Experimental Force Identification by using Natural Optimization
- 格式:pdf
- 大小:304.12 KB
- 文档页数:9
Negative Permittivity in(V2O5)100-x Se x AlloysSandeep Kohli,*Christopher D.Rithner,and Peter K.Dorhout Department of Chemistry,Colorado State University,Fort Collins,Colorado80523 Received November27,2001.Revised Manuscript Received July12,2002(V2O5)100-x Se x(x)9,17,25,30wt%)alloys have been prepared by quenching the melt from1000to273K in ice water.The XRD data show the presence of crystalline V2O5,V6O13, VO2,and Se phases.High-resolution XPS spectra for a Se3d peak show the presence of SeO2and elemental Se phases in the samples.The presence of a reversible endothermic peak≈343K in the differential scanning calorimetric(DSC)curve of quenched samples is indicative of the monoclinic to tetragonal transformation in VO2.A selenium melting peak at495K is also present in the DSC curve,for x g17.Room-temperature dielectric measurements in the frequency range1Hz to100kHz show the presence of negative permittivity in samples with x<30.Permittivity Vs temperature and loss-factor Vs temperature measurements in the temperature range273-373K and at a fixed frequency of1kHz were reversible with hysteresis across the monoclinic to tetragonal transformation of VO2.A sample with x)30exhibits a minimum temperature range of hysteresis and large change in the value of permittivity.The diffuse reflectivity values for the sample decreases with the increased selenium content until x e17.For x>17,the reflectivity of the samples increases with increased selenium content.This is explained in terms of the increased V2O5component in the samples.IntroductionThe ability of vanadium to exist in different oxidation states with different physical properties has been the subject of various studies in the past for scientific and technological applications.Both VO2and V2O5are among the most studied compounds in the V-O sys-tem.1V2O5has been investigated for its application in electrochromic devices,oxidation catalysis,and optical switches.2-5VO2,with an optical band gap of2.6eV, undergoes monoclinic semiconducting,to tetragonal metallic phase transition at341K,accompanied by abrupt changes in the electrical,optical,and magnetic properties across the transition.2,6VO2has been studied for its application in temperature sensing devices,7 optical switching devices,8modulators and polarizers of submillimeter wave radiation,9optical data storage media,10and variable reflectance mirrors.11In the literature the appearance of negative capaci-tance12-17and negative permittivity18has been reported for materials such as a-Se,12nanocrystalline WO3,19a-Ge7Si14Te32As36Ga11,20and zeolites.17Large numbers of these reports have been devoted mainly to the electrical characterization of these samples,with insuf-ficient data reported on the other structural and optical properties of these materials.To our knowledge,no attempt has also been made to tailor the negative capacitance/permittivity in the samples.In the past, negative capacitance has been reported in thin film Al-V2O5-Al devices21and amorphous V2O5films.22To the best of our knowledge,there are no reports on the presence of negative capacitance or permittivity in VO2 or V6O13.We report here the appearance of negative permittivity in(V2O5)100-x Se x alloys,which have been well characterized for their structure,chemical,thermal, electrical,and optical properties.In the present studies,the(V2O5)100-x Se x(x)9,17, 25,30wt%)alloys have been prepared by quenching a melt of V2O5and selenium from1000to273K in ice water.Samples have been characterized by powder*To whom correspondence should be addressed.E-mail:skohli@ .(1)Moshfegh,A.Z.;Ignatiev,A.Thin Solid Films1991,198,251.(2)Barreca,D.;Depero,L.E.;Franzato,E.;Rizzi,G.A.;Sangaletti, L.;Tondello,E.;Vettori,U.J.Electrochem.Soc.1999,146,551.(3)Park,H.K.;Smyrl,W.H.;Ward,M.D.J.Elecrochem.Soc.1995, 142,1068.(4)Aita,C.R.;Liu,Y.-L.;Kao,M.L.J.Appl.Phys.1986,60,749.(5)Busca,G.;Ramis,G.;Lorenzelli,V.J.Mol.Catal.1989,50,231.(6)Rogers,K.D.;Coath,J.A.;Lovell,M.C.J.Appl.Phys.1991, 70,1412.(7)Takahashi,Y.;Kanamori,M.;Hashimoto,H.;Moritani,Y.; Masuda,Y.J.Mater.Sci.1989,24,192.(8)Chain,E.E.Appl.Opt.1991,30,2782.(9)Fan,J.C.C.;Fetterman,H.R.;Bachner,F.J.;Zavrasky,P. M.;Parker,C.D.Appl.Phys.Lett.1977,30,11.(10)Balberg,I.;Trokman,S.J.Appl.Phys.1975,46,2111.(11)Razavi,A.;Huges,T.;Antinovich,J.;Hoffman,J.J.Vac.Sci. Technol.A1989,7,1310.(12)Vogel,R.;Walsh,P.J.Appl.Phys.Lett.1969,216,7.(13)Nikitas,P.Electrochim.Acta1992,37,81.(14)Beale,M.;Mackay,P.Philos.Mag.B1992,65,47.(15)Stapelton,S.P.;Deen,M.J.;Berolo,E.;Hardy,R.H.S. Electron.Lett.1990,26,84.(16)Beale,M.Philos.Mag.B1993,68,573.(17)Fernandez,F.G.;Gonzalez,E.;Berazain,A.;Hernandez,M. V.Proceedings of the5th IEEE International conference on Conduction Breakdown in Solid Dielectrics,Leicester,UK;IEEE:New York,1995; p3730.(18)M’Peko,J.-C.Appl.Phys.Lett.1997,71,3730.(19)Hoel,A.;Kish,L.B.;Vajtai,R.;Niklasson,G.A.;Granqvist,C.G.;Olsson,E.Mater.Res.Soc.Symp.Proc.2000,581,15.(20)Allen,M.;Walsh,P.;Doremus,W.Negative Capacitance Effect in Amorphous Semiconductor.Phys.Electron.Ceram.,Proc.Electron. Phenomena Ceram.Conf.;Hench,L.L.,Ed.;Dekker:New York,1971; Part A,p269.(21)Bhosle,S.A.;Nadkarni,G.S.;Radhakrishnan,S.Phys.Status Solidi A1987,101,639.(22)Thomas,B.;Jayalekshmi;S.J.Non-Cryst.Solids1989,113, 65.3786Chem.Mater.2002,14,3786-379210.1021/cm011574l CCC:$22.00©2002American Chemical SocietyPublished on Web08/24/2002X-ray diffraction(XRD),X-ray photoelectron spectros-copy(XPS),differential scanning calorimetric(DSC) studies,dielectric analysis(DEA),and diffuse reflec-tance measurements.Experimental SectionBulk samples of(V2O5)100-x Se x(x)9,17,25,30wt%)have been prepared by a conventional melt-quenching technique.23 V2O5and Se(99.9%)were weighed accordingly and sealed in a vacuum of10-3Pa in quartz ampules.The samples were then heated to a temperature of1000K for24h and quenched in ice water.The ampules were rocked during the heating process to ensure mixing of the constituents.Powder X-ray diffraction studies,for structural investigation,were performed using the calibrated Bruker D-8Discover(Cu K R1,λ)1.5406Å)with a Go¨bel mirror on the primary beam side and scintillation detector on the diffracted beam side.XRD spectra were collected with a step size of0.01°and time per step of2 s over the2θrange10°-90°.The diffraction system was calibrated