= 负指数=-p a (a ≠ )(-1)-2= 2)21(-= 5-2= (6)科学记数法:0.00000058=2.整式的乘除① 单项式×单项式: _____5=⋅x x ; 2a ·2a= ; ______=⋅ab ab ; -4xy • 3x 2y=_______5343=⋅x x ; _______)2)((=--x x ;_________)2(32=-∙a b a② 单项式×多项式: ()m a b c ++=a (2a 2-4a +3)= ; -2a 2(3a 2+4a -2)= 。
③多项式×多项式相乘:=++))((b a n m __________________(x -2)(x -6)= =(2x -1)(3x +2)= = ________________)75)(4(=-+y x y x =④单项式÷单项式:27x 3x ÷= 12mn 4mn ÷=-⑤多项式÷单项式:(4x 3y +6x 2y 2-xy 3)÷2xy=(6a 4-4a 3-2a 2)÷(-2a 2)=3.乘法公式: 平方差公式:___________________))((=-+b a b a完全平方和公式:______________________)(2=+b a 完全平方差公式:______________________)(2=-b a (1)(x +2)(x -2) (2)(x -8y )(x +8y ) (3)(2x -3)(-2x -3)解:原式= 解:原式= 解:原式=(4)2(3)a b -= (5)21(4)2x + (6)2(2)a b -+=解:原式= 解:原式= 解:原式=综合练习:1.x m =3,x n =5,则x m+n = ,x 3m+2n = , x m-n = , x 3m-2n = 。
北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
北师大版 七年级(下册) 第一章整式的乘除 分节练习第1节 同底数幂的乘法01、【基础题】 (1)67)3()3(-⨯-; (2)111111113⨯)(; (3)—53x x ⋅ (4)122+⋅m m b b01.1、【基础题】 (1)=-⋅23b b (2)=-⋅3)(a a (3)=--⋅32)()(y y (4)=--⋅43)()(a a(5)=-⋅2433 (6)=--⋅67)5()5( (7)=--⋅32)()(q q n(8)=--⋅24)()(m m(9)=-32 (10)=--⋅54)2()2((11)=--⋅69)(b b(12)=--⋅)()(33a a01.2、【综合I 】 (1)=++⋅⋅21n n n a a a (2)=⋅⋅n n n b b b 53 (3)=+-⋅⋅132m m b b b b (4)=--⋅4031)1()1((5)=⨯-⨯672623 (6)=⨯+⨯54373602、【基础题】光在真空中的速度约为3⨯810m/s ,太阳光照耀到 地球 上大约需要5210⨯s ,那么 地球距离太阳大约有多远?02.1、【基础题】已知每平方千米的土地上,一年内从太阳得到的能量相当于燃烧81.310kg ⨯煤所产生的能量,那么我国629.610km ⨯的土地上,一年内从太阳得到的能量相当于燃烧煤多少千克?第2节 幂的乘方与积的乘方03、【基础题】 (1) (102)3 ; (2) (b 5)5 ; (3) (a n )3;(4) -(x 2)m ; (5) (y 2)3 · y ; (6) 2(a 2)6 - (a 3)403.1【基础题】 (1)_____)(33=x (2)_____)(52=-x (3)_____)(532=⋅a a(4)________)()(4233=⋅-m m (5)_____)(32=n x03.2、 【综合II 】04、【基础题】 (1)2)3(x ; (2)5)2(b -; (3)4)2(xy -; (4)na )3(2. 04.1、【基础题】 (1)4()ab ; (2)3(2)xy -; (3)23(310)-⨯; (4)23(2)ab 04.2、【综合I 】 (1)200720080.254⨯; (2)2334(310)(10)⨯⋅-;(3)2323()()()n n na b a b -⋅--; (4)3232733(3)(4)(5)a a a a a -⋅+-⋅-04.3、【综合II 】 若2,3,n n x y == 求 3()n xy 的值.04.4【综合I 】 计算:1010)128910()1218191101(⨯⨯⋯⨯⨯⨯•⨯⨯⋯⨯⨯⨯.第3节 同底数幂的除法05、【基础题】计算 :(1)m 9÷m 3; (2)(﹣a )6÷(﹣a )3;(3)(﹣8)6÷(﹣8)5; (4)62m+3÷6m .05.1、【基础题】计算 (1)a 7÷a 4; (2)(﹣m )8÷(﹣m )3; (3)(xy )7÷(xy )4; (4)x 2m+2÷x m+2; (5)x 6÷x 2•x ; (6)(x ﹣y )5÷(y ﹣x )305.2【综合I 】计算: ⑴3459)(a a a ÷•; ⑵347)()()(a a a -⨯-÷-;⑶533248÷•; ⑷[]233234)()()()(x x x x -÷-•-÷-.05.3、【综合 I 】 已知n m n ma a a -==243,求,的值.06、【基础题】用小数或分数表示下列各数: (1)310—; (2)2087—⨯; (3)4106.1—⨯.06.1、【基础题】用分数或小数表示下列各数: (1)0)21(; (2)33—; (3)5103.1—⨯; (4)25—. 07、【基础题】用科学记数法表示下列各数 (1) 732400 (2) -6643919000(3) 0.00000006005 (4) -0.0000021707.1、【基础题】用科学记数法表示下列各数 (1)0.00000072; (2)0.000861; (3)0.0000000003425第4节 整式的乘法 08、【基础题】计算:(1)xy xy 3122•; (2)322b a —)3(a —•; (3)22)2(7xyz z xy •.08.1、【基础题】计算: (1)xy 4·(-23xy ); (2)b a 3·c ab 5; (3)y x 22·2)(xy -; (4)3252y x ·xyz 85; (5)-32z xy ·32)(y x -; (6)-3ab ·22abc ·32)(c a .09、【基础题】计算: (1)6x 2•3xy (2)(4a ﹣b 2)•(﹣2b )(3)(3x 2y ﹣2x+1)•(﹣2xy ); (4) 2(322z xy z y x ++)•xyz09.1、【基础题】(1) (﹣12a 2b 2c )•(﹣abc 2)2 ; (2) (3a 2b ﹣4ab 2﹣5ab ﹣1)•(﹣2ab 2);(3)﹣6a •(﹣﹣a+2); (4)﹣3x •(2x 2﹣x+4)(5) (﹣a 2b )(b 2﹣a+); (6).09.2、【综合Ⅰ】 先化简,再求值 3a (2a 2﹣4a+3)﹣2a 2(3a+4),其中a=-210、【基础题】 计算: (1)(21)(3)x x ++; (2)(2)(3)m n m n +-; (3)2(1)a -; (4)(3)(3)a b a b +-;(5)2(21)(4)x x --; (6)2(3)(25)x x +-; (7)(7)()()33a bc bc a ---; (8)(3x -2y)2-(3x +2y)210.1【基础题】计算:(1)(6)(3)x x -- ; (2)11()()23x x +-; (3)(32)(2)x x ++; (4)(41)(5)y y --;(5)2(2)(4)x x -+; (6)22()()x y x xy y -++10.2、【基础题】计算: ))((e d c c b a ++++第5节 平方差公式11、【基础题】利用平方差 公式 计算: (1)(2)(2)(a a +-= 2)(- 2)= ;(2)(43)(34)(a b b a -+= 2)(- 2)= ; (3)(58)(58)(x x -+--= 2)(- 2)= ; (4)(23)(23)(a b a b -++= 2)(- 2)= ; (5)()()(a b c a b c +++-= 2)(- 2);(6)()()(x y a b x y a b ++++--= 2)(- 2).11.1、【基础题】利用平方差公式 计算: (1)(3)(3)a b a b +-; (2)(32)(32)a a +-+ ; (3)5149⨯;(4) (34)(34)(23)(32)x x x x +--+-; (5) ))((y x y x nn +-; (6) )231)(312(a b b a ---.11.2、【基础题】用平方差公式进行计算: (1)103×97; (2)118×122; (3)20011 ⨯ 99911.3、【综合Ⅰ】计算:(1))1)(1)(1(2+-+a a a ; (2) 2244()()()()a b a b a b a b -+++.(3)222))((b a b a b a a +-+; (4))32(2)52)(52(--+-x x x x ;(5))1)(1()2)(2(-++-+x x y x y x ; (6))31)(31()1(+---x x x x ; (7))()3)(3(y x y y x y x +++-; (8))23)(23()21)(21(b a b a b a b a +---+第6节 完全平方公式12、【基础题】 用完全平方公式 计算: (1)2)32(-x ; (2)2)54(y x +; (3)2)(a mn -;(4)263; (5)299812.1、【基础题】用完全平方公式计算:(1)(a+3)2 ; (2)(5x -2)2 ; (3)(-1+3a )2; (4)(13a+15b )2 ; (5)(-a -b )2 ; (6)(-a 2+12)2; (7)(xy 2+4)2 ; (8)(a+1)2-a 2 (9)(-2m 2-12n 2)2; (10)1012 ; (11)1982 ; (12)19.9212.2、【综合Ⅰ】计算: (1)(a+2b )(a -2b )-(a+b )2 ; (2)(x -12)2-(x -1)(x -2); (3)(x -2y )(x +2y )-(x +2y )2; (4)(a +b +c )(a +b -c );(5)(2a +1)2-(1-2a )2; (6)(3x -y )2-(2x +y )2+5x (y -x ).(7))12)(12(-+++y x y x ; (8))3)(1()2)(2(-+-+-x x x x ; (9)22)1()1(--+ab ab ; (10))2)((4)2(2y x y x y x +---. 12.3、【综合Ⅰ】先化简,再求值: (1) (2x -1)(x+2)-(x -2)2-(x+2)2,其中x=-13. (2) (x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.12.4【综合Ⅲ】 根据已知条件,求值:(1)已知x -y =9,x ·y =5,求x 2+y 2的值;(2)已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.(3)已知x +1x =3, 求 x 2+21x和(x -1x )2的值.第7节 整式的除法 13、【基础题】计算:(1)y x y x 232353÷-; (2)bc a c b a 3234510÷; (3)3423214)7()2(y x xy y x ÷-•; (4)24)2()2(b a b a +÷+.14、【基础题】计算:(1)b b ab 2)86(÷+; (2)a a a a 3)61527(23÷+-; (3)xy xy y x 3)69(22÷-;(4))21()213(22xy xy xy y x -÷+-.14.1、【综合Ⅰ】填空:(1)223293m m m m a b a b +-÷ =___________; (2) 8a 2b 2c ÷_________=2a 2bc ; (3)(7x 3-6x 2+3x)÷3x=_________. (4)__________÷73(210)510⨯=-⨯. (5)(____________________)·235444234826x y x y x y x y =--.七(下)第一章分节练习 参考答案 第1节 答案01、【答案】 (1)13)3(-; (2)41111)(; (3)—8x ; (4)1m 4+b . 