using standard quartz peaks.More details of the X-ray diffraction instrument are published elsewhere.24 X-ray photoelectron spectroscopic measurements were per-formed using a Physical Electronics5800Model.A monochro-matic Al K R line of energy,1486.6eV,was employed as an X-ray source.An initial survey scan(pass energy)93.90eV, eV/step)0.80,time/step)30ms)was done for the identifica-tion of the elemental species.Integrated peak area intensities under V2p and Se3d peaks were used for estimating the selenium content in the samples.The integrated peak area was normalized with respect to each core level atomic sensitiv-ity factor.25High-resolution scans for V2p and Se3d were performed with a pass energy of23.50eV and step size of0.025 eV.Spectra for the Se3d peak were collected for30cycles while those for V2p for10cycles were collected due to the low intensity of the Se3d peak relative to that of the V2p peak. The background pressure during measurements was lower than2×10-7Pa.Differential scanning calorimetric(DSC)measurements were performed on the samples using a calibrated TA2920 MDSC(TA Instruments)with a low-temperature accessory.The DSC cell was purged continuously with nitrogen(60cm3/ min)during the experiments.The DSC cell was calibrated for baseline and temperature.26Weighed samples were hermeti-cally sealed in Al pans and heated at15K/min.Room-temperature dielectric measurements in the fre-quency range1Hz to100kHz,using an applied voltage of1.0 V,were performed with a TA Instruments dielectric analyzer (DEA,2970)for the estimation of permittivity and loss factor. Gold-coated ceramic plate parallel sensors were used for the measurements.The diameter of the gold-coated region was25 mm.27The electrodes transmitted an applied oscillating voltage to the sample and measured the response of the sample to the applied voltage.The powder samples were compressed in the form of disks and placed between the excitation and response electrodes.A force of250N was applied from the upper electrode assembly to ensure good contact between the sample and electrodes,thus minimizing noise.A linear variable displacement transducer(LVDT)was used to accurately measure the sample thickness.Ceramic parallel plate sensors featured a guard ring on the response electrode that minimized the effect of fringing fields and reduced noise in the loss factor data.The excitation electrode contained a platinum resistance thermistor,which was in direct contact with the sample and provided accurate temperature measurements.28The differ-ence in the area of sample and electrode was taken into consideration for the presentation of data.The DEA cell was purged with dry nitrogen(60cm3/min)for1h before the start of measurements and also during experiments.The low-temperature accessory was used to measure the dielectric response as a function of temperature in the range273-373 K at a fixed frequency of1kHz.Diffuse reflectance measurements in the wavelength range 250-1000nm were performed using a double-beam Cary500 (Varian Analytical)spectrophotometer fitted with a praying mantis to analyze powdered pressed PTFE was used for the standard calibration.Results and DiscussionX-ray Diffraction.Figure1shows the X-ray diffrac-tion pattern of the(V2O5)100-x Se x samples.The crystal-line peaks in the X-ray diffraction pattern for the samples were compared against the standard in the ICDD database using search-match software provided by Bruker29following background subtraction.Search-match results indicated the presence of orthorhombic V2O5,30monoclinic V6O13,31elemental Se,32and VO233 phases in the melt-quenched samples.The ratio of the phases V2O5/V6O13decreased with the increase of sele-nium content until x)17;between x)17and x)30(23)Mehra,R.M.;Kohli,S.;Pundir,A.;Sachdev,V.K.;Mathur, P.C.J.Appl.Phys.1997,81,7842.(24)Kohli,S.;Rithner,C.D.;Dorhout,P.K.J.Appl.Phys.2002, 91,1149.(25)Moulder,J.F.;Stickle,W.F.;Sobol,P.E.;Bomben,K.D. Handbook of X-ray Photoelectron Spectroscopy-A Reference Book of Standard Spectra for Indentification and Interpretation of XPS Data; Chastain,J.,King,R.C.,Jr.,Eds.;Physical Electronics Inc.:Eden Prairie,MN,1995.(26)Differential Scanning Calorimeter Operator’s Manual(DSC2920); TA Instruments:New Castle,DE,1998.(27)Dielectric Analyzer Operator’s Manual(DEA2970);TA Instru-ments:New Castle,DE,1997.(28)Thermal Analysis Application Brief,Number TA-142;TA Instruments:New Castle,DE,1997.(29)Diffrac plus Search/match,User’s Manual;Bruker AXS GmbH: Karlsruhe,Germany,1998.Figure 1.XRD spectra for melt-quenched(V2O5)100-x Se x ler indices for some peaks are shown.(a)V2O5,30 (b)V6O13,31(c)Se,32and(d)VO2.33Intensity(counts)was plotted on a log scale for the clarity of presentation of peaks with low relative intensity.Negative Permittivity in(V2O5)100-x Se x Alloys Chem.Mater.,Vol.14,No.9,20023787the ratio increased with increasing selenium content.It should also be noted that several peaks from different phases overlap each other,which makes the complete quantitative analysis of phase identification compli-cated.X-ray Photoelectron Spectroscopic Measure-ments.Figure 2shows the high-resolution XPS spectra for Se 3d and V 2p peaks for (V 2O 5)100-x Se x samples.The fitted curves for x )30are also shown in the figure.The high-resolution spectra for Se 3d and V 2p peaks were profile-fitted using XPSPEAK Version 4.1soft-ware.34As seen in Figure 2,the fitted curve for Se 3d shows the presence of elemental Se and SeO 2with their peaks at 55.6and 58.9eV,respectively.25We also ob-served that the sample with x )30showed the doublet for the Se 3d 3/2,5/2peak with peak energies at 55.74and 54.88eV.The fitted curve for x )30shows the presence of V 2O 5and VO 2with peaks at 517.4and 516.3eV,respectively.25The ratio of the area under the peaks was used to estimate the ratio of Se/SeO 2and V 2O 5/VO 2.The results are compiled in Table 1.The V/Se ratio was calc-ulated from the integrated peak area intensities under V 2p and Se 3d peaks in the survey scan.The integrated peak area was normalized with respect to each core level atomic sensitivity factor.25As seen in the table,the ratio of selenium to selenium oxide increases with increasing selenium content.Although the wt %of Se in the sample where x )17increased by a factor of ≈2as compared to that x )9,the corresponding ratio of Se/SeO 2increased by a factor of 8.One possible explanation for this could be the