01.1【答案】(1)5b - (2)4a - (3)5y - (4)7a - (5)-729 (6)135- (7)32+-n q(8)6m - (9)-8 (10)-512 (11)15b - (12)6a01.2【答案】 (1)33+n a (2)n b 9 (3)22+m b (4)-1 (5)0 (6)73 02、【答案】 1.51110⨯ m. 02.1【答案】 解:9.6×106×1.3×108=1.248×1015(kg)第2节 答案03、【答案】 (1)106;(2)b 25;(3)a 3n ;(4)-x 2m ;(5)y 7;(6)a 12.03.1【答案】 (1)9x ; (2)—10x ; (3)11a ; (4)—17m ; (5)n x 6 03.2【答案 】04、【答案】 (1)92x ; (2)—325b ; (3)1644y x ; (4)n n a 23. 04.1【答案】 (1)44a b ; (2)338x y -; (3)72.710-⨯; (4)368a b . 04.2【答案】 (1)4; (2)192.710⨯; (3)232n n a b -; (4)9100a -. 04.3【答案】 216【解析】 333()n n n xy x y =⋅33()()n n x y =⋅3323=⨯216= 04.4【答案】 1第3节 答案05、【答案】(1)m 9÷m 3=m 9﹣3=m 6; (2)(﹣a )6÷(﹣a )3=(﹣a )6﹣3=(﹣a )3=﹣a 3; (3)(﹣8)6÷(﹣8)5=(﹣8)6﹣5=(﹣8)1=﹣8; (4)62m+3÷6m =6(2m+3)﹣m =6m+305.1、【答案】(1)a 7÷a 4=a 3; (2)(﹣m )8÷(﹣m )3=(﹣m )5=﹣m 5; (3)(xy )7÷(xy )4=(xy )3=x 3y 3; (4)x 2m+2÷x m+2=x m ; (5)x 6÷x 2•x=x 4•x=x 5. (6)(x ﹣y )5÷(y ﹣x )3=﹣(y ﹣x )5÷(y ﹣x )3=﹣(y ﹣x )2;05.2【答案】 ⑴2a ; ⑵6a ;⑶533248÷•=569222÷•=102; ⑷7x -.05.3 【答案】49 【解析】∵a m =3,a n =4,∴a 2m ﹣n =a 2m ÷a n =(a m )2÷a n =32÷4=.06、【答案 】(1)0.001 (2)641(3)0.00016 06.1【答案】 (1)1 (2)271 (3)0.000013 (4)25107、【答案】 (1)7.324×105; (2)-6.643919×109; (3)6.005×10-8; (4)-2.17×10-6 07.1、【答案】 (1) 7.2710—⨯; (2) 8.61410—⨯; (3)3.4251010—⨯第4节 答案 08、【答案】 (1)3232y x ; (2)336b a ; (3)34328z y x 08.1【答案】(1)-842y x ; (2)c b a 64; (3)234y x ; (4)z y x 4341; (5)357z y x ; (6)-2548c b a .09、【答案】(1)18x 3y ; (2)﹣8ab+2b 3; (3)﹣6x 3y 2+4x 2y ﹣2xy ;(4)432232222z y x z xy yz x ++09.1【答案 】(1)﹣; (2)﹣6a 3b 3+8a 2b 4+10a 2b 3+2ab 2;(3) 3a 3+2a 2﹣12a . (4)﹣6x 3+3x 2﹣12x . (5)﹣a 2b 3+a 3b ﹣a 2b ; (6)x 3y 5﹣x 3y 6+x 2y 4.09.2、【答案】-98【解析】3a (2a 2﹣4a+3)﹣2a 2(3a+4)=6a 3﹣12a 2+9a ﹣6a 3﹣8a 2=﹣20a 2+9a ,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.10、【答案】(1)2273x x ++; (2)226m mn n --; (3)221a a -+; (4)229a b -;(5)32284x x x --+; (6)3225615x x x -+-; (7)-29a +22c b ; (8)-xy 2410.1【答案】(1)2918x x -+; (2)21166x x +-; (3)2384x x ++; (4)24215y y -+; (5)32248x x x -+-; (6)33x y -.10.2【答案】 ce cd c be bd bc ae ad ac ++++++++2第5节 答案 11、【答案】(1)(2)(2)(a a +-=a 2)(- 22)= - 2 4 a ;(2)(43)(34)(a b b a -+=4a 2)(-3b 2)=22169a b - ; (3)(58)(58)(x x -+--=5- 2)(-8x 2)=22564x - ;(4)(23)(23)(a b a b -++=3b 2)(-2a 2)=2294b a - ; (5)()()(a b c a b c +++-=a b + 2)(-c 2);(6)()()(x y a b x y a b ++++--=x y + 2)(-a b + 2).11.1【答案】(1)229a b -; (2)249a -; (3)2499; (4)23510x x --; (5)22y xn-; (6)22491a b -.11.2【答案】 (1)9991; (2)14396; (3)399999911.3【答案】 (1)14-a ; (2)88a b -; (3)4a ; (4)256-x ; (5)14222--y x ;(6)91+x -; (7)xy x +29; (8)228415a b -第6节 答案12、【答案】 (1) 91242+-x x ; (2) 22254016y xy x ++; (3)2222a amn n m +-; (4)3969;(5)99600412.1【答案】(1)a 2+6a+9; (2)25x 2-20x+4 ; (3)9a 2-6a+1; (4)19a 2+215ab+125b 2; (5)a 2+2ab+b 2 ; (6)a 4-a 2+14; (7)x 2y 4+8xy 2+16; (8)2a+1; (9)4m 4+2m 2n 2+14n 4; (10)10 201; (11)39 204; (12)396.01 12.2【答案】 (1)-2ab -5b 2 ; (2)2x -74; (3)-4xy -8y 2; (4)a 2+2ab+b 2-c 2; (5)8a ; (6)-5xy ; (7)14422-++y xy x ; (8)12-x ; (9)ab 4; (10)xy y 892-.12.3、【答案】 (1)原式=3x -10=-11(12) 原式=x 4-8x 2y 2+16y 4=012.4、【答案】 (1)91; (2)249; (3) x 2+21x=7, (x -1x )2 =5第7节 答案 13、【答案】 (1)251y -; (2)c ab 22; (3)234y x -; (4)2244b ab a ++. 14、【答案】 (1)43+a ; (2)2592+-a a ; (3)y x 23-; (4)126-+-y x 14.1【答案】 (1)33m a b -;(2)4b ; (3)273x -2x+1;(4)1110-; (5)3213222x y x y --。
第一章 整式的乘除§13.1幂的运算§13.1.1同底数幂的乘法一、填空题1.计算:103×105=2.计算:(a -b )3·(a -b )5=3.计算:a·a 5·a 7=4. 计算:a(____)·a 4=a 20(在括号内填数) 二、选择题1.32x x •的计算结果是( )A.5xB.6xC.8xD.9x2.下列各式正确的是( )A .3a 2·5a 3=15a 6 B.-3x 4·(-2x 2)=-6x 6C .x 3·x 4=x 12 D.(-b )3·(-b )5=b 83.下列各式中,①824x x x =•,②6332x x x =•,③734a a a =•,④1275a a a =+,⑤734)()(a a a =-•- 正确的式子的个数是( )A.1个B.2个C.3个D.4个4.若1621=+x ,则x 等于( )A.7B.4C.3D.2.三、解答题1、计算:(1)、25)32()32(y x y x +•+ (2)、32)()(a b b a -•-(3)、62753m m m m m m •+•+•2、已知8=m a ,32=n a ,求n m a +的值.§13.1.2幂的乘方一、选择题1.计算23x )(的结果是( )A .5xB .6xC .8xD .9x2.下列计算错误的是( ) A .32a a a =• B .222a b a b •=)( C .532a a =)( D .-a+2a=a 3.计算32)(y x 的结果是( )A .y x 5B .y x 6C . y x 32D .36y x 4.计算22a 3-)(的结果是( ) A .43a B .43a - C .49a D .49a -二、填空题1.43a -)(=_____.2.若3m x=2,则9m x =_____. 3.若2n a =3,则23n 2a )(=____. 三、计算题1.计算:32x x •+23x )(.§13.1.3积的乘方1.计算:()[]23n 23yx -•3.已知273×94=x3,求x 的值.§13.1.4同底数幂的除法一、填空题1.计算:26a a ÷= ,25)()(a a -÷-= .2.在横线上填入适当的代数式:146_____x x =•,26_____x x =÷.3.计算:559x x x •÷ = ,)(355x x x ÷÷ = . 4.计算:89)1()1(+÷+a a = .5.计算:23)()(m n n m -÷-=___________. 二、选择题1.下列计算正确的是( )A .(-y )7÷(-y )4=y3 ;B .(x+y )5÷(x+y )=x4+y4;C .(a -1)6÷(a -1)2=(a -1)3 ;D .-x5÷(-x3)=x2.2.计算:()()()4325a a a -÷⋅-的结果,正确的是( )A.7a ;B.6a -;C.7a - ;D.6a .3. 对于非零实数m ,下列式子运算正确的是( )A .923)(m m = ;B .623m m m =⋅;C .532m m m =+ ;D .426m m m =÷.4.若53=x ,43=y ,则y x -23等于( )A.254 B.6 C.21 D.20三、解答题1.计算:⑴24)()(xy xy ÷; ⑵2252)()(ab ab -÷-;⑶24)32()32(y x y x +÷+; ⑷347)34()34()34(-÷-÷-.2.计算:⑴3459)(a a a ÷•; ⑵347)()()(a a a -⨯-÷-;4. 解方程:(1)15822=•x ;5. 已知3,9m n a a ==,求32m n a -的值.§13.2整式的乘法§13.2.1 单项式与单项式相乘一、判断题:(1)73a ·82a =566a ( ) (2)85a ·85a =1616a ( )(3)34x ·53x =87x ( ) (4)-33y ·53y =-153y ()(5)32m ·53m =155m ( )二、选择题1、下列计算正确的是 ( )A 、2a ·3a =6aB 、2x +2x =24xC 、42x -)(=-164xD 、(-22a )(-33a )=65a2.下列说法完整且正确的是( )A .同底数幂相乘,指数相加;B .幂的乘方,等于指数相乘;C .积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;D .单项式乘以单项式,等于系数相乘,同底数幂相乘3.下列关于单项式乘法的说法中不正确的是( )A .单项式之积不可能是多项式;B .单项式必须是同类项才能相乘;C .几个单项式相乘,有一个因式为0,积一定为0;D .几个单项式的积仍是单项式三、解答题1.计算:(1)23x 5.2-)((-43x )(2)(-410)(5×510)(3×210)(3)(-432a c b )(-x 2a b )3§13.2.2 单项式与多项式相乘一.判断: (1)31(3x+y )=x+y ( )(2)-3x (x -y )=-32x -3xy ( )(3)3(m+2n+1)=3m+6n+1 ( )(4)(-3x )(22x -3x+1)=63x -92x +3x ( )二、选择题1.下列说法正确的是( )A .多项式乘以单项式,积可以是多项式也可以是单项式;B .多项式乘以单项式,积的次数是多项式的次数与单项式次数的积;C .多项式乘以单项式,积的系数是多项式系数与单项式系数的和;D .多项式乘以单项式,积的项数与多项式的项数相等4.x (y -z )-y (z -x )+z (x -y )的计算结果是( )A .2xy+2yz+2xzB .2xy -2yzC .2xyD .