formation of a small selenium crys-tallite core surrounded by a thick SeO 2skin,as com-pared to the size of selenium crystallite.With an increased selenium content for example,where x >9,a large selenium core with thin skin,as compared to the size of selenium crystallite,was formed.The ratio of the area under the peaks for V 2O 5and VO 2decreased until x )17;for x >17the ratio increased to x )30.These results are consistent with the XRD results.Differential Scanning Calorimetric Studies.Fig-ure 3shows the DSC curve for the sample x )9;a heating rate of 15K/min for the heating and cooling cycle was used.As shown in the curve,an endothermic peak,corresponding to the monoclinic to tetragonal phase transition of VO 2,occurred at 342K.Other exothermic (616and 669K)peaks correspond to the oxidation/decomposition occurring in the sample.The cooling curve for x )9shows that only the endothermic peak at 342K was reversible.The cooled sample was subjected to another set of DSC measurements and the results are shown in the inset in Figure 3.Figure 4shows the DSC curve for x g 17.The reversible endothermic peak at ≈343K is seen in all samples.Another interesting feature is the appearance of a small endothermic peak at ≈495K for x g 17,corresponding to the melting of Se (T mSe ).As seen in the XPS results,the elemental selenium component in x )9is very low and the sample mainly comprises SeO 2.Hence,the absence of T mSe at x )9could be due to the low volume(30)JCPDS-ICDD card no.720433.International Centre for Dif-fraction Data:Newton Square,PA.(31)JCPDS-ICDD card no.751140.International Centre for Dif-fraction Data:Newton Square,PA.(32)JCPDS-ICDD card no.761865.International Centre for Dif-fraction Data:Newton Square,PA.(33)JCPDS-ICDD card no.760456.International Centre for Dif-fraction Data:Newton Square,PA.(34)Kwok,R.M.W.XPSPEAK Version 4.1XPS Peak Fitting Program for WIN95/98;.hk/∼surface/XPS-PEAK,2000.Figure 2.High-resolution XPS spectra for (a)Se 3d and (b)V 2p peak for 9e x e 30.The fitted curves for x )30are also shown.Intensity (a.u.)is plotted on a log scale for the sake of presentation only.Table 1.Parameters Obtained from the XPSMeasurements aSe/VA Se /A SeO 2A V 2O 5/A VO 2A SeO 2/A V 2O 5x )90.070.05<0.10.73-0.70.11x )170.160.44-0.40.05<0.116.21x )250.180.36-0.40.303.0x )300.270.37-0.40.94-0.90.3aThe Se/V ratio was obtained using the XPS survey scans.A Se ,A SeO 2,A V 2O 5,and A VO 2represent the area under the peak for Se,SeO 2,V 2O 5,and VO 2,respectively.These areas have been esti-mated from the high-resolution scan for the Se 3d peak (B.E.)55.6eV)and V 2p (B.E.)517.6eV).3788Chem.Mater.,Vol.14,No.9,2002Kohli et al.fraction of elemental Se present in the sample.Also,in the present temperature range,peaks not assigned to the monoclinic -tetragonal phase transition of VO 2appear irreversible for x g 17.The results for the DSC curves are tabulated in Table 2.A comparison of the areas under the curve assignable to the melting of Se and the transition in VO 2is also provided in Table 2.In these cases,the area is reported relative to the mass of the total sample;thus,an increase in the area (i.e.,J/g)indicates an increase in the component of the mixture relative to the total mass.The data indicate that an increase in the selenium content,x ,from 9to 30promotes the formation of both VO 2and isolated Se particles;that is to say that the miscibility of each in the quenched material decreases with increasing x .Large irreversible endothermic peaks were observed forsamples with x )9,17,and 30at 772,800,and 801K,respectively,while a large irreversible exothermic peak was observed at 817K for a sample with x )25.At this stage,we are unable to completely explain the presence of irreversible peaks observed in the DSC scan.One of the possibilities could be the presence of V 6O 13that has a lower melting point than V 2O 5.35Near its melt temperature,V 6O 13may be undergoing decomposition/desorption or some chemical reaction with other sample constituents.This hypothesis is supported by the fact that in the cooling curve we do not observe any peaks other than the monoclinic to tetragonal transition.Dielectric Studies.In DEA measurements capaci-tance and conductance were calculated according to eqs 1and 227where R is the resistance (ohms),I the current,V thevoltage,f the applied frequency (Hz),and θthe phase angle shift between applied voltage (V applied )and mea-sured current (I measured ).For parallel plate electrodes,permittivity (e ′)and loss factor (e ′′)were calculated byA is the electrode plate area,d the plate spacing,and e 0the absolute permittivity of free space (8.85×10-12F/m).Figure 5shows the room-temperature frequency dependence of permittivity for (V 2O 5)100-x Se x samples.The positive values of permittivity are represented by (2)and the negative values by ([).For samples where x )9,the permittivity decreased with an increase in frequency,changing from negative to positive values at ≈4Hz.At higher frequency (1kHz to 10kHz)large resonance-type oscillations were observed.The permit-tivity also switched from positive to negative and back to positive values at around 7-8kHz.However,lack of sufficient data points for this flip-flop behavior adds(35)Silva,I.F.;Palma,C.;Klimkiewicz,M.;Eser,S.Carbon 1998,36,861.Figure 3.DSC curve x )9at a heating rate of 15K/min.Direction of arrows gives the direction of heating.Inset shows the second run of the DSC scan already exposed to the DSCcycle.Figure 4.DSC curve (V 2O 5)100-x Se x (x )17,25,30)at a heating rate of 15K/min.Direction of arrows gives the direction of heating.Table 2.Thermal Parameters Obtained from the DSC Curve for the as-Prepared Samples,Heated at 15K/min aas preparedx )wt %T M -T (K)A M -T (J/g)T mSe (K)A Se (J/g)(A Se /A M -T )×10-29342 2.61734312.64950.97.32534318.6495 1.3 6.83034435.74973.59.8aHere,T M -T represents the peak temperature to monoclinic-tetragonal (M -T)transformation,A M -T the area under the curve for the M -T transformation,T mSe the melting temperature for the selenium,and A Se the area under the peak for the selenium melting peak.The literature value for the melting point of selenium is 494K.C (farads))I measured V applied ×sin θ2πf(1)1R (ohm -1))I measured V applied×cos θ(2)e ′)Cd e 0A(3)e ′′)d RA 2πfe 0(4)Negative Permittivity in (V 2O 5)100-x Se x Alloys Chem.Mater.,Vol.14,No.9,20023789uncertainty to the presence of this feature.The