-2yz三、计算:(1)(a -3b )(-6a ) (2)n x (1n x -x -1)(3)-5a(a+3)-a(3a -13) (4)-22a (21ab+2b )-5ab(2a -1)§13.2.3多项式与多项式相乘一.判断:(1)(a+3)(a -2)=2a -6 ( )(2)(4x -3)(5x+6)=202x -18 ( )(3)(1+2a )(1-2a )=42a -1 ( )(4)(2a -b )(3a -b )=62a -5ab+2b ( )(5)(am -n )m+n=a 2m -2n (m ≠n ,m>0,n>0,且m>n ) ( )二、选择题1.下列计算正确的是( )A .(2x -5)(3x -7)=62x -29x+35B .(3x+7)(10x -8)=302x +36x+56C .(-3x+21)(-31x )=32x +21x+61D .(1-x )(x+1)+(x+2)(x -2)=22x -32.计算结果是22x -x -3的是( )A .(2x -3)(x+1)B .(2x -1)(x -3)C .(2x+3)(x -1)D .(2x -1)(x+3)三.计算:(1)(x -2y )(x+3y ) (2)(x -1)(2x -x+1)(3)(-2x+92y )(312x -5y ) (4)(22a -1)(a -4)-(2a +3)(2a -5)四、实际应用1.求图中阴影部分的面积(图中长度单位:米).2.长方形的长是(a+2b )cm ,宽是(a+b )cm ,求它的周长和面积.§13.3 乘法公式§13.3.1 两数和乘以这两数的差一、选择题1、20022-2001×2003的计算结果是( )A 、 1B 、-1C 、2D 、-22、下列运算正确的是( )A.2 b)+(a =2a +2bB. 2 b)-(a =2a -2bC. (a+m)(b+n)=ab+mnD. (m+n)(-m+n)=-2m +2n二、填空题1、若2x -2y =12,x+y=6则x=_____; y=______.2、( + )( - )=a2 - 9三、利用平方差公式计算:(1)502×498;§13.3.2 两数和的平方一、判断题;(1) 2 b)-(a =2a -2b ( )(2) 2 2b)+(a =2a +2ab +22b ( )(3) 2 b)-(-a = -2a -2ab +2b ( )(4) 2 b)-(a =2 a)-(b ( )二、填空题1、2 b)+(a +2 b)-(a = ;2、2x + +9=(_____+______)2;3、42a +kab +92b 是完全平方式,则k = ;4、()2 -8xy +2y =2y - )( 三、运用平方差或完全平方公式计算:(1)(2a +5b )(2a -5b ) (2)(-2a -1)(-2a +1);(3)24b -2a ()(;(4)2b +2a )(四、解答题1、已知:2 b)+(a =7 ,2 b)-(a =9,求2a +2b 及ab 的值。
第一章整式的乘除第1节同底数幂的乘法课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.若(7×106)(5×105)(2×10)=a ×10n ,则a ,n 的值分别为( )A .a =7,n =11B .a =5,n =12C .a =7,n =13D .a =2,n =13 2.(﹣a )2•a 3=( )A .﹣a 5B .a 5C .﹣a 6D .a 63.如果xm =2,xn =14,那么xm +n 的值为( ) A .2 B .8 C .12 D .2144.我们知道:若am =an (a >0且a ≠1),则m =n .设5m =3,5n =15,5p =75.现给出m ,n ,p 三者之间的三个关系式:①m +p =2n ;①m +n =2p ﹣1;①n 2﹣mp =1.其中正确的是( )A .①①B .①①C .①①D .①①①5.计算28+(-2)8所得的结果是( )A .0B .216C .48D .296.下面是几位同学做的几道题,222(1)()a b a b +=+ 0(2)21a = 2 (3) (3)3±=± 3412 (4) a a a ⋅= 532(5)a a a ÷=其中做对了( )道A .1B .2C .3D .47.下列运算中,正确的是( )A .4312=a a aB .()32639a a =C .23•a a a =D .()224ab ab = 8.下列计算正确的是( )A .()()43224a a a a -⋅-⋅-=-B .()()43224a a a a -⋅-⋅-=C .()()4329a a a a -⋅-⋅-=-D .()()4329a a a a -⋅-⋅-= 9.201120102009222--其结果是( )A .20092B .20102C .20092-D .数太大,无法计算评卷人得分二、填空题10.已知92781m n⨯=,则646m n--的值为______.11.计算23()()a a-⋅-的结果等于_____________.12.已知2x+3y﹣1=0,则9x•27y的值为______.13.计算(x﹣y)2(y﹣x)3(x﹣y)=__(写成幂的形式).14.计算:235m m⋅=______.15.已知53x=,54y=,则25x y+的结果为______ .16.如图,正方形的边长为()1a a>,将此正方形按照下面的方法进行剪贴:第一次操作,先沿正方形的对边中点连线剪开,然后粘贴为一个长方形,其中叠合部分长为1,则此长方形的周长为_______,第二次操作,再沿所得长方形的对边(长方形的宽)中点连线剪开,然后粘贴为一个新的长方形,其中叠合部分长为l,……如此继续下去,第n次操作后得到的长方形的周长为________.17.观察等式:232222+=-;23422222++=-;按一定规律排列的一组数:5051529910022222+++++,若502a=,则用含a的代数式表示下列这组数50515299100222 (22)++++的和_________.评卷人得分三、解答题18.如果ac=b,那么我们规定(a,b)=c.例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)=,(4,1)=,(2,0.25)=;(2)记(3,5)=a,(3,6)=b,(3,30)=c.判断a,b,c之间的等量关系,并说明理由.19.计算:(1)﹣b 2×(﹣b )2×(﹣b 3)(2)(x ﹣y )3×(y ﹣2)2×(y ﹣2)520.(1)先化简,再求值:2(x 2﹣xy )﹣(3x 2﹣6xy ),其中x =12,y =﹣1.(2)已知am =2,an =3,求①am +n 的值;①a 3m ﹣2n 的值.21.把下列式子化成()na b -的形式:()()()()()3452 a b b a a b b a a b -⋅----+-22.如果c a b =,那么规定(),a b c =. 例如:如果328=,那么()2,83=()1根据规定,()5,1= ______, 14,16⎛⎫= ⎪⎝⎭()2记()3,6a =,() 3,7b =, () 3,x c =,若a b c +=,求x 值.23.根据同底数幂的乘法法则,我们发现:m n m n a a a +=⋅(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=⋅,请根据这种新运算解决以下问题:(1)若()11h =-,则()2h =______;()2019h =______;(2)若()7128h =,求()2h ,()8h 的值;(3)若()()442h h =,求()2h 的值; (4)若()()442h h =,直接写出()()()()()()()()2462123h h h h n h h h h n ++++的值.24.(1)已知:210,a a +-=则43222000a a a +++的值是_____(2)如果记162a =,那么1231512222+++++=_____(3)若232122192,x x ++-=则x=_____(4)若5543254321021),x a x a x a x a x a x a -=+++++(则24a a +=_____25.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S ﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中n 为正整数).参考答案:1.C【解析】【分析】根据科学记数法表示的数的计算方法,乘号前面的数相乘,乘号后面的数相乘,再根据同底数幂相乘,底数不变指数相加进行计算,最后再化成科学记数法即可得解.【详解】解:(7×106)(5×105)(2×10)=(7×5×2)×(106×105×10)=7×1013所以,a=7,n=13.故选:C.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则与科学记数法表示的数的计算方法是解题的关键.2.B【解析】【分析】根据同底数幂相乘,底数不变,指数相加解答,即am•an=am+n.【详解】解:(﹣a)2•a3=a2•a3=a2+3=a5,故选:B.【点睛】此题考查同底数幂的乘法计算,正确掌握同底数幂的乘法公式是解题的关键.3.C【解析】【分析】根据同底数幂的乘法进行运算即可.【详解】解:如果x m=2,x n=14,那么x m+n=x m×x n=2×14=12.故选:C.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练掌握同底数幂的乘法公式.4.B【解析】【分析】根据同底数幂的乘法公式即可求出m、n、p的关系.【详解】解:①5m=3,①5n=15=5×3=5×5m=51+m,①n=1+m,①5p=75=52×3=52+m,①p=2+m,①p=n+1,①m+p=n﹣1+n+1=2n,故此结论正确;①m+n=p﹣2+p﹣1=2p﹣3,故此结论错误;①n2﹣mp=(1+m)2﹣m(2+m)=1+m2+2m﹣2m﹣m2=1,故此结论正确;故正确的是:①①.故选:B.【点睛】本题考查同底数幂的乘法,解题的关键是熟练运用同底数幂的乘法公式.5.D【解析】【分析】利用同底数幂的乘法与合并同类项的知识求解即可求得答案.解:28+(-2)8=28+28=2×28=29.故选:D .【点睛】此题考查了同底数幂的乘法的知识.此题比较简单,注意掌握指数与符号的变化是解此题的关键.6.A【解析】【分析】利用完全平方公式;零指数幂;算术平方根;同底数幂相乘;同底数幂相除的运算法则进行计算即可解答.【详解】解:222(1)()2a b a ab b +=++,故该选项错误;0(2)22a =,故该选项错误;2(3) (3)3±=,故该选项错误;347(4) a a a ⋅=,故该选项错误;532(5)a a a ÷=,故该选项正确;故选:A .【点睛】本题考查了完全平方公式;零指数幂;算术平方根;同底数幂相乘;同底数幂相除的运算法则,熟练掌握并准确计算是解题的关键.7.C【解析】【分析】根据单项式乘单项式,可判断A ,根据同底数幂的乘法,可判断C ,根据积的乘方,可判【详解】A 、单项式与单项式相乘,把系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,故A 错误;B 、3得立方是27,故B 错误;C 、同底数幂的乘法底数不变指数相加,故C 正确;D 、积的乘方等于乘方的积,故D 错误;故选:C .【点睛】此题考查幂的运算,单项式与单项式的乘法,解题关键在于掌握幂的运算和单项式的运算.8.D【解析】【分析】根据积的乘方的运算法则,分别将各项的结果计算出来再进行判断即可.【详解】A . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项A 错误;B . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项B 错误; C . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项C 错误; D . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项D 正确. 故选:D .【点睛】此题主要考查了积的乘方与同底数幂的乘法运算,熟练掌握运算法则是解题的关键. 9.A【解析】【分析】先提取公因式20092,再进行计算,即可求解.【详解】201120102009222--=220091(221)2--⨯=200912⨯=20092故选A .【点睛】本题主要考查同底数幂的乘法法则的逆运用,掌握分配律以及同底数幂的运算法则,是解题的关键.10.2-【解析】【分析】将92781m n ⨯=进行整理,得到232349273333m n m n m n +⨯=⨯==,即234m n +=,代入即可求解.【详解】解:①232349273333m n m n m n +⨯=⨯==,①234m n +=,①()64662236242m n m n --=-+=-⨯=-,故答案为:2-.【点睛】本题考查同底数幂相乘的应用,将92781m n ⨯=变形得到234m n +=是解题的关键. 11.5a -【解析】【分析】根据同底数幂的乘法运算法则进行计算即可.【详解】225533=()(())()a a a a a +-⋅--=--=故答案为:5a -.【点睛】本题主要考查了同底数幂的乘法,熟练掌握同底数幂的乘法法则是解答本题的关键. 12.3【解析】【分析】直接利用幂的乘方运算法则将原式变形,进而利用同底数幂的乘法运算法则求出答案.【详解】解:①2x +3y ﹣1=0,①2x +3y =1.①9x •27y =32x ×33y =32x+3y =31=3.故答案为:3.【点睛】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确将原式变形是解题关键. 13.﹣(x ﹣y )6##-(y-x )6【解析】【分析】将原式第二个因式提取-1变形后,利用同底数幂的乘法法则计算,即可得到结果.【详解】解:(x ﹣y )2(y ﹣x )3(x ﹣y )=﹣(x ﹣y )2(x ﹣y )3(x ﹣y )=﹣(x ﹣y )6.故答案为:﹣(x ﹣y )6.【点睛】此题考查了同底数幂的乘法运算,熟练掌握法则是解本题的关键.14.55m【解析】【分析】按照同底数幂相乘运算法则进行计算即可.【详解】23(23)5555m m m m +⋅== 故答案为:55m【点睛】本题考查了同底数幂相乘,掌握同底数幂相乘底数不变,指数相加是解题的关键 15.144【解析】【分析】先将25x y +变形为22(5)(5)x y ⨯,然后结合同底数幂的乘法的概念和运算法则将53x =,54y =代入求解即可.【详解】解:53x =,54y =,25x y +∴2255x y =⨯22(5)(5)x y =⨯2234=⨯916=⨯144=.故答案为:144.【点睛】本题考查了同底数幂的乘法,解答本题的关键在于先将25x y +变形为22(5)(5)x y ⨯,然后结合同底数幂的乘法的概念和运算法则将53x =,54y =代入求解.16. 52a - 21112222nn n a +-+-+ 【解析】【分析】先求出长方形的长与宽,再根据长方形的周长公式即可得;然后利用同样的方法求出第二次、第三次操作后得到的长方形的周长,归纳类推出一般规律即可得.【详解】解:第一次操作后得到的长方形的宽为12a ,长为121a a a +-=-, 则第一次得到的长方形的周长为12(21)522a a a +-=-, 第二次操作后得到的长方形的宽为21142a a =,长为2(21)143a a --=-, 第三次操作后得到的长方形的宽为31182a a =,长为2(43)187a a --=-,归纳类推得:第n 次操作后得到的长方形的宽为12na , 观察发现,第一次操作后得到的长方形的长为212(1)1a a -=-+,第二次操作后得到的长方形的长为2434(1)12(1)1a a a -=-+=-+,第三次操作后得到的长方形的长为3878(1)12(1)1a a a -=-+=-+, 归纳类推得:第n 次操作后得到的长方形的长为2(1)1n a -+,则第n 次操作后得到的长方形的周长为21111222(1)12222n n n n n a a a +-+⎡⎤+-+=-+⎢⎥⎣⎦, 故答案为:52a -,21112222nn n a +-+-+. 【点睛】本题考查了图形规律探索、同底数幂的乘法,正确归纳类推出长与宽的一般规律是解题关键.17.22a a -【解析】【分析】观察发现规律,并利用规律完成问题.【详解】观察232222+=-、23422222++=-发现23n 1222222n +++++=- ①5051529910022222+++++ =()505024*********+++++ =50505122(22)+-=50505022(222)+⨯-(把502a =代入)=(22)a a a +-=22a a -.故答案为:22a a -.【点睛】此题考查乘方运算,其关键是要归纳出规律23n 1222222n +++++=-并运用之.18.(1)3,0,﹣2;(2)a +b =c ,理由见解析.【解析】【分析】(1)直接根据新定义求解即可;(2)先根据新定义得出关于a,b,c的等式,然后根据幂的运算法则求解即可.【详解】(1)①33=27,①(3,27)=3,①40=1,①(4,1)=0,①2﹣2=14,①(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a+b=c.理由:①(3,5)=a,(3,6)=b,(3,30)=c,①3a=5,3b=6,3c=30,①3a×3b=5×6=3c=30,①3a×3b=3c,①a+b=c.【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.19.(1)b7;(2)(x﹣y)3(y﹣2)7.【解析】【分析】(1)直接利用同底数幂的乘法运算法则进而计算得出答案;(2)直接利用同底数幂的乘法运算法则进而计算得出答案.【详解】解:(1)﹣b2×(﹣b)2×(﹣b3)=b2×b2×b3=b7;(2)(x ﹣y )3×(y ﹣2)2×(y ﹣2)5=(x ﹣y )3(y ﹣2)7.【点睛】本题考查幂的相关计算,有时候需要有整体思想,把底数可以为多项式的.20.(1)﹣x 2+4xy ,﹣94;(2)①6;①89. 【解析】【分析】(1)先利用整式的加减运算法则进行化简,再将x 、y 的值代入求解即可;(2)根据同底数幂的逆运算计算即可.【详解】(1)22()(23)6x xy x xy ---223262x xy x xy --+=24x xy =-+当1,12x y ==-时,原式2211194)4(1)222(44x xy =-=-⨯++⨯-=--=-; (2)2,3m n a a ==①236m n m n a a a +=⋅=⨯=;①323232328()()239m n m n m n a a a a a -=÷=÷=÷=. 【点睛】本题考查了整式的加减、同底数幂的运算,熟记整式的运算法则是解题关键.21.()53a b -【解析】【分析】将原式中的每项变成同度数幂,运用同底数幂的乘法法则进行计算即可得解.【详解】()()()()()3452 a b b a a b b a a b -⋅----+-, =()()()()()3245+a b a b a b a b a b -⋅---+-=()()()555 +a b a b a b --+-=()53a b -【点睛】此题主要考查了同底数幂的乘法,掌握并熟练运用同底数幂的忒覅覅买基金解题的关键. 22.(1)0,-2;(2)42【解析】【分析】(1)根据已知幂的定义得出即可;(2)根据已知得出3a =6,3b =7,3c =x ,同底数幂的乘法法则即可得出答案.【详解】(1)根据规定,(5,1)=0,(4,116)=-2, 故答案为:0;-2;(2)①(3,6)=a ,(3,7)=b ,(3,x )=c ,①3a =6,3b =7,3c =x ,又①a+b=c ,①3a ×3b =3c ,即x=6×7=42.【点睛】本题考查了同底数幂的乘法,有理数的混合运算等知识点,能灵活运用同底数幂的乘法法则进行变形是解此题的关键.23.(1)1;-1;(2)4;256;(3)4;(4)122n +-【解析】【分析】(1)将()2h 变形为()11h +,根据新定义计算即可;(2)将()7h 变形为()71h ⎡⎤⎣⎦,得出()1h ,即可得出()2h ,()8h 的值; (3)将等式变形()()()()42222h h h h +=,即可得解; (4)根据变形发现规律,即求()()()()123h h h h n ++++的值,求解即可.【详解】(1)()()()()()()21111111h h h h =+=⋅=--=;()()()()()()()()100920191201812018122016121h h h h h h =+=⋅=-+=-=-(2)()()771128h h ==①()12h =①()()()2114h h h =⋅=,()()()()817172128256h h h h =+=⋅=⨯= (3)()()()()()()()()4222224222h h h h h h h h +==== (4)由(3)得出()24h =,①()12h =①()()()()()()()()2462123h h h h n h h h h n ++++=()()()()123h h h h n ++++=124816222n n ++++++=-【点睛】 此题主要考查同底数幂的乘法,定义新运算,熟练掌握运算性质和法则是解题关键. 24.(1)2001(2)1a -(3)52(4)﹣120【解析】【分析】(1)根据题意,得到21a a +=;再将原式进行变形即可得出答案(2)先设原式等于m ,利用2m -m 求出原式的值,最后将a 代入即可(3)根据幂的乘方运算公式对原式进行变形,然后进而的出答案(4)采用赋值法进行计算【详解】(1)由题意得:21a a +=;①43222000a a a +++=43322000a a a a ++++=()22322000a a a a a ++++=3222000a a a +++=()222000a a a a +++=12000+=2001 (2)设1231512222m =++++⋯+,则23416222222m =++++⋯+;①16221m m -=-,即1621m =-①原式=1a -(3)232122x x ++-=212x +∙22122x +-=2132x +⋅=192①21264x +=①216x +=①52x = (4)当x=1时,1=012345a a a a a a +++++ ……①当x=﹣1时,53-=012345a a a a a a -+--+ ……①当x=0时,-1=0a①+①=()0242a a a ++=513-即024a a a ++=5132- ①24a a +=5132-+1=﹣120 【点睛】本题主要考查了代数式的变形求值,掌握各类代数式求值的特点是解题关键25.(1)211﹣1(2)1+3+32+33+34+ (3)=1312n +-. 【解析】【分析】(1)设S=1+2+22+23+24+…+210,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值.(2)同理即可得到所求式子的值.【详解】解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘以2得2S=2+22+23+24+…+210+211,将下式减去上式得:2S﹣S=211﹣1,即S=211﹣1,则1+2+22+23+24+…+210=211﹣1.(2)设S=1+3+32+33+34+…+3n,两边乘以3得:3S=3+32+33+34+…+3n+3n+1,下式减去上式得:3S﹣S=3n+1﹣1,即S=1312n+-,则1+3+32+33+34+…+3n=1312n+-.。