permit-tivity for x )17and 25remained negative over a large frequency range,decreasing with increasing frequency.However,the permittivity for x )17and 25changed from negative to positive values at 25.1kHz.We observed only positive permittivity values for x )30,with an exception at only one frequency,and the permittivity decreased with the increase in frequency.The resonance-type oscillations were also present at higher frequencies for samples where 9<x )30.Figure 6shows the variation of loss factor as a func-tion of frequency at room temperature.For samples with x )9and 30,the curve for log(loss factor)vs log-(frequency)remained linear over the entire applied fre-quency range.However,for samples with x )17and 25,the values of the loss factor changed by a factor of 4and 3,respectively,at a frequency of 25.1kHz.As seen in the figure,there was a sudden increase in the value of the resistive component at 25.1kHz for x )17and 25.Also,the capacitance for samples with 9<x <30underwent a transformation from positive to negative values at this value of frequency.While the sample x )9also showed transformation from negative to posi-tive values of permittivity at 3Hz,this sudden increase in the resistive component was absent in the current frequency range for this sample.Hence,the resistive component is clearly not the driving force behind the transformation from positive to negative values of per-mittivity as a function of frequency.The values of the room-temperature loss factor and permittivity as a func-tion of composition,at 1kHz,are plotted in Figure 7.One model that may explain the presence of overall negative permittivity in the melt-quenched (V 2O 5)100-x Se x alloys and its frequency response should take into consideration the presence of various V -O,Se,and Se -O phases and their relative concentration within the quenched melt.This assumption complicates any at-tempt to model the present system.At this point,we have not made an attempt to propose such a model.Also it is to be noted that there is not a satisfactory theory to completely explain the occurrence of negative permit-tivity or capacitance in several classes of materials and systems.36In the past,the origin of negative capacitance at high frequency had been attributed to the inductive contribution of the external electric circuit.18However,Figure 5.Room-temperature variation of permittivity as a function of applied frequency for 9e x e 30.Values of permittivity and frequency are plotted on a log scale.The positive values of permittivity are represented by (2)and the negative values by ([).Figure 6.Variation of loss factor as a function of applied frequency for ([)x )9,(2)x )17,(b )x )25,and (*)x )30at room temperature.Values of loss factor and frequency are plotted on a logscale.Figure 7.Variation of (a)loss factor and (b)permittivity as a function of composition,for a fixed frequency of 1kHz at room temperature.The positive values of permittivity are represented by (2)and the negative values by ([).3790Chem.Mater.,Vol.14,No.9,2002Kohli et al.in the present case,the negative capacitance has notonly been observed at low frequencies but also appearsto be a function of selenium content.The presence ofnegative permittivity in V2O5-Se alloys can be quali-tatively explained in terms of the ionization model fornegative capacitance in low-mobility semiconductorssuch as amorphous chalcogenides,37assuming the pres-ence of small selenium crystallites dispersed within thevanadium oxide matrix.With the application of appliedvoltage,the selenium crystallites dispersed in thevanadium oxide phase,by virtue of their small crystal-lite size,may experience electric fields high enough toprovide excess carriers by impact ionization.Since theroom-temperature hole mobility for selenium(µh∼0.14 cm2/Vs)38is much greater than the electron mobility(µe ∼5×10-3cm2/Vs),39a lag of the current behind voltage occurs.This lag yields a negative contribution to the accapacitance.With an increase in the selenium contentto x)17,the number of these small selenium crystal-lites present in the vanadium oxide matrix increases,causing the values of permittivity to increase.Thisreasoning is in line with the XPS data where the ratioof Se/SeO2increased from0.05for x)9to∼0.4for x)17and remains approximately the same for x)25andx)30.However,upon further increase of seleniumcontent,larger selenium crystallites were likely formed,causing the weakening of the localized electric fields.Thus,the negative capacitance,hence,permittivity,decreased with reduced field as the impact ionizationcoefficient decreased.37For samples with x)30,due tolarge selenium crystallite sizes,the electric field at theinterface decreased enough to prevent the carrier gen-eration by impact ionization.Allen et al.20had noted that the negative capacitanceeffects(related to permittivity by eq3)in chalcogenideglasses were intimately connected to the electricalswitching phenomena in amorphous semiconductors.Ithas also been seen for Al-V2O5-Al devices that thetemperature at which the capacitance becomes negativedecreases as the device temperature increases.21Ther-mal dependence of permittivity measured on BaTiO3and BaFe12O19indicates an increase in the values ofnegative permittivity with increased temperature.40 The variation of normalized permittivity as a function of temperature in the range273-373K,at a fixed frequency of1kHz,is shown in Figure8.The arrows in the figures indicate the direction of the heat flow(i.e., heating and cooling).The normalized permittivity is defined as the ratio of permittivity at temperature Tand permittivity at273K(e′T /e′273K).As seen in Figure8,the values of permittivity also show the reversible transition across the temperature-induced semiconduc-tor to metal transition.Samples where x)9showed a positive value of permittivity at1kHz at273K. However,as the sample was heated above room tem-perature,it exhibited a transformation from positive to negative values of permittivity at≈349K following the semiconductor to metal transformation.The absolute value of negative permittivity increased with increased temperature.Permittivity for x)17remained negative throughout the current temperature range,with its absolute value increasing with increased temperature. The sample where x)25exhibited a positive value of permittivity at1kHz at273K.However,as this sample was heated above≈277K,it exhibits transformation