A.a3+a3=a6B.a3()=aC.6ab2()=12a b24A.2b2B.(b-a)2C.1b2第一章整式的乘除一、单选题1.已知2a=5,2b=2,2c=50,那么a、b、c之间满足的等量关系是()A.2a+b>c B.2a+b<c C.2a+b=c D.无法确定2.在下列各式中的括号内填入a3的是()A.a12=()2B.a12=()3C.a12=()4D.a12=()6 3.下列式子正确的是()252D.a6÷a=a54.计算:(5a2b)•(3a)等于()A.15a3b B.15a2b C.8a3b D.8a2b5.如图,边长分别为a和b的两个正方形拼接在一起,则图中阴影部分的面积为()2D.b2-a26.己知关于x的多项式mx2-mx-2与3x2+mx+m的和是单项式,则代数式m2-2m+l的值是()A.16B.-3C.2或-3D.16或14B.x-y4C.1D.2xy ⎣⎦7.长方形的面积为6a2-3ab+3a,一边长为3a,则它的周长是()A.2a-b+1B.5a-b+1C.10a-2b+2D.10a-2b8.计算⎡(x+y)2-(x-y)2⎤÷4x y的结果为A.x+y9.下列计算错误的有()①(2x+y)2=4x2+y2;①(3b-a)2=9b2-a2;①(-3b-a)(a-3b)=a2-9b2;①11(-x-y)2=x2+2x y+y2;①(x-)2=x2-2x+.24A.1个B.2个C.3个D.4个10.我国南宋数学家杨辉所著的《详解九章算法》一书中,用如图所示的三角形解释二项式(a+b)n的展开式中各项系数的规律,此三角形称为“杨辉三角”根据“杨辉三角”请计算(a+b)6的展开式中从左起第四项的系数为()A.64B.20C.15D.6二、填空题11.已知32⨯9m⨯27=321,求m=__________.13.(x+y)(x-y)x2+y2=______.12.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为________.()14.如图1,把一个边长为(a+b)的大正方形切成4个全等的长方形和1个小正方形,大正方形的面积是49,中间小正方形的面积为16.图2中两个正方形的边长分别为a、b,则阴影部分的面积为_____.三、解答题15.计算(1)(-3a2b)3⋅(-12a2)4⋅(-b2)5(2)(4xy2-10x2y+1)(-32xy)2(3)(3x+2)(3x-2)-(2x-1)2-5x(x+2)(4)(3x-y)2-(2x+y)2+5x(y-x)(5)(3a+b-2)(3a-b+2)(6)(-2)2-(3.14-π)0-1-(-1)2019916.先化简,再求值:3a(2a2-4a+3)-2a2(3a+4),其中a=-2.17.书是人类进步的阶梯!为爱护书一般都将书本用封皮包好,现有一本如图1的数学课本,( (其长为 26cm 、宽为 18.5cm 、厚为 1cm ,小海宝用一张长方形纸包好了这本数学书,他将封面和封底各折进去 xcm 封皮展开后如图(2)所示,求:(1)则小海宝所用包书纸的面积是多少?(用含 x 的代数式表示)(2)当封面和封底各折进去 2cm 时,请帮小海宝计算一下他需要的包装纸至少需要多少平方厘米?18.已知(x + a )x 2 - x + c )的积不含 x 2 项与 x 项,求(x + a ) x 2 - x + c ) 的值是 多少?19.定义一种新运算:观察下列式:1①3=1×4+3=73①(﹣1)=3×4﹣1=115①4=5×4+4=24 4①(﹣3)=4×4﹣3=13(1)请你想一想:a①b=;(2)若 a≠b ,那么 a①bb①a (填入“=”或“≠” )(3)若 a①(﹣2b )=3,请计算 (a ﹣b )①(2a+b )的值.20.如图①所示是一个长为 2m ,宽为 2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图①的方式拼成一个正方形.(1)按要求填空:①你认为图①中的阴影部分的正方形的边长等于______;①请用两种不同的方法表示图①中阴影部分的面积:方法1:______方法2:______①观察图①,请写出代数式(m+n)2,(m-n)2,mn这三个代数式之间的等量关系:______;(2)根据(1)题中的等量关系,解决如下问题:若|m+n-6|+|mn-4|=0,求(m-n)2的值.(3)实际上有许多代数恒等式可以用图形的面积来表示,如图①,它表示了______答案1.C 2.C 3.D 4.A 5.C 6.D 7.C 8.C15.(1) 27 x 4 y 3 + x 2 y 2;(3) -6x - 5 ;(4) -5 x y ;(5)9.D10.B11.812.013. x 4 - y 414.2845 9 a 14b13 ;(2)9x 3 y 4 -162 4 9a 2 - b 2 +4b - 4 ;(6) 11316.-20a 2+9a ,-9817.(1)(4x 2+128x+988)cm 2;(2)需要的包装纸至少是 1260 平方厘米.18.x 3+119.(1)4a+b ;(2)≠;(3)4.5.20.(1)①m ﹣n ;①(m ﹣n )2;(m+n )2﹣4mn ,①(m ﹣n )2=(m+n )2﹣4mn ;(2)(m﹣n )2=20;(3)(2m+n )(m+n )=2m 2+3mn+n 2。
北师大版七年级数学下册第一章整式的乘除1.1~1.3计算综合专项训练1.计算:(1)3x3•2x2 (2)(﹣x2y)2 (3)(2x2)3 (4)x5÷x2.计算:(1)(﹣x)4•(﹣x)6;(2)﹣a3•a;(3)(﹣m)2•m3;(4)﹣x•x2•x3.3.运用同底数幂的乘法法则计算下列各式,并用幂的形式表示结果.(1)27×23 (2)(﹣3)4×(﹣3)7(3)(﹣5)2×(﹣5)3×54.(4)(x+y)3(x+y)4.计算:(1)(﹣x)5•x2•(﹣x)4;(2)﹣a2•(﹣a)4•(﹣a)3;(4)﹣m4•m6•(﹣m)8;(4)﹣(﹣p)5•(﹣p)3•(﹣p)2.(1)﹣b2×(﹣b)2×(﹣b3)(2)(2﹣y)3×(y﹣2)2×(y﹣2)56.幂的运算(1)(﹣2ab)3.(2)(x2y3)4+(﹣2x4y)2y10.7.计算:(1)(﹣t4)3+(﹣t2)6;(2)(m4)2+(m3)2﹣m(m2)2•m3.8.计算:(1)(﹣2)5•(﹣2)7•26;(2)(﹣)5•(﹣)3•(﹣)4;(3)102•10•10m(m是正整数);(4)3n•(﹣3)5•3n(n是正整数).9.计算:(1)(2x2)4﹣x•x3•x4.(2)(2a2)3+(﹣3a3)2+(a2)2•a2(1)a3•(﹣a)5•a12;(2)y2n+1•y n﹣1•y3n+2(n为大于1的整数);(3)(﹣2)n×(﹣2)n+1×2n+2(n为正整数);(4)(x﹣y)5•(y﹣x)3•(x﹣y).11.计算:x4•(﹣x)5+(﹣x)4•x5.12.计算:(1)x3•x•(﹣x)2 ;(2)a3•(﹣a2)3;(3)(m﹣1)3•(1﹣m)4+(1﹣m)5•(m﹣1)2;(4)(﹣)2018×(1)2019;13.计算或化简:(1);(2)a5▪(a4)2÷(﹣a2)3;(3).14.计算:(1)(2x2)3+x4•x2+(﹣2x2)3;(2)2100×4100×0.12599.15.计算:(1)5m﹣7n﹣8p+5n﹣9m﹣p;(2)x4•x5•(﹣x)7+5(x4)4﹣(x7)3÷x5.16.计算:(1)﹣14﹣8+(﹣2)3×(﹣3)(2)(+﹣)×(﹣18)(3)﹣3(2a2b﹣ab2)+2(a2+3a2b)(4)x5•x3﹣(2x4)2+x10÷x217.计算:(1)16﹣(﹣17)+(﹣9)﹣14;(2).18.计算:a•a3﹣(2a2)2+4a419.计算下列各式.(1)﹣a6•a (2)x3•x5+x•x7 (3)﹣(x3)4+3×(x2)4•x420.计算:(1)x3•x5﹣(2x4)2+x10÷x2.(2)(﹣2x2)3+(﹣3x3)2+(x2)2•x221.计算:(1)(﹣)2﹣23×4﹣1+(π﹣3.14)0;(2)(﹣a)2+a7÷a﹣(a2)3.22.计算:(1)(m4)2+m5•m3+(﹣m)4•m4 (2)x6÷x3•x2+x3•(﹣x)2.23.÷|﹣(﹣1+)|+|﹣5|×(÷[﹣(2)3])×(﹣).24.计算:(1)﹣5+(1﹣0.2×)÷(﹣2)(2)(﹣x)3÷x2+(﹣3x+6)﹣3(2﹣6x)解方程:(3)5(2x﹣3)﹣6(1+2x)=3 (4)﹣﹣+2=0答案提示1.解:(1)3x3•2x2=6x5;(2)(﹣x2y)2=x4y2;(3)(2x2)3=8x6;(4)x5÷x=2x4.2.解:(1)(﹣x)4•(﹣x)6=x4•x6=x10;(2)﹣a3•a=﹣a4;(3)(﹣m)2•m3=m2•m3=m5;(4)﹣x•x2•x3=﹣x1+2+3=﹣x6.3.解:(1)27×23=27+3=210(2)(﹣3)4×(﹣3)7=(﹣3)4+7=(﹣3)11=﹣311(3)(﹣5)2×(﹣5)3×54=(﹣5)2+3+4=(﹣5)9=﹣59(4)(x+y)3(x+y)=(x+y)3+1=(x+y)44.解:(1)原式=(﹣x5)•x2•x4=﹣x5+2+4=﹣x11;(2)原式=﹣a2•a4•(﹣a3)=﹣(﹣a2+3+4)=﹣(﹣a9)=a9;(3)原式=﹣m4•m6•m8=﹣m4+6+8=﹣m18;(4)原式=﹣(﹣p5)•(﹣p3)•p2=﹣p5+3+2=﹣p10.5.解:(1)﹣b2×(﹣b)2×(﹣b3)=b2×b2×b3=b7;(2)(2﹣y)3×(y﹣2)2×(y﹣2)5=﹣(y﹣2)3(y﹣2)7=﹣(y﹣2)10.6.解:(1)(﹣2ab)3=(﹣2)3a3b3=﹣8a3b3;(2)(x2y3)4+(﹣2x4y)2y10=x8y12+4x8y2•y10=x8y12+4x8y12=5x8y12.7.解:(1)原式=﹣t12+t12=0;(2)原式=m8+m6﹣m8=m6.8.解:(1)原式=(﹣25)•(﹣27)•26=25+7+6=218;(2)原式===;(3)原式=102+1+m=103+m;(4)原式=3n•(﹣35)•3n=﹣3n+5+n=﹣32n+5.9.解:(1)原式=16x8﹣x8=15x8.(2)(2a2)3+(﹣3a3)2+(a2)2•a2=23×(a2)3+(﹣3)2×(a3)2+(a2)2×a2=8a6+9a6+a6=(8+9+1)a6=18a6.10.解:(1)a3•(﹣a)5•a12=﹣a20;(2)y2n+1•y n﹣1•y3n+2(n为大于1的整数)=y6n+2;(3)(﹣2)n×(﹣2)n+1×2n+2(n为正整数)=﹣23n+3;(4)(x﹣y)5•(y﹣x)3•(x﹣y)=﹣(x﹣y)5•(x﹣y)3•(x﹣y)=﹣(x﹣y)9.11.解:x4•(﹣x)5+(﹣x)4•x5=﹣x9+x9=0.12.解:(1)x3•x•(﹣x)2=x4•x2=x6;(2)a3•(﹣a2)3=a3•(﹣a6)=﹣a9;(3)(m﹣1)3•(1﹣m)4+(1﹣m)5•(m﹣1)2=(m﹣1)3•(m﹣1)4﹣(m﹣1)5•(m﹣1)2=(m﹣1)7﹣(m﹣1)7=0;(4)(﹣)2018×(1)2019=(﹣×1)2018×1=.13.解:(1)原式=8﹣1﹣5=2;(2)原式=a5•a8÷(﹣a6)=﹣a13﹣6=﹣a7;(3)原式=(×2)2019×2=2.14.解:(1)原式=8x6+x6﹣8x6=x6;(2)原式=299×2×499×4×0.12599=(2×4×0.125)99×2×4=199×2×4=1×2×4=8.15.解:(1)原式=(5﹣9)m+(﹣7+5)n+(﹣8﹣1)p =﹣4m﹣2n﹣9p;(2)原式=x4•x5•(﹣x7)+5x16﹣x21÷x5=﹣x16+5x16﹣x16=3x16.16.解:(1)﹣14﹣8+(﹣2)3×(﹣3)=﹣1﹣8+(﹣8)×(﹣3)=﹣9+24=15(2)(+﹣)×(﹣18)=×(﹣18)+×(﹣18)﹣×(﹣18)=﹣9﹣6+3=﹣12(3)﹣3(2a2b﹣ab2)+2(a2+3a2b)=﹣6a2b+3ab2+2a2+6a2b=3ab2+2a2(4)x5•x3﹣(2x4)2+x10÷x2=x8﹣4x8+x8=﹣2x8.17.解:(1)16﹣(﹣17)+(﹣9)﹣14=16+17﹣9﹣14=10;(2)原式=﹣1+4+1=4.18.解:原式=a4﹣4a4+4a4=a4.19.解:(1)﹣a6•a=﹣a7;(2)x3•x5+x•x7=x8+x8=2x8;(3)原式=﹣x12+3×x8•x4=﹣x12+3x12=2x12.20.解:(1)原式=x8﹣4x8+x8=﹣2x8(2)原式=﹣8x6+9x6+x6=2x621.解:(1)原式=﹣8×+1=﹣2+1=﹣;(2)原式=a2+a6﹣a6=a2.22.解:(1)原式=m8+m8+m8=3m8;(2)原式=x6﹣3+2+x3•x2=x5+x5=2x5.23.解:原式=﹣÷|+1﹣|+5×[﹣÷(﹣8)]×(﹣)=﹣÷+5××(﹣)=﹣﹣=﹣.24.解:(1)原式=﹣5+(1﹣)÷(﹣2)=﹣5+=﹣5﹣=;(2)原式=﹣x﹣2x+4﹣6+18x=15x﹣2;(3)去括号得,10x﹣15﹣6﹣12x=3,移项得,10x﹣12x=15+6+3,合并同类项得,﹣2x=24,系数化为1得,x=﹣12;(4)去分母得,6(x+3)﹣3(x+3)﹣10(2x﹣5)+60=0,去括号得,6x+18﹣3x﹣9﹣20x+50+60=0,移项得,6x﹣3x﹣20x=9﹣18﹣50﹣60,合并同类项得,﹣17x=﹣119,系数化为1得,x=7.。