from positive to negative values of permittivity,the absolute value of negative permittivity increasing with increased temperature.Sample x)30showed positive values of permittivity at273K.However,this sample also showed a transformation from positive to negative values of permittivity at≈338K,in the same temper-ature range where the semiconductor to metal trans-formation occurs.These results clearly indicate that,in some of our samples(x)9,30),semiconductor to metal transformation plays an important role in the temper-ature-induced transformation from positive to negative values of permittivity.However,the absence of this switching for x)17in the present temperature regime and presence of this switching at a temperature far below the semiconductor to metal transition for x)25 is not clear.It seems that there must be other factors also responsible for this switching.It was found that among all the samples studied,the sample where x) 30showed a change in the value of absolute permittivity by2orders of magnitude with a minimum temperature range of hysteresis.Also,as seen in Figure8,only the monoclinic to tetragonal transformation for samples where x)9and x)30was sharp,while that for x)17and x)25was relatively broad.It seems that the presence of elemental Se decreased the sharpness of the changes in the permittivity values across the monoclinic to tetragonal transformation.However,the increased presence of VO2 is likely to facilitate the sharp changes in the permit-tivity values across the monoclinic to tetragonal trans-formation.Hence,the features seen in Figure8are likely a result of competing processes between that of the selenium that disrupts the abrupt permittivity changes and that of the VO2phase,which facilitates the(36)Gutierrez,F.F.;Ruiz-Salvador,A.R.;M’Peko,J.C.;Velez,M.H.Europhys.Lett.1998,44,211.(37)Rockstand,H.K.J.Appl.Phys.1971,42,1159.(38)Spear,W.E.Proc.Phys.Soc.(London)1960,76,826.(39)Mikla,V.I.Phys.Status Solidi A1998,165,427.(40)M’Peko,J.-C.Appl.Phys.Lett.2000,77,735.Figure8.Values of normalized permittivity,at a fixed frequency of1kHz,as a function of temperature in the range 273e T e373K are shown for x)9,17,25,30.Normalized permittivity is defined in the text.Note the change in the positive to negative values.Negative Permittivity in(V2O5)100-x Se x Alloys Chem.Mater.,Vol.14,No.9,20023791。
abandonment of a patent 放弃专利权abandonment of a patent application 放弃专利申请abridgment [ə'brɪdʒmənt]文摘词根:bridg=short,表示"短,缩短"abstract 文摘(摘要)abuse of patent 滥用专利权action for infringement of patent 专利侵权诉讼action of a patent 专利诉讼address for service 文件送达地址affidavit [ˌæfəˈdeɪvɪt]宣誓书allowance [ə'laʊəns]准许amendment 修改[ə'men(d)m(ə)nt]annual fee 年费[ˈænjuəl fi:]annuity 年费[əˈnju:əti]anticipation 占先[ænˌtɪsɪˈpeɪʃn]appeal 上诉appellation of origin 原产地名称[ˌæpəˈleɪʃən ɔv ˈɔridʒin applicant for patent 专利申请人application date 申请日期application documents 申请案文件application fee 申请费application for patent 专利申请(案)application laying open for public inspection 公开供公众审查的申请application number 申请号application papers 申请案文件arbitration 仲裁[ˌɑ:bɪˈtreɪʃn]art 技术article of manufacture 制品assignee 受让人[ˌæsaɪ'ni:]assignment 转让[ə'saɪnmənt]assignor 转让人author of the invention 发明人author's certificate 发明人证书basic patent 基本专利Berne Convention 伯尔尼公约英[bə:n,bɛən]美[bɚn, bɛrn]Berne Union 伯尔尼联盟best mode 最佳方式bibliographic data 著录资料[ˌbibliəˈɡræfik ˈdeitə]参考文献资料,目录资料着录资料;著录资料;书目数据BIRPI 保护知识产权联合国国际局.board of appeals 申诉委员会breach of confidence 泄密Budapest Treaty on the International Recognition of the Deposit[dɪ'pɒzɪt]of Microorganisms ,maikrəu'ɔ:ɡənizəm]for the Purposes of Patent Procedure[prə'siːdʒə]国际承认用于专利程序的微生物保存布达佩斯条约burden of proof 举证责任case law 判例法caveat 预告['kævɪæt; 'keɪ-]certificate of addition 增补证书certificate of correction 更正证明书certificate of patent 专利证书certified copy 经认证的副本Chemical Abstracts 化学文摘citation 引证[saɪ'teɪʃ(ə)n]claim 权项classifier 分类员['klæsɪfaɪɚ]co-applicants 共同申请人co-inventors 共同发明人color coding 色码制commissioner 专利局长[kə'mɪʃ(ə)nə]Community Patent Convention 共同体专利公约complete application 完整的申请案complete description 完整的叙述complete specification 完整的说明书comptroller 专利局长[kəm'trəʊlə; kɒmp-]compulsory license 强制许可证['laɪsns]conception 概念conception date 概念日期confidential application 机密申请confidential information 保密情报conflict award 冲突裁定conflict procedure 冲突程序[prə'siːdʒəconflicting applications 冲突申请案continuation application 继续申请continuation-in-part application 部分继续申请案contractual license 契约性许可证contributory infringement 简介侵犯[kən'trɪbjʊt(ə)rɪ] convention application 公约申请convention country 公约国convention date 公约日期Convention Establishing the World Intellectual Property Organization 建立世界知识产权组织公约convention period 公约期限convention priority 公约优先权[praɪ'ɒrɪtɪ]copyright 版权correction slip 勘误表counter pleadings 反诉状counterclaim 反诉country code 国家代号cross license 交叉许可证data 资料data exchange agreement 资料交换协议data of application 申请日期date of grant 授予日期date of issue 颁发日期['ɪʃu:]date of patent 专利日期date of publication 公布日期dedication to the public 捐献于公众defendant 被告人defenses 辩护defensive publication 防卫性公告deferred examination 延迟审查dependent claim 从属权项dependent patent 从属专利Derwent Publications Ltd. 德温特出版有限公司design patent 外观设计专利development 发展disclaimer 放弃权项disclosure 公开division 分案divisional application 分案申请domination patent 支配专利drawing 附图duration of patent 专利有效期[djuˈreɪʃn]economic patent 经济专利effective filing date 实际申请日期employee’s invention 雇员发明EPO 欧洲专利局European Patent Office 欧洲专利局ESARIPO 英语非洲工业产权组织esripouEuropean Patent Convention 欧洲专利公约evidence 证据examination 审查examination countries 审查制国家examination for novelty 新颖性审查examiner 审查员examiner’s report 审查员报告exclusive license 独占性许可证exclusive right 专有权experimental use 实验性使用expired patent 期满专利[iks'paiəd]exploitation of a patent 实施专利[eksplɒɪ'teɪʃ(ə)n] exposition priority 展览优先权expropriation 征用[eks,prəʊprɪ'eɪʃən]extension of term of a patent 延长专利期限fee 费用[ɪk'stenʃ(ə)n; ek-]FICPI 国际工业产权律师联合会file copy 存档原件filing date 申请日期filing fee 申请费filing of an application 提出申请final action 终局决定书first-to-file principle 先申请原则first-to-invention principle 先发明原则force majeure 不可抗力[mæ'ʒɜ:foreign patent application 外国专利申请formal examination 形式审查gazette 公报[ɡə'zet]Geneva Treaty on the International Recording of Scientific Discoveries 关于科学发现国际注册日内瓦条约[dʒə'ni:və]grace period 宽限期grant of a patent 授予专利权holder of a patent 专利持有人ICIREPAT 专利局间情报检索国际合作巴黎联盟委员会Paris Union Committee for International Cooperation in Information Retrieval among Patent Offices 专利局间情报检索国际合作巴黎联盟委员会[rɪˈtri:vl]IFIA 国际发明人协会联合会International Federation of Inventor’s Association 国际发明人协会联合会IBB 国际专利研究所Institut International des Brevets 国际专利研究所imitation 仿造impeachment 控告improvement 改进improvement patent 改进专利independence of patents 专利独立indication of source 产地标记indirect infringement 间接侵犯industrial applicability 工业实用性industrial design 工业品外观设计industrial property 工业产权information in the public domain 公开情报infringement of a patent 侵犯专利权infringement of a trade mark 侵犯商标权INID 著录资料识别码ICIREPAT Numbers for the Identification of Data 著录资料识别码INPADOC 国际专利文献中心INSPEC 国际物理学和工程情报服务部insufficient disclosure 公开不允分intellectual property 知识产权interdependent patents 相互依存的专利interference procedure 抵触程序interlocutory injunction 中间禁止令interlocutory order 中间命令International Convention for the Protection of New Varieties of Plants 保护植物新品种国际公约International Patent Classification Agreement 国际专利分类协定International Preliminary Examining Authority 国际初审单位international protection 国际保护International Searching Authority 国际检索单位invalidation 无效invention 发明inventive step 独创性inventor 发明人inventor’s certificate 发明人证书IPC 国际专利分类International Patent Classification 国际专利分类issue of a patent 办法专利joint applicants 共同申请人joint invention 共同发明joint inventors 共同发明人joint patentees 共同专利权人journal 公报judgment 判决junior party 后申请方know-how 技术诀窍lapsed patent 已终止的专利lawsuit of a patent 专利诉讼legal person 法人legend 说明LES International 国际许可贸易执行人协会Licensing Executives Society International 国际许可贸易执行人协会letters patent 专利证书license 许可证license agreement 许可证协议license of course 当然许可证licensing 许可证贸易licensor 许可人Lisbon Agreement for the Protection of Appellations of Origin and their International Registration 保护原产地名称及国际注册里斯本协定Locarno Agreement Establishing an International Classification for Industrial Design 建立工业品外观设计国际分类洛迦诺协定loss of a patent 专利权的丧失Madrid Agreement Concerning the International Registration of Marks 商标国际注册马德里协定Madrid Agreement for the Repression of False or Deceptive Indications of Source on Goods 制止商品产地虚假或欺骗性标记马德里协定main patent 主专利maintenance fee 维持费marking 标记memorandum of understanding 谅解备忘录method 方法microforms 微缩文件minimum documentation 最少限度检索文献minimum royalties 最低提成费misuse of patent 滥用专利权mixed license 混合许可证model laws 示范法most-favoured provision 最惠条款name of invention 发明名称national treatment 国民待遇natural person 自然人neighboring rights 邻接权new varieties of plants 植物新品种Nice Agreement Concerning the International Classification of Goods and Services for the Purposes of the Registration of Marks 商标注册用商品与服务国际分类尼斯协定non-examining countries 不审查制国家non-exclusive license 非独占性许可non-obviousness 非显而易见性non-use of a patent 不实施专利notary public 公正机关notice of infringement 侵权通知novelty 新颖性OAPI 非洲知识产权组织objection 异议office action 专利局审查决定书opposition 异议originality 独创性owner of a patent 专利所有人parent application 原申请Paris Convention 巴黎公约Paris Union 巴黎联盟patent 专利patent act 专利法patent agent 专利代理人patent applied for 已申请专利patent attorney 专利律师patent classification 专利分类patent documentation 专利文献patent documents 专利文件patent families 同族专利patent for an invention 发明专利patent law 专利法patent license 专利许可证patent number 专利号patent of addition 增补专利patent of confirmation 确认专利patent of importation 输入专利patent of introduction 引进专利patent of revalidation 再效专利patent office 专利局patent pending 专利未决patent right 专利权patent rules 专利实施细则patent system 专利制度patentability 专利性patented invention 专利发明patentee 专利权人patenting 授予专利权PCT 专利合作条约PCT Union 专利合作条约pending application 未决申请period of a patent 专利有效期person skilled in the art 所属技术领域的专业人员petition 请求书petty patent 小专利plaintiff 原告人plant patent 植物专利pleadings 起诉状precautional patent 预告专利precedents 判例prescription 时效prevention of unfair competitionprincipal patent 主专利prior art 先有技术prior use 先用priority 优先权priority claim 优先权声明priority declaration 优先权声明process patent 方法专利processing of an application 申请案的处理product patent 产品专利provisional specification 临时说明书publication 公布reclassification 再分类reexamination 复审refusal 驳回register of patents 专利登记册registered patent 登记专利registered trade mark 注册商标registration 登记registration countries 登记制国家reissue patent 再颁发专利rejection 驳回remedy 补救renewal fee 续展费request 请求书restoration of a lapsed patent 恢复已终止的专利restricted conditions 限制条款review 复审revival of an abandoned application 恢复已放弃的申请revocation of a patent 撤销专利royalties 提成费Science Abstracts 科学文摘scientific discovery 科学发现scope of protection 保护范围seal 盖章search 检索secret patent 机密专利service invention 职务发明service mark 服务标记signature 签署simple license 普通许可证single applicant 单独申请人sliding scale of royalties 滑动提成费sole license 排他性许可证specification 说明书state of the art 先有技术水平statement of claim 诉讼陈述statement of defense 辩护陈述substance patent 物质专利substantive examination 实质性审查succession 继承sufficiency of description 充分描述technical assistance 技术协助technical data 技术资料technology transfer 技术转移temporary protection 临时保护term of a patent 专利有效期世贸组织WTO WORLD TRADE ORGANIZATION关税及贸易总协定《GATT》 GENERAL AGREEMENT ON TARIFFS ANDTRADE亚太经济合作组织《APEC》ASIA PACIFIC ECONOMIC COOPERATION与贸易有关的知识产权协议《TRIPS》 AGREEMENT ON TRADE RELATED ASPECTS OF INTELLECTUAL PROPERTY RIGHTS世界知识产权组织《WIPO》 WORLD INTELLECTUAL PROPERTY ORGANIZATION保护知识产权联合国际局INTERNATIONAL BOARD OF INTELLECTUALPROPERTY RIGHT保护工业产权巴黎公约PARIS CONVENTION FOR THE PROTECTION OF INDUSTRIAL PROPERTY商标国际注册马德里协定 MADRID AGREEMENT CONCERNING THE INTERNATIONAL REGISTRATION OF MARKS商标注册条约《TRT》 TRADE MARK REGISTRATION TREATY商标注册用商品与国际分类尼斯协定NICE AGREEMENT CONCERNING THE INTERNATIONAL CLASSIFICATION OF GOODS AND SERVICES FOR THEPURPOSE OF THE REGISTRATION OF MARKS建立商标图形要素国际分类维也纳协定VIENNA AGREEMENT FOR ESTABLISHING AND INTERNATIONAL CLASSIFICATION OF THE FIGURATIVE ELEMENTS OF MARKS专利合作条约《PCT》 PATENT CO-OPERATION TREATY共同体专利公约 COMMUNITY PATENT CONVENTION斯特拉斯堡协定《SA》 STRASBOURG AGREEMENT工业外观设计国际保存海牙协定THE HAGUE AGREEMENT CONCERNING THE INTERNATIONAL DEPOSIT OF INDUSTRIAL DESIGNS工业外观设计国际分类洛迦诺协定LOCARNO AGREEMENT ON ESTABLISHING AND INTERNATIONAL CLASSIFICATION FOR INDUSTRIAL DESIGNS商标,外观设计与地理标记法律常设委员会(SCT) STANDINGCOMMITTEE ON THE LAW OF TRADEMARK, INDUSTRIAL DESIGN AND GEOGRAPHICALINDICATION国际专利文献中心《INPADOC》INTERNATIONAL PATENT DOCUMENTATION CENTER欧洲专利局《EPO》 EUROPEAN PATENT OFFICE欧洲专利公约 EUROPEAN PATENT CONVENTION比荷卢商标局 TRADE MARK OFFICE OF BELGIUM-HOLLAND-LUXEMBURG法语非洲知识产权组织ORGANIZATION OF AFRICAN INTELLECTUAL PROPERTY国际商标协会 THE INTERNATIONAL TRADEMARK ASSOCIATION中华人民共和国商标法TRADEMARK LAW OF THE PEOPLES REPUBLIC OF CHINA英国商标法TRADEMARK LAW OF UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND美国商标法TRADEMARK LAW OF THE UNITED STATES OF AMERICA日本商标法 JAPANESE TRADEMARK LAW商标 TRADE MARK商标局 TRADE MARK OFFICCE商标法 TRADE