北师大版七年级数学下册第 1 章《整式的乘除》单元测试试卷及答案(3)一、选择题(共10 小题)1.下列运算正确的是()A.4a2﹣(2a)2=2a2 B.(﹣a2)?a3=a6 C.(﹣2x2)3=﹣8x6 D.(﹣x)2÷x=﹣x2.在地理学上,核算星球之问的间隔通常用“光年”作单位, 1 光年即光在一年内经过的旅程.已知光的速度是 3×105km/s,一年约等于 3×107s,则 1 光年约等于()A.9×1012km B.6×1035km C.6×1012km D.9×1035km2 23.对于x 的任意一个值,(2x﹣5)=4x +kx+25 永远成立,则k 等于()A.20 B.10 C.﹣20 D.﹣lO2 2﹣1 成立,则a 的值为()4.若a 的值使得x +4x+a= (x+2)A.5 B.4 C.3 D.25.下列四个算式:(1);(2)16a6b4c÷8a3b2=2a2b2c;(3)9x8y2÷3x3y=3x5y;(4)(12m3+8m2﹣4m)÷(﹣2m)=﹣6m2+4m+2.其间正确的个数有()A.0 个B.1 个C.2 个D.3 个6.如果(x﹣2)(x+3)=x2+px+q,那么p、q 的值为()A.p=5,q=6 B.p=﹣1,q=6 C.p=1,q=﹣6 D.p=5,q=﹣67 6 3 2)÷ab的结果是()7.核算20a b c÷(﹣4a bA.﹣5a3b3c B.﹣5a5b5 C.5a5b5 D.﹣5a5b28.已知x+y=2 ,则等于()A.2 B.4 C.D.﹣29.计算(﹣0.125)2013?(﹣8)2012 的结果是()A.8 B.﹣8 C.1 D.﹣0.12510.如图,沿着正方形的对称轴半数,重合的两个小正方形的整式的乘积可得一新整式,则这样的整式共有()A.2 个B.4 个C.6 个D.8 个二、填空题(共10 小题)m)5=x10y15,则3m(n+1)的值为_________ .n11.若(x y?xy12.用科学记数法表明﹣ 0.00012= _________ .3n﹣2)2x2n+4÷x n=x2n﹣5,则n= _________ .13.已知:(x14.(x+2y ﹣3)(x﹣2y﹣3)= _________ ﹣_________ .2 215.(2012?遵义)已知x+y= ﹣5,xy=6,则x +y = _________ .16.调查下列等式:9﹣1=8;16﹣4=12;25﹣9=16;36﹣16=20,⋯这些等式反映正整数间的某种规则,设n(n≥1)表明正整数,用关于 n 的等式表明这个规则为_________.17.已知6x=5,6y=2,则6x+y=_________.218.(29×31)×(30+1)=_________.2﹣3b2,如果它的一边长是a+b,则它的周长是_________.19.已知长方形的面积是3a20._________.三、回答题(共 8 小题,满分 60 分)21.(10 分)核算.22(1)(a﹣2b+3c)﹣(a+2b﹣3c);(2);(3)﹣2100×0.5100×(﹣1)2013÷(﹣1)﹣5;2(4)[(x+2y)(x﹣2y)+4(x﹣y)﹣6x]÷6x;(5)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)].22.(9分)求值.(1)(a+b)(a﹣b)+a(2b﹣a),其中a=1.5,b=2.(2)已知2(a+1)(a﹣1)﹣(a+b)(a﹣b)﹣5b2=3,求(a+2b)(a﹣2b)的值.23.(6分)解方程.(1)(x﹣1)2+21=(x+1)2﹣1;(2)(2x﹣1)(4x2+2x+1)=8x(x﹣2)(x+2).24.(5 分)两个两位数的十位数字相同,一个数的个位数字是 6,另一个数的个位数字是 4,它们的平方差是 220,求这两个两位数.2﹣b)=4,求代数式的值.25.(5 分)已知 a(a﹣1)﹣( a26.(5分)我们规定:a*b=10(1)试求12*3和2*5的值;ab,例如3*4=103×104=107.×10(2)想一想(a*b)*c与a*(b*c)相等吗?如果相等,请验证你的结论.27.(10 分)调查下列式子.2﹣12=(3+1)(3﹣1)=8;①322﹣3②5=(5+3)(5﹣3)=16;2﹣52=(7+5)(7﹣5)=24;③72﹣72=(9+7)(9﹣7)=32.④9(1)求212﹣192=_________.(2)猜测:恣意两个接连奇数的平方差必定是 _________ ,并给予证明.28.(10 分)( 1)图( 1)是一个长为2m,宽为2 他的矩形,把此矩形沿图中虚线用剪刀均分为四个小长方形,然后按图( 2)的形状拼成一个大正方形.请问:这两个图形的什么量不变?(2)把所得的大正方形面积比原矩形的面积多出的暗影部分的面积用含 m,n 的代数式表明为_________.(3)由前面的探究可得出的定论是:在周长必定的矩形中,当 _________时,面积最大.(4)若矩形的周长为24cm,则当边长为多少时,该图形的面积最大?最大面积是多少?参考答案与试题解析一、选择题(共10 小题)1.下列运算正确的是()A.4a2﹣(2a)2=2a2 B.(﹣a2)?a3=a6 C.(﹣2x2)3=﹣8x6 D.(﹣x)2÷x=﹣x考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.剖析:别离依据同底数幂的乘法与除法、幂的乘方、兼并同类项的规则逐个核算即可.回答:解: A、过错,应为 4a2﹣(2a)2=4a2﹣4a2=0;2 3 5)?aB、过错,应为(﹣ a =﹣a ;2)3=﹣8x6,正确;C、(﹣2x2 2D、过错,应为(﹣ x)÷x=x ÷x=x.故选C.点评:本题考察了兼并同类项,同底数幂的乘法和除法,幂的乘方,熟练把握运算性质是解题的要害.2.在地理学上,核算星球之问的间隔通常用“光年”作单位, 1 光年即光在一年内经过的旅程.已知5 7光的速度是3×10km/s,一年约等于3×10 s,则1 光年约等于()A.9×1012km B.6×1035km C.6×1012km D.9×1035km考点:同底数幂的乘法.剖析:依据间隔等于速度与时刻的积即可求解.回答:解: 1 光年约等于:3×105×3×107=9×1012(km).故选A.点评:本题考察了有理数的运算,了解幂的运算规则是要害.2 23.对于x 的任意一个值,(2x﹣5)=4x +kx+25 永远成立,则k 等于()A.20 B.10 C.﹣20 D.﹣lO考点:彻底平方公式.分析:利用完全平方公式对等式左边展开,再根据对应项系数相等解答即可.解答:解:(2x﹣5)2=4x2﹣20x+25 ,2 2∵对于x 的任意一个值,(2x﹣5)=4x +kx+25 永远成立,∴k=﹣20.故选 C.点评:本题首要考察彻底平方公式,熟记公式结构是解题的要害.彻底平方公式:(a±b)2 2 2=a ±2ab+b.4.若a 的值使得x2+4x+a= (x+2)2﹣1 成立,则 a 的值为()A.5 B.4 C.3 D.2考点:彻底平方公式.剖析:两个代数式持平,即对应项的系数相同,把右边的式子化简,得到的常数项便是 a的值.解答:解:∵(x+2)2﹣1=x2+4x+4 ﹣1=x2+4x+3,∴a 的值为 3.故选 C.点评:首要考察彻底平方公式的运用;把能算出的式子应先算出答案.5.下列四个算式:(1);(2)16a6b4c÷8a3b2=2a2b2c;(3)9x8y2÷3x3y=3x5y;(4)(12m3+8m2﹣4m)÷(﹣2m)=﹣6m2+4m+2.其间正确的个数有()A.0 个B.1 个C.2 个D.3 个考点:整式的除法.剖析:先依据整式的除法规则别离核算各个式子,再判别即可.解答:解:(1)4x2y4÷xy=16xy 3,错误;(2)16a6b4c÷8a3b2=2a3b2c,过错;8 2 3 5(3)9xy ÷3x y=3x y,正确;(4)(12m3+8m2﹣4m)÷(﹣2m)=﹣6m2﹣4m+2,错误.故选B.点评:本题考察了整式的除法运算,比较简单.用到的知识点:单项式除以单项式,把系数,同底数幂别离相除后,作为商的因式;关于只在被除式里含有的字母,则连同他的指数一同作为商的一个因式.多项式除以单项式,先把这个多项式的每一项别离除以单项式,再把所得的商相加.26.如果(x﹣2)(x+3)=x +px+q,那么p、q 的值为()A.p=5,q=6 B.p=﹣1,q=6 C.p=1,q=﹣6 D.p=5,q=﹣6考点:多项式乘多项式.专题:核算题.分析:先根据多项式乘以多项式的法则,将(x﹣2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q 的值.解答:解:∵(x﹣2)(x+3)=x2+x﹣6,又∵(x﹣2)(x+3)=x2+px+q,∴ x2+px+q=x 2+x ﹣6,∴p=1,q=﹣6.故选 C.点评:本题首要考察多项式乘以多项式的规则及两个多项式持平的条件.多项式与多项式相乘,先用一个多项式的每一项乘别的一个多项式的每一项,再把所得的积相加.两个多项式持平时,它们同类项的系数对应持平.7 6 2)÷ab的结果是()37.核算 20a b c÷(﹣4a bA.﹣5a3b3c B.﹣5a5b5 C.5a5b5 D.﹣5a5b2考点:整式的混合运算.剖析:按单项式的除法规则进行核算.7 6 3 2回答:解: 20a )÷ab,b c÷(﹣4a b7﹣3﹣1b6﹣2﹣1c,=﹣(20÷4)a=﹣5a3b3c.故选A.点评:本题考察了单项式的除法,熟练把握运算规则是解题的要害,同一级运算要依照从左到右的次序顺次进行运算.8.已知x+y=2 ,则等于()A.2 B.4 C.D.﹣2考点:彻底平方公式.剖析:依据彻底平方公式收拾,然后全体代入进行核算即可得解.解答:解:∵x+y=2 ,∴x2+xy+ y2= (x2+2xy+y 2)= (x+y )2= ×22=2.故选A.点评:本题主要考查完全平方公式,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.20132012 的结果是()9.计算(﹣0.125)?(﹣8)A.8 B.﹣8 C.1 D.﹣0.125考点:幂的乘方与积的乘方;同底数幂的乘法.分析:(﹣0.125)2013?(﹣8)2012=(﹣0.125)×(﹣0.125)2012?(﹣8)2012,逆用同底数的幂的乘法即可求解.回答:解:原式 =(﹣0.125)×【(﹣0.125)×(﹣ 8)】2012=﹣0.125×12012=﹣0.125.故选D.点评:本题考察了同底数的幂的乘法规则,正确对已知的式子进行变形是要害.10.如图,沿着正方形的对称轴半数,重合的两个小正方形的整式的乘积可得一新整式,则这样的整式共有()A.2 个B.4 个C.6 个D.8 个考点:整式的混合运算.剖析:从图中看出,有四个小正方形,即有四个整式,把半数后重合的两个小正方形内的整式相乘即可.回答:解:正方形有四条对称轴,有六组对应整式的积:2 2 2(x﹣1),x (x+1),x(x﹣1),(x+1)(x﹣1),x?xx(x+1),x,故选C.点评:本题考察了正方形的轴对称性及整式的乘法,把握正方形有四条对称轴是解题的关键.二、填空题(共10 小题)nm)5=x10y15,则3m(n+1)的值为12 .11.若(x y?xy考点:幂的乘方与积的乘方.分析:利用同底数的幂的乘法法则以及幂的乘方法则得:(x n y?xy m)5=(x n+1?y m+1)5=x5n+5?y 5m+5=x10y15,即可求得 m,n 的值,则代数式的值能够求得.解答:解:(x n y?xy m)5=(x n+1?y m+1)5=x 5n+5?y 5m+5=x10y15,则,解得:,则3m(n+1)=6×2=12.故答案是:12.点评:本题考察了幂的运算,正确了解幂的乘方以及同底数的幂的乘法规则是要害.﹣4 . 12.用科学记数法表明﹣ 0.00012= ﹣1.2×10考点:科学记数法—表明较小的数.专题:惯例题型.剖析:科学记数法的表明方式为a×10n 的方式,其间1≤|a|< 10,n为整数.确认 n 的值是易|剖析:科学记数法的表明方式为a×10n 的方式,其间 1≤|a|< 10,n为整数.确认 n 的值是易|剖析:科学记数法的表明方式为a×10n 的方式,其间1≤|a|< 10,n为整数.确认 n 的值是易错点,因为﹣0.000 12 第一个不是 0 的数字 1 前面有 4 个 0,所以能够确认 n=﹣4.﹣4.回答:解:﹣0.00 012=﹣1.2×10﹣4故答案为:﹣1.2×10 .点评:此题考察科学记数法表明较小的数办法,确认 n 的值是解题的要害.3n﹣2)2x2n+4÷x n=x2n﹣5,则n=﹣1 .13.已知:(x考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.剖析:依据同底数幂的乘法与除法,幂的乘方与积的乘方的运算性质把要求的式子进行整理,得出7n=2n﹣5,求出n 的值即可.解答:解:∵(x3n 2 2n+4 n 2n﹣5﹣2)x ÷x =x ,6n﹣4 2n+4 n8n n 7n2n﹣5,x x ÷x =x ÷x =x =x∴7n=2n﹣5,∴n=﹣1.故答案为:﹣1.点评:此题考察了同底数幂的除法、同底数幂的乘法、幂的乘方与积的乘方,熟练把握运算性质和规则是解题的要害.2﹣(2y)2 .14.(x+2y﹣3)(x﹣2y﹣3)= (x﹣3)考点:平方差公式.剖析:依据平方差公式核算即可.解答:解:(x+2y﹣3)(x﹣2y﹣3)=(x﹣3)故答案为:(x﹣3)2,(2y)2.2﹣(2y)2.点评:本题考查了平方差公式,属于基础题,解答本题的关键是掌握平方差公式:(a+b)(a﹣b)=a2﹣b2.15.(2012?遵义)已知x+y=﹣5,xy=6,则x2+y2= 13 .考点:彻底平方公式.分析:把x+y=5 两边平方,根据完全平方公式和已知条件即可求出x2+y2 的值.解答:解:∵x+y=﹣5,2∴(x+y)=25,∴x2+2xy+y 2=25,∵xy=6,∴x2+y2=25﹣2xy=25﹣12=13.故答案为:13.点评:本题考察了彻底平方公式,彻底平方公式有以下几个特征:①左面是两个数的和的平方;②右边是一个三项式,其间首末两项别离是两项的平方,都为正,中心一项是两项积的 2 倍;其符号与左面的运算符号相同.16.调查下列等式:9﹣1=8;16﹣4=12;25﹣9=16;36﹣16=20,⋯这些等式反映正整数间的某种规律,设(n n≥1)表示正整数,用关于n 的等式表示这个规律为(n+2)2﹣n2=4n+4 .考点:规则型:数字的改变类.专题:压轴题;规则型.剖析:调查发现,左面是两个平方数的差,右边是数的 4 倍的方式,然后依据序号写出即可.解答:解:9﹣1=32﹣12=8=4+4 ;2﹣22=12=4×2+4;16﹣4=42﹣32=16=4×3+4;25﹣9=52 2﹣436﹣16=6 =20=4×4+4,⋯依此类推,(n+2)2﹣n2=4n+4.故答案为:(n+2)2﹣n2=4n+4.点评:本题是对数字改变规则的考察,理清序号与底数之间的联系是解题的要害.17.已知6x=5,6y=2,则6x+y= 10 .考点:同底数幂的乘法.分析:首先逆用同底数幂的乘法性质:a m+n=a m a n,则6x+y=6x6y,再把已知条件代入即可.解答:解:6x+y=6x6y=5×2=10.点评:本题运用同底数幂的乘法的性质:同底数幂的乘法,底数不变,指数相加.2 4﹣1 .18.(29×31)×(30 +1)= 30考点:平方差公式.分析:首先将30×29 写出[(30+1)(30﹣1)],然后两次运用平方差公式计算即可.2 2 2 4解答:解:原式=[(30+1)(30﹣1)]×(30﹣1)×(30﹣1+1)=(30 +1)=30点评:本题考察了平方差公式,了解平方差公式是处理本题的要害.2﹣3b2,如果它的一边长是a+b,则它的周长是(8a﹣4b).19.已知长方形的面积是3a考点:整式的除法.剖析:依据长方形的面积和已知边长,使用多项式的除法先求出另一边,再依据周长公式列式求解.解答:解:(3a2﹣3b2)÷(a+b)=3(a+b)(a﹣b)÷(a+b)=3a﹣3b.∴可得周长为:2[(a+b)+(3a﹣3b)]=(8a﹣4b).故应填:(8a﹣4b).点评:本题考察的是整式的除法和加减法的使用,首要应依据所给条件运用整式除法进行核算,然后进行整式的加减核算.留意兼并同类项的规则的使用,要将其与整式乘法规则差异开来.20..考点:整式的除法.分析: 2 2 3 2先依据乘除互为逆运算,可知所求式子为3x),再先依据积的乘方的性y?(x y质核算乘方,然后使用单项式乘单项式的规则核算即可.解答:解:由题意,可知所求式子为:3x2y?(x2y3)2=3x 2 4 6 y? x y67.= x y故答案为x6y7.点评:本题考察了积的乘方的性质,单项式乘单项式的规则,比较简单.依据乘除互为逆运算的关系得出所求式子为3x 223y?(x y)2,是解题的关键.三、回答题(共 8 小题,满分 60 分)21.(10 分)核算.(1)(a﹣2b+3c)2﹣(a+2b﹣3c)2;(2);(3)﹣2100×0.5100×(﹣1)2013÷(﹣1)﹣5;2(4)[(x+2y)(x﹣2y)+4(x﹣y)﹣6x]÷6x;(5)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)].考点:整式的混合运算.分析:(1)先运用平方差公式得到(a﹣2b+3c+a+2b﹣3c)(a﹣2b+3c﹣a﹣2b+3c),再分别兼并同类项之后,运用单项式乘以多项式的规则核算即可;(2)先去小括号,再去中括号,兼并同类项之后,运用单项式乘以单项式的规则计算即可;(3)先逆用积的乘方将﹣2100×0.5100 变形为﹣(2×0.5)100,再核算乘方,然后核算乘除即可;(4)先运用平方差公式与彻底平方公式去掉小括号,再兼并同类项之后,运用多项式除以单项式的规则核算即可;(5)依照去括号规则先去小括号,再去中括号,然后兼并同类项即可.解答:解:(1)(a﹣2b+3c)2﹣(a+2b﹣3c)2=(a﹣2b+3c+a+2b﹣3c)(a﹣2b+3c﹣a﹣2b+3c)=2a?(﹣4b+6c)=12ac﹣8ab;22(2)=[3ab﹣ab﹣2ab+ab](﹣3a2b3)=ab(﹣3a2b3)=﹣3a3b4;(3)﹣2100×0.5100×(﹣1)2013÷(﹣1)(﹣1)÷(﹣1)=﹣1;﹣5100=﹣(2×0.5)×(﹣1)÷(﹣1)=﹣1×2222(4)([x+2y)(x﹣2y)+4(x﹣y)﹣6x]÷6x=[(x﹣4y)+4(x﹣2xy+y ﹣4y2+4x2﹣8xy+4y2﹣6x]÷6x=[5x2﹣8xy﹣6x]÷6x=x﹣y﹣1;2)﹣6x]÷6x=[x2(5)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)]=5a2﹣[a2+5a2﹣2a﹣2a2+6a]=5a2﹣[4a2+4a]=a2﹣4a.点评:本题考察了整式的混合运算,紧记运算次序与运算规则是解题的要害,留意使用运算律可使核算简洁.22.(9分)求值.(1)(a+b)(a﹣b)+a(2b﹣a),其中a=1.5,b=2.2(2)已知2(a+1)(a﹣1)﹣(a+b)(a﹣b)﹣5b=3,求(a+2b)(a﹣2b)的值.考点:整式的混合运算—化简求值.分析:(1)先去括号,再合并同类项,然后把a=1.5,b=2代入进行计算即可.(2)先去括号,再合并同类项,得到a2﹣4b2=5,然后把(a+2b)(a﹣2b)进行整理,即可得出答案.解答:解:(1)(a+b)(a﹣b)+a(2b﹣a)=a2﹣b2+2ab﹣a2=2ab﹣b2,把a=1.5,b=2 代入上式得:原式=2×1.5×2﹣22=6﹣4=2.(2)2(a+1)(a﹣1)﹣(a+b)(a﹣b)﹣5b2=3,2﹣1)﹣( a2﹣b2)﹣ 5b2=3,2(a收拾得: a2﹣4b2=5,2 2∵(a+2b)(a﹣2b)=a ﹣4b,∴(a+2b)(a﹣2b)=5.点评:此题考察了整式的化简求值,整式的运算实际上便是去括号、兼并同类项,这是各地中考的常考点,留意第 2 个题要以 a2﹣4b2 整全体的方式呈现.23.(6 分)解方程.2 2(1)(x﹣1)﹣1;+21=(x+1)(2)(2x﹣1)(4x2+2x+1 )=8x(x﹣2)(x+2).考点:整式的混合运算;解一元一次方程.分析:(1)先移项,得(x﹣1)2﹣(x+1)2=﹣1﹣21,再将方程左边运用平方差公式,化简收拾,得﹣ 4x=﹣22,然后系数化为 1 即可;(2)将方程左面运用立方差公式(或许多项式乘以多项式的规则),右边先运用平方差公式,再运用单项式乘多项式的规则,得 8x3﹣1=8x3﹣32x,再将方程收拾为﹣1=﹣32x,然后系数化为1 即可.解答:解:(1)(x﹣1)2+21= (x+1)2﹣1,(x﹣1)2﹣(x+1)2=﹣1﹣21,﹣4x=﹣22,解得x=5.5;(2)(2x﹣1)(4x2+2x+1 )=8x(x﹣2)(x+2),3﹣1=8x3﹣32x,8x﹣1=﹣32x,解得x= .点评:本题首要考察了整式的混合运算与一元一次方程的解法,紧记公式与规则是解题的要害.24.(5 分)两个两位数的十位数字相同,一个数的个位数字是6,另一个数的个位数字是4,它们的平方差是220,求这两个两位数.考点:平方差公式.分析:设这两个两位数的十位数字是x,则这个两位数依次表示为10x+6,10x+4 ,根据题意得到(10x+6 )2﹣(10x+4 )2=220,求得x 后即可求得这个两位数.解答:解:设这两个两位数的十位数字是x,则这个两位数依次表示为10x+6,10x+4,2﹣(10x+4)2=220∴(10x+6)解得:x=5∴ 这个两位数别离是 56 和 54.点评:本题考察了平方差的公式的使用,解题的要害是依据题意列出方程并使用平方差公式解题.2﹣b)=4,求代数式的值.25.(5 分)已知 a(a﹣1)﹣( a考点:整式的混合运算—化简求值.剖析:先把 a(a﹣1)﹣( a2﹣b)=4 进行收拾,得出 b﹣a=4,再把要求的式子进行通分,然后兼并同类项,最终把 b﹣a 的值代入即可.2回答:解:∵a(a﹣1)﹣( a ﹣b)=4,2﹣a﹣a2+b=4,∴ a∴b﹣a=4,∴= = = =8.点评:此题考察了整式的混合运算,依据整式的混合运算规则求出 b﹣a 的值是解题的关键,是一道根底题.26.(5 分)我们规定:a*b=10 (1)试求12*3 和2*5 的值;a b,例如3*4=10×103 4 7×10 =10 .(2)想一想(a*b)*c 与a*(b*c)相等吗?如果相等,请验证你的结论.考点:同底数幂的乘法.专题:新界说.分析:(1)根据“*”代表的运算法则进行运算即可;(2)分别计算出(a*b)*c 与a*(b*c),然后即可作出判断.12 3 15 2 5 7解答:解:(1)12*3=10 ,2*5=10×10 =10 ×10 =10 ;(2)持平.ab)*c=1010 a+b×10c=1010a+b+c,a*(b*c )=a×(10b×10c)=10a+10b+c.∵(a*b)*c=(10 ×10∴(a*b)*c ≠a*(b*c).点评:本题考查了同底数幂的乘法法则,题目比较新颖,解答本题的关键是掌握“* ”所代表的运算规则.27.(10 分)调查下列式子.2﹣12=(3+1)(3﹣1)=8;① 32﹣32=(5+3)(5﹣3)=16;② 52﹣52=(7+5)(7﹣5)=24;③72﹣72=(9+7)(9﹣7)=32.④9(1)求212﹣192= 80 .(2)猜测:恣意两个接连奇数的平方差必定是这两个数和的 2 倍,并给予证明.考点:平方差公式.分析:(1)将212﹣192 写成(21+19)(21﹣19)利用平方差公式计算即可;(2)依据标题供给的规则进行证明后即可得到定论.解答:解:(1)212﹣192=(21+19)(21﹣19)=40×2=80;(2)这两个数和的 2 倍证明:设n 为正整数,(2n+1)2﹣(2n﹣1)2=(2n+1+2n﹣1)(2n+1﹣2n+1)=[(2n+1)+(2n﹣1)] ×2∴ 恣意两个接连奇数的平方差必定是这两个数和的 2 倍.故答案为:(1)80;(2)这两个数和的 2 倍.点评:本题考察了平方差公式,了解平方差公式是处理本题的要害.28.(10 分)(1)图( 1)是一个长为 2m,宽为 2 他的矩形,把此矩形沿图中虚线用剪刀均分为四个小长方形,然后按图( 2)的形状拼成一个大正方形.请问:这两个图形的什么量不变?(2)把所得的大正方形面积比原矩形的面积多出的阴影部分的面积用含m,n 的代数式表示为(m﹣n)2 或m2﹣2mn+n2 .(3)由前面的探究可得出的定论是:在周长必定的矩形中,当长和宽持平时,面积最大.(4)若矩形的周长为24cm,则当边长为多少时,该图形的面积最大?最大面积是多少?考点:整式的混合运算.剖析:(1)依据图形中各边长得出两个图形的周长即可;(2)依据两图形得出暗影部分面积即可;(3)依据两图形面积可得出在周长必定的矩形中,当长和宽持平时,面积最大;(4)由(3)得出边长即可,最大面积即可.解答:解:(1)∵图(1)的周长为:2m+2n+2m+2n=4m+4n;图(2)的周长为:4(m+n)=4m+4n;∴两图形周长不变;(2)大正方形面积比原矩形的面积多出的暗影部分的面积为:(m﹣n)2 或 m2﹣22mn+n;(3)长和宽持平;2(4)由(3)得出:当边长为:=6(cm)时,最大面积为:36cm.点评:此题首要考察了整式的混合运算以及矩形的性质以及图形面积求法,依据已知图形得出周长与面积联系是解题要害.。