MARK LAW文字商标 WORD MARK图形商标 FIGURATIVE MARK组合商标 ASSOCIATED MARK保证商标 CERTIFICATION MARK集体商标 COLLECTIVE MARK驰名商标 WELL-KNOWN MARK著名商标 FAMOUS MARK近似商标 SIMILAR MARK防御商标 DEFENSIVE MARK服务标记 SERVICE MARK注册商标 REGISTERED MARK商标注册申请人 TRADE MARK REGISTRANT注册申请日 APPLICATION DATE OF TRADE MARK注册申请号 APPLICATION NUMBER商标注册证 TRADE MARK REGISTRATION CERTIFICATE商标注册号 TRADE MARK REGISTRATION NUMBER商标注册日 TRADE MARK REGISTRATION DATE 商标注册簿 TRADE MARK REGISTERED BOOK注册有效期 THE TERM OF VALIDITY商标注册官 EXAMINATION FOR TRADE MARK REGISTRATION注册查询 TRADE MARK ENQUIRIES注册续展 RENEWAL OF TRADE MARK分别申请 SEPARATE APPLICATION重新申请 NEW REGISTRATION别行申请 NEW APPLICATION变更申请 APPLICATION REGARDING CHANGES注册代理 TRADE MARK AGENCY注册公告 TRADE MARK PUBLICATION申请注册 APPLICATION FOR REGISTRATION续展注册 RENEWAL OF REGISTRATION转让注册 REGISTRATION OF ASSIGNMENT变更注册人名义/地址/其它注册事项 MODIFICATION OF NAME /ADDRESS OF REGISTRANT/OTHER MATTERS补发商标证书 REISSUANCE OF REGISTRATION CERTIFICATE注销注册商标 REMOVAL证明 CERTIFICATION异议 OPPOSITION使用许可合同备案 RECORDAL OF LICENSE CONTRACT驳回商标复审 REVIEW OF REFUSED TRADEMARK驳回续展复审 REVIEW OF REFUSED RENEWAL驳回转让复审 REVIEW OF REFUSED ASSIGNMENT撤销商标复审 REVIEW OF ADJUDICATION ON OPPOSITION异议复审 REVIEW OF ADJUDICATION ON OPPOSITION争议裁定 ADJUDICATION ON DISPUTED REGISTERED TRADEMARK 撤销注册不当裁定ADJUDICATION ON CANCELLATION OF IMPROPERLY REGISTERED TRADEMARK撤销注册不当复审 REVIEW ON CANCELLATION OF IMPROPERLY REGISTERED TRADEMARK处理商标纠纷案件 DEALING WITH INFRINGEMENT优先权 PRIORITY注册申请优先日 DATE OF PRIORITY注册商标使用人 USER OF REGISTERED TRADE MARK注册商标专用权EXCLUSIVE RIGHT TO USE REGISTERED TRADE MARK注册商标的转让 ASSIGNMENT OF REGISTERED TRADE MARK商标的许可使用 LICENSING OF REGISTERED TRADE MARK使用在先原则 PRINCIPLE OF FIRST TO USE注册在先原则 PRINCIPLE OF FIRST APPLICATION商标国际分类 INTERNATIONAL CLASSIFICATION OF GOODS专利 PATENT 专利权 PATENT RIGHT 专利权人 PATENTEE专利代理 PATENT AGENCY 产品专利 PRODUCT PATENT专利性 PATENTABILITY专利申请权 RIGHT TO APPLY FOR A PATENT实用新颖 UTILITY MODEL 专有性 MONOPOLY专利的新颖性 NOVELTY OF PATENT专利的实用性 PRACTICAL APPLICABILITY专利的创造性 INVENTIVE专利文件 PATENT DOCUMENT专利申请文件 PATENT APPLICATION DOCUMENT专利请求书 PATENT REQUEST专利说明书 PATENT SPECIFICATION专利要求书 PATENT CLAIM专利证书 LETTER OF PATENT商标淡化法 TRADEMARK DILUTION ACT商标权的权利穷竭 EXHAUSTION TRADEMARK平行进口 PARALLEL IMPORT灰色进口 GRAY IMPORT反向假冒 REVERSE PASSING-OFF显行反向假冒 EXPRESS REVERSE PASSING-OFF隐形反向假冒 IMPLIED REVERSE PASSING-OFF附带使用 COLLATERAL USE知识产权 INTELLECTUAL PROPERTY工业产权 INDUSTRIAL PROPERTY外观设计 DESIGN发明 INVENTION发明人 INVENTOR货源标记 INDICATION OF SOURCE原产地名称 APPELLATION OF ORIGIN (AOS)地理标记 GEOGRAPHICAL INDICATION (GI)1.A patent is a governmental grant of an exclusive monopoly as an incentive and a reward for a new invention.专利权是政府对一项新发明授予的独立性权利,以给予发明鼓励和奖励。
文章编号:1005-6734(1999)04-0012-04惯导平台漂移误差参数辨识的实验研究付振宪1,裴听国2,吕伯儒2,邓正隆1(1.哈尔滨工业大学,哈尔滨150001; 2.航天机电集团16所,西安710100)摘要:本文给出了某型号惯导平台漂移误差参数辨识的一个工程实例。
平台上陀螺输出的零位误差和质量不平衡误差是引起平台漂移的主要因素。
为此,我们建立起描述平台漂移的数学模型,取框架角的测量值做为系统的输出,框架角和误差系数都被定义成了状态变量,这样参数辨识问题就转化成了对状态的估计。
为使各误差系数都能受到重力的充分激励和便于工程应用,实验中我们采用了六位置伺服状态测漂方案。
实验结果表明,应用EKF可以获得较好的辨识效果,明显优于力反馈法和光点测漂法。
关键词:惯导平台;漂移误差;辨识;扩展的卡尔曼滤波器中图分类号:U666.12+1文献标识码:AExperimental Research on the Identification ofINS Platform Drift Error ParametersFU Zhen xian1,PEI Ting guo2,LU Bo ru2,DENG Zheng long1(1.H arbin Institute of T echnolog y,Harbin150001,China; 2.16th Institute,China SpaceElectromechanical Group,Xi.an710100,China)Abstract:In this paper,an engineering example of drift error parameter identification for a type of inertial navig ation platform is presented.T he output bias and mass unbalance errors are the main sources of the platform drift.In regard of this,a mathem atical model describing the drift of the platform is built,in w hich the g imbal angles are taken as system output,w hile the gim bal angles and the error coefficients are both taken as state variables.Thus the problem of parameter identif-i cation is converted to that of state estimation.To make every error coefficient be fully stimulated by gravitational force and to fit engineering application,a six position servo state test scheme is adopted in the experiment.The result show s that the method using Extended Kalman Filter (EKF)can get a good identify ing effect,which is better than that obtained using force feedback method and optical point recording method.Key words:INS platform;drift error;identification;EKF1引言在运载火箭和远程导弹的惯性导航系统中,引起平台漂移的因素主要是陀螺输出中的零位误差和质量不平衡误差。
一,图纸中常见英文缩写对照缩写全称翻译ACCESS Accessory 附件ADJ Adjustable, Adjust 调整ADPT Adapter 使适应ADV Advance 提前AL Aluminum 铝ALLOW Allowance 允许ALT Alternate 改变AL Y Alloy 合金AMT Amount 数量ANL Anneal 锻炼ANSL American National Standard Label APPROX Approximate 大约ASME American Society of Mechanical Engineers ASSEM Assemble 装配ASSY Assembly 装配AUTH Authorized 授权的AUTO Automatic 自动的AUX Auxiliary 辅助的A VG Average 平均AWG American Wire GaugeBC Bolt Circle 螺栓圆周BET Between 之间BEV Bevel 斜角BHN Brinell Hardness Number 布氏硬度值BLK Blank ,Block 空白B/NM Bill of Material 材料费BOT Bottom 底部BP or B/P Blueprint 蓝图BRG Bearing 轴承BRK Break 破裂BRKT Bracket 支架BRO Broach 钻孔BRS Brass 黄铜BRZ Bronze 青铜B&S Brown&Shape 棕色&形状BSC Basic 基本的BUSH Bushing 套管BWG Birmingham Wire GaugeC TO C Center-to-Center 中心到中心CAD Computer-Aided Drafting 电脑辅助设计CAM Computer-Aided MfgCAP SCR Cap Screw 螺帽CARB Carburize 使渗碳CBORE Counter bore 扩孔CCW Counter Clockwise 逆时针CDRILL Counter drillCDS Cold-Drawn SteelCS Cast Steel 铸铁CSA Canadian Stds AssociationCSK Countersink 埋头孔CSTG Casting 铸件CTR Center 中心CU Cubic 立方米CW Clockwise 顺时针CYL Cylinder,Cylindrical 柱面DBL Double 双倍DEC Decimal 小数DEG Degree 摄氏度DET Detail 详情DEV Develop 发展DFT Draft 草稿DIA Diameter 直径DIM Dimension 尺寸DIST Distance 距离DN Down 向下DP Deep,Diametral Pitch 深度,径节DR Drill,Drill Rod 钻孔DSGN Design 设计DVTL Dovetail 吻合DWG Drawing 图纸DWL Dowel 木钉DWN Drawn 拔出EFF Effective 有效的ENCL Enclose, Enclosure 附上ENG Engine 引擎ENGR Engineer 工程师ENGRG Engineering 工程学EQLSP Equally Spaced 等距EQUIV Equivalent 相等EST Estimate 估计EX Extra 额外EXH Exhaust 消耗EXP Experimental 实验性的EXT Extension, External 范围,外部FAO Finish All OverFDRY Foundry 铸造FIG Figure 数据FIL Fillet, fillister 带子FIM Full Indicator MovementFIN FinishFLX Fixture 结构FLX Floor. Fluid, Flush 基地,液体,冲洗FLEX Flexible 易弯曲的FLG Flange 边缘FORG Forging 锻炼FR Frame, Front 边框FIG Fitting 装置FURN Furnish 提供FWD Forward 向前GA Gage, Gauge 测量GALV Galvanized 电镀GR Grade 等级GRD Grind 磨碎GRV Groove 凹槽GSKT Gasket 垫圈H&G Harden and Grind 加硬和磨碎HD Head 主要的HDL Handle 处理HDLS Headless 无领导的HDN Harden 使硬化HDW Hardware 硬件HEX Hexagon 六边形HGR Hanger 衣架HGT Height 高度HOR Horizontal 水平的HRS Hot-Rolled SteelHSG Housing 外罩HT TR Heat TreatNTS Not to