北师大版七年级数学下册第一章整式的乘除单元测试题一.选择题(共10小题,每小题3分,共30分)1.计算:x3•x2等于()A.2 B.x5C.2x5D.2x62.下列运算止确的是()A.x2•x3=a6B.(x3)2=x6C.(﹣3x)3=27x3D.x4+x5=x93.下列计算结果为a6的是()A.a8﹣a2 B.a12÷a2 C.a3•a2 D.(a2)34.若(x+2m)(x﹣8)中不含有x的一次项,则m的值为()A.4 B.﹣4 C.0 D.4或者﹣45.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”,则下面哪个数是“神秘数”()A.56 B.66 C.76 D.866.下列各式,能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.()(﹣)C.(2a﹣3b)(﹣2a+3b)D.(﹣a﹣2b)(﹣a+2b)7.若x2+(m﹣3)x+16是完全平方式,则m的值是()A.﹣5 B.11 C.﹣5或11 D.﹣11或58.已知a+b=2,ab=﹣2,则a2+b2=()A.0 B.﹣4 C.4 D.89.下列运算中,正确的是()A.a2+a2=2a4B.(a﹣b)2=a2﹣b2C.(﹣x6)•(﹣x)2=x8D.(﹣2a2b)3÷4a5=﹣2ab310.在长方形ABCD内,将两张边长分别为a和b(a≥b)的正方形纸片图1、图2两种放置(图1,图2中两张正方形纸片均有部分重叠),长方形未被这两张正形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为S1图2中阴影部分的面积和为S2,则关S1,S2的大小关系表述正确的是()A.S1<S2B.S1>S2C.S1=S2D.无法确定二.填空题(共8小题,每小题3分,共24分)11.若53•5m•52m+1=525,则(6﹣m)2019的值为.12.已知2x=3,6x=12,则3x=.13.已知x=3m+1,y=2+9m,则用x的代数式表示y,结果为.14.已知x m=3,x n=2,则x m﹣n=.15.已知a+b=3,ab=4,则(a﹣2)(b﹣2)=.16.计算(1﹣)(1﹣)(1﹣)…(1﹣)=.17.已知:x2+y2=5,xy=﹣3,则(x﹣y)2=.18.4个数a、b、c、d排列,我们称之为二阶行列式,规定它的运算法则为=ad﹣bc,若=17,则x=.三.解答题(共7小题,共66分)19.计算:(1)(2x﹣3)2﹣6x(x﹣2);(2)(a+2b)(a﹣2b)+(6a3b﹣15ab3)÷3ab,其中a=2,b=﹣1.20.先化简,再求值:[(x+y)(x﹣y)﹣(x﹣y)2+2y(x﹣y)]÷4y,其中x=1,y=﹣1.21.计算:(1)(﹣+﹣)×(﹣24)(2)已知a m=5,a n=25(其中m,n都是正整数),求a m+n?22.求值(1)已知2x+5y+3=0,求4x•32y的值;(2)已知2×8x×16=223,求x的值.23.数学课上老师出了一题用简便方法计算2962的值,喜欢数学的小亮手做出了这道题,他的解题过程如下2962=(300﹣4)2第一步=3002﹣2×300×(﹣4)+42第二步=90000+2400+16第三步=92416第四步老师表扬小亮积极发言的同时,也指出了解题中的错误.(1)你认为小亮的解题过程中,从第步开始出错.(2)请你写出正确的解题过程.24.[问题1]在学完平方差公式后,小滨出示了一串呈“数字”链的计算题:(2+1)(22+1)(24+1)(28+1)小梅根据算式的特点,结合平方差公式,发现:只要在算式最前面添上一个“引线”一一数字1,就可用平方差公式,像点鞭炮一样依次“点燃”整个“数字”链.(1)请根据小梅的思路,求出这个算式的值.(2)计算:+(3+1)(32+1)(34+1)(38+1)(316+1).25.阅读学习:数学中有很多恒等式可以用图形的面积来得到.如图1,可以求出阴影部分的面积是a2﹣b2;如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的长是a+b,宽是a﹣b,比较图1,图2阴影部分的面积,可以得到恒等式(a+b)(a ﹣b)=a2﹣b2.(1)观察图3,请你写出(a+b)2,(a﹣b)2,ab之间的一个恒等式(a﹣b)2=;(2)根据(1)的结论若(m+n)2=9,(m﹣n)2=1,求出下列各式的值:①mn;②m2+n2;(3)观察图4,请写出图4所表示的代数恒等式:.参考答案与试题解析一.选择题1.解:x3•x2=x5故选:B.2.解:∵x2•x3≠a6,∴选项A不符合题意;∵(x3)2=x6,∴选项B符合题意;∵(﹣3x)3=﹣27x3,∴选项C不符合题意;∵x4+x5≠x9,∴选项D不符合题意.故选:B.3.解:A、a8﹣a2不能再化简,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、a3•a2=a5,此选项不符合题意;D(a2)3=a6,此选项符合题意;故选:D.4.解:原式=2x2+(2m﹣8)x﹣16m,由结果不含x的一次项,得到2m﹣8=0,解得:m=4,故选:A.5.解:∵76=202﹣182,∴76是“神秘数”,故选:C.6.解:A、该代数式中既不含有相同项,也不含有相反项,不能用平方差公式计算,故本选项错误;B、该代数式中只含有相同项和1,不含有相反项,不能用平方差公式计算,故本选项错误;C、该代数式中只含有相同项2a和﹣3b,不含有相反项,不能用平方差公式计算,故本选项错误;D、该代数式中既含有相同项﹣a,也含有相反项2b,能用平方差公式计算,故本选项正确;故选:D.7.解:∵x2+(m﹣3)x+16是完全平方式,∴m﹣3=±8,解得:m=11或﹣5,故选:C.8.解:∵a+b=2,ab=﹣2,∴原式=(a+b)2﹣2ab=4+4=8,故选:D.9.解:A、原式=2a2,不符合题意;B、原式=a2﹣2ab+b2,不符合题意;C、原式=﹣x8,不符合题意;D、原式=﹣8a6b3÷4a5=﹣2ab3,符合题意,故选:D.10.解:S1=(AB﹣a)⋅a+(CD﹣b)(AD﹣a)=(AB﹣a)⋅a+(AB﹣b)(AD﹣a),S2=(AB﹣a)(AD﹣b)+(AD﹣a)(AB﹣b),∴S2﹣S1=(AB﹣a)(AD﹣b)﹣(AB﹣a)a=(AB﹣a)(AD﹣b﹣a)<0,即S1>S2,故选:B.二.填空题11.解:∵53•5m•52m+1=525,∴3+m+2m+1=25,解得:m=7,故(6﹣m)2019的值为:(﹣1)2019=﹣1.故答案为:﹣1.12.解:因为6x=12,所以(2×3)x=12,即2x×3x=12,因为2x=3,所以3x=12÷3=4.故答案为:4.13.解:∵x=2m+1,y=2+9m=2+32m,∴y=2+(x﹣1)2=x2﹣2x+3.故答案为:y=x2﹣2x+3.14.解:∵x m=3,x n=2,∴x m﹣n=x m÷x n=.故答案为:.15.解:∵a+b=3,ab=4,∴(a﹣2)(b﹣2)==ab﹣2b﹣2a+4=ab﹣2(a+b)+4=4﹣2×3+4=2,故答案为:2.16.解:原式=(1+)(1﹣)(1+)(1﹣)…(1+)(1﹣)=××…××××…×=×=,故答案为:17.解:∵x2+y2=5,xy=﹣3∴原式=x2+y2﹣2xy=5+6=11,故答案为:1118.解:根据题意得(x﹣2)2﹣(x+1)(x+3)=17,整理得,﹣8x+1=17,解得x=﹣2.故答案为﹣2.三.解答题19.解:(1)原式=4x2﹣12x+9﹣6x2+12x=﹣2x2+9;(2)原式=a2﹣4b2+2a2﹣5b2=3a2﹣9b2,∵a=2,b=﹣1,∴原式=12﹣9=3.20.解:原式=(x2﹣y2﹣x2+2xy﹣y2+2xy﹣2y2)÷4y=(﹣4y2+4xy)÷4y=﹣y+x,当x=1,y=﹣1时,原式=1+1=2.21.解:(1)原式=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=12﹣2+3=13;(2)当a m=5,a n=25时,a m+n=a m•a n=5×25=125.22.解:(1)∵2x+5y+3=0,∴2x+5y=﹣3,∴4x•32y=22x•25y=22x+5y=2﹣3=;(2)∵2×8x×16=223,∴2×23x×24=223,∴1+3x+4=23,解得:x=6.23.解:(1)从第二步开始出错;故答案为:二;(2)正确的解题过程是:2962=(300﹣4)2=3002﹣2×300×4+42=90000﹣2400+16=87616.24.解:(1)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=216﹣1;(2)原式=+(3﹣1)(3+1)(32+1)(34+1)(38+1)(316+1)=+(32﹣1)(32+1)(34+1)(38+1)(316+1)…=+(332﹣1)=×332.25.解:(1)由图3得:(a﹣b)2=(a+b)2﹣4ab,故答案为:(a+b)2﹣4ab;(2)解:①根据(1)的结论,可得(m﹣n)2=(m+n)2﹣4mn,∵(m+n)2=9,(m﹣n)2=1,即1=9﹣4mn,解得mn=2;②由(m+n)2=m2+2mn+n2,可得,9=m2+2×2+n2,所以m2+n2=9﹣4=5;(3)由图4得:(2a+b)(a+b)=2a2+3ab+b2.故答案为:(2a+b)(a+b)=2a2+3ab+b2.(注:等式2a2+3ab+b2=(2a+b)(a+b)也可得分)。
2016~2017学年度第二学期
七年级数学练习 (一)
一、选择题.
1.计算3
5
()()a a a -⋅-⋅的结果是 ( )
A . 9
a B . 9
()a - C . 8a - D . 8
a 2.计算23
1()2xy -
,结果正确的是 ( ) A . 3516x y B . 3618x y - C . 3616x y D . 3518
x y -
3.计算2017
2017(0.25)
4-⨯的结果是 ( )
A . 1-
B . 1
C . 0.25
D . 4024
4
4.下列计算正确的是 ( )
A . 0
(10)0(10)x x -=≠ B . 10
424()x x x x ÷÷=
C . 325
1510
()m n m n = D . 239
(
)416
-= 5.将36.1810-⨯化为小数是 ( )
A . 0.000 618
B . 0.006 18
C . 0.061 8
D . 0.618
6.若2
(2)(1)x x x mx n +-=++,则m n +的值为 ( )
A . 1
B . -2
C . -1
D . 2
7.下列算式不能用平方差公式计算的是 ( )
A . (2)(2)x y y x +-
B . ()()a b a b ---+
C . (2)(2)a b a b +--
D . ()()x y z x y z +++-
8.若a 的值使得2
2
4(2)1x x a x ++=+-成立,则a 的值为 ( )
A . 5
B . 4
C . 3
D . 2
9.已知x y ,为任意有理数,则代数式2
2
2610x y x y +-++的值一定为 ( )
A . 正数
B . 负数
C . 非正数
D . 非负数
10.下列算式: ①(63)(3)2a ab a a b +÷-=--; ②2
3
2
()a b a a b a -÷=-;
③2
(510)(5)2a b abc ab c a -÷-=-.其中正确的有 ( )
A . 0个
B . 1个
C . 2个
D . 3个 二、填空题.
11.已知2m a =,3n a =,则2m n
a
-= .
12.计算:(1)23
4
()m m ⋅= . (2)20162017
1()22
-⨯= . 13.若2
35m a
a a +÷=,则m = .
14.小华的作业本上有一道题被污染了,为23
()a -⋅▅ =10
a ,那么被污染的部分
为 .
15.一种病毒的直径约为0.000 025 2米,将0.000 025 2用科学记数法表示为 . 16.要使2
3
(1)(6)x ax x ++⋅-的展开式中不含4
x 项,则a = . 17.已知3a b +=,5a b -=,则代数式2
2
a b -= . 18.当3x =,
1y =-时,代数式2()()x y x y y +-+的值是 .
19.若2
425a ka -+是完全平方式,则k 的值为 .
20.一个长方形的面积是32
2a b ab ab -+,宽为2ab ,则长方形的长是 . 三、解答题. 21.计算:
(1)1
3113(3)()32π-+---
+- (2)223121
(3)()232
x y y xy +-⋅- (3)(31)(23)2(1)(41)x x x x +---+ (4)2
(21)(21)(12)a a a +-+-+
(5)65
4525(48)(24)()6
a
b c ab a b -÷⋅- (6)22232
()()x x y xy y x x y x y ⎡⎤---÷⎣⎦ 22.先化简,再求值:221111)()()2222a b a b a b a +-++-(,其中3a =,1
3
b =-.
23.有一道题“先化简,再求值:2
2(1)
(1)x x x ⎡⎤+--÷⎣⎦,其中2016x =.”小影做题时把2016x =错抄成
了2061x =,但她的计算结果也是正确的,请你解释这是怎么回事.
24.小明想把一个长为60cm ,宽为40cm 的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形的四个角
各剪去一个相同的小正方形(如图).
(1)若设这些小正方形的边长为x cm ,求图中阴影部分小长方形的面积. (2)当5x =时,求这个盒子的体积.
25.图甲是一个长为2m ,宽为2n 的长方形,一个正方形.
(1(2)请用两种不同的方法求图乙中阴影部分的面积(3)观察图乙,你能写出下列三个代数式之间的等量关系吗?代数式:2
()m n +,2
()m n -,mn .
(4)根据题(3)的等量关系,解决问题:若7a b +=,5ab =,求2
()a b -的值.
甲
乙。