ScaleHVY Heavy 重量HYD Hydraulic 水压ID Inside Diameter 内部直径IDENT Identification 鉴定ILLUS Illustration 说明IN Inch 英寸INCL Include,Including 包括INCR Increase 增加INFO Information 信息INSP Inspect 检查INSTL Install 安装INST Instruct,Instrument 指示,工具INT Interior,Internal,Intersect 内部的,内在的,交叉IR Inside Radius 内部半径ISO Internal Stds Organization 国际标准化组织JCT Junction 连结JNT Journal 杂志JT Joint 连接K Key 关键KNRL Knurl 硬节KST KeyseatKWY Keyway 键沟LB Pound 英镑LBL Label 标签LG Length,Long 长度LH Left Hand 左手LMC Least Material ConditionLOC Locate 位于LT Light 光LTR Letter 信LUB Lubricate 润滑MACH Machine 机器MAINT Maintenance 维护MATL Material 材料MAX Maximum 最大MECH Mechanical,Mechanism 机械MED Medium 媒介MFG Manufacturing 制造业MI Malleable Iron 可锻造的铁MIN Minimum, Minute 最小,秒MISC Miscellaneous 混杂的MM Millimeter 毫米MMC Max Material ConditionMS Machine SteelMTG Mouting 装备MULT Multiple 倍数MWG Music Wire GagugNA Not Applicable 不可应用的NA TL National 国内的NC Numerical Control 数字电脑控制NEG Negative 忽略的NO. Number 号码NOM Nominal 名义上的NPSM Natl Pipe Straight MechNPT Natl Pipe TaperedSCR Screw 螺丝SEC Second 秒SECT Section 部分SEP Separate 独立SEQ Sequence 顺序SER Serial,Series 系列SERR Serrate 锯齿状SF SpotfaceSFT Shaft 轴SGL Single 单个SH Sheet 纸SI Intl System of UnitsSL Slide 使滑动SLV Sleeve 袖子SOC Socket 插座SP Space,Spaced,Spare 空间SPL Special 特别SPEC Specification 规格SPG Spring 跳SPHER Spherical 球体SPRKT Sprocket 链轮齿SQ Square 平方SST Stainless Steel 纯铁STD Standard 标准STK Stock 存货STL Steel 铁STR Straight,Strip 直的SUB Substitute 替代物SUP Supply,Support 供应SURF Surface 表面SYM Symmetrical 对称的SYS System 系统T Teeth,Tooth 牙齿TECH Technical 技术TEMP Template,Temporary 模板,暂时的THD Thread 线THK Thick 厚的TOL Tolerance 公差TOT Total 总计TPF Taper per FootTPI Taper per In,Threads per InchTPR Taper 锥形TS Tool SteelTYP Typical 典型UNC Unified Natl CoarseUNEF Unified Natl Extra FineUNF Unified Natl FineUNIV Universal 普遍V AR Variable 变量VERT Vertical 垂直的VOL Volume 音量VS Versus 与..相对W Wide,Width 宽度WASH Washer 垫圈WI Wrought Iron 熟铁WT Weight 重量OA Over All 所有OBS ObsoleteOC On CenterOD Outside Diameter 外直径OPP Opposite 对立OPTL Optional 可选择的OR Outside Radius 外半径ORIG Original 初始的PA T. Patent 专利PATT Pattern 形式PC Piece, Pitch Circle 件,节距圆PCH Punch 打孔PD Pitch DiameterPERF Perforate 打孔PERM Permanent 永久的PERP Perpendicular 垂直的PFD Preferred 首选的PKG Package, Packing 包装PL Parting Line, Places, PlatePNEU PneumaticPNL Panel 面板POL Polish 磨光POS Position, Positive 位置PR Pair 对立PRI Primary 基本的PROC Process 程序PROD Product, Production 产品,产量PSI Pounds per Square InchPT Part, Point 零件,点QTR Quarter 四份之一QTY Quantity 数量QUAL Quality 质量R Radius 半径RA Rockwell Harden, A-ScaleRB Rockwell Harden, B-ScaleRC Rockwell Harden, C-ScaleRECD Received 巳收到的RECT Rectangle 长方形REF Reference 相关的REINF Reinforce 增强REL Release, Relief 释放,缓解REM Remove 移除REQD Required 有需要REE Retainer, ReturnREV Reverse, Revision, RevolutionRFS Regardless of Feature SizeRGH Rough 粗糙的RH Right Hand 右手RIV Rivet 起皱RM Ream 扩展RND Round 周围RPM Revolutions per MinuteRPW Resistance Projection WeldSAE Society of Automotive Engineers SCH Schedule 进度表A/F——Across Flats——对边C`SINK——Counter Sink——沉头锥孔C`BORE——Counter Bore——沉头平底孔C——Chamfer——倒角EXT——External——外(外在的)INT——Internal——内(内在的)MATL——Material——材料LH——Left Hand——左旋(螺纹)RH——Right Hand——右旋(螺纹)REV——Revision——版本U`CUT——Under Cut——空刀槽S.FACE——Spot Face——刮平S.R——Spherical radius——球面半径R——Radius——半径P.F——Press Fit——紧配S.F——Slide Fit——滑配PCD——Pitch Circle Diameter——节圆直径DP——Deep——深度CL——Center Line——中心线FF——Force Fit——压配HRC——Hardened——热处理(淬火)BSF——British standard fine thread——英国细牙螺纹处理BSP——British standard pipe thread——英国管螺纹标准BSW——British standard worth thread——英国惠氏螺纹标准BSD——British standard dimension——英国度量标准尺寸BSG——British standard gauge——英国标准线规BSS——British standard specification——英国标准技术规格G——美国标准管牙M——Metric——公制螺纹NPT——国家管用螺纹(美制斜牙齿)UNC——United coarse thread——统一标准粗牙螺纹UNEF——United extreme fine thread——公称制细牙UNF——United fine thread——公称细牙CYL——Cylinder or cylindrical——圆柱DIA——Diameter——直径DWG NO——Drawing NO——图纸编号ANGLE 角度NA TURE R 自然RALL ROUND 周边,全周NG 粗牙BOT (BOTT) 底部NF 细牙CB 沉头孔PART NO 料号CL 中心线PUNCH 冲头C+0.02 单边放大0.02间隙PIERCE PUNCH 落料冲头chamfer(C) 倒角PCS 个,块,件CA(NCA) 清角(不清角)Q'TY 数量CENTER(CEN) 中心,园心REF 参考DWG NO 图号REV 版次DEEP(DEP) 深度RIGHT 右EDGE 刀口SYM 中心对齐ECN NO 设变号码SMALL 小端EWL (newl) 清线头(不清线头)S落料斜度FINISH 硬度SCALE 比例GAP 单边间隙SECTION A-A 剖视A-AHEIGHT 高度SHEET 表单,页次HA TCHING 阴影线SURFACE 表面HEAT TREATMENT 热处理TAP 攻牙INSERT 入块TYP 相同,尺寸一致LARGE 大端THRU(THR) 贯穿LEFT 左TOP 顶部MM 螺纹的规格THICK 厚度MARK 记号标记TAPPER 锥度斜度MATEL 材料材质TAN 切点MAX 最大值TAP1/2NPT 1/2英制管牙MIN 最小值UNIT 单位NAME 名称VIWE A 视图ANEF 特别攻牙SECA-A A-A剖视NRT 新制管牙二,图纸中标题对应含义1. PART NO(P/N) 料号2. TITLE(PART NAME) 品名3. SIZE 型号4. MODEL NO 使用机型机种5. MATERIAL 材料,材质6. THICKNESS/DIMENSIONS 厚度/尺寸7. TOLERANCE 公差LINER:线性尺寸公差ANGLES:角度公差TOLERANCE AREA:公差区分表8. TREATMENT 处理9. FINISH 产品完成后细加工方面10. SCALE 比例尺11. REVISIONS(REV) 变更项(其中REV也表示版别)12. DIMENSIONS(UNIT)单位13. NOTES 注意事项14. METRIC 米制的,公制的,15. BURR DIRECTION 毛边方向三.图纸中常见符号含义1. R:圆弧半径2. ψ:圆直径(內径,外径)3. Sψ(SR):球面直径或半径4. M:攻牙(普通牙型)5. P:螺距6. C:倒角(等腰直角三角形C為直邊尺寸)7. T(δ):厚度8. 平面度//:平行度9. ⊥:垂直度◎:同轴度10.SECTION A---A分解图中代号)11.DETAIL A: A部放大12. 锥度⁄—⁄ (∫---∫):线条省略。
abandonment of a patent 放弃专利权abandonment of a patent application 放弃专利申请abridgment [ə'brɪdʒmənt]文摘词根:bridg=short,表示"短,缩短"abstract 文摘(摘要)abuse of patent 滥用专利权action for infringement of patent 专利侵权诉讼action of a patent 专利诉讼address for service 文件送达地址affidavit [ˌæfəˈdeɪvɪt]宣誓书allowance [ə'laʊəns]准许amendment 修改[ə'men(d)m(ə)nt]annual fee 年费[ˈænjuəl fi:]annuity 年费[əˈnju:əti]anticipation 占先[ænˌtɪsɪˈpeɪʃn]appeal 上诉appellation of origin 原产地名称[ˌæpəˈleɪʃən ɔv ˈɔridʒinapplicant for patent 专利申请人application date 申请日期application documents 申请案文件application fee 申请费application for patent 专利申请(案)application laying open for public inspection 公开供公众审查的申请application number 申请号application papers 申请案文件arbitration 仲裁[ˌɑ:bɪˈtreɪʃn]art 技术article of manufacture 制品assignee 受让人[ˌæsaɪ'ni:]assignment 转让[ə'saɪnmənt]assignor 转让人author of the invention 发明人author's certificate 发明人证书basic patent 基本专利Berne Convention 伯尔尼公约英[bə:n,bɛən]美[bɚn, bɛrn]Berne Union 伯尔尼联盟best mode 最佳方式bibliographic data 著录资料[ˌbibliəˈɡræfik ˈdeitə]参考文献资料,目录资料着录资料;著录资料;书目数据BIRPI 保护知识产权联合国国际局.board of appeals 申诉委员会breach of confidence 泄密Budapest Treaty on the International Recognition of the Deposit[dɪ'pɒzɪt]of Microorganisms ,maikrəu'ɔ:ɡənizəm]for the Purposes of Patent Procedure[prə'siːdʒə]国际承认用于专利程序的微生物保存布达佩斯条约burden of proof 举证责任case law 判例法caveat 预告['kævɪæt; 'keɪ-]certificate of addition 增补证书certificate of correction 更正证明书certificate of patent 专利证书certified copy 经认证的副本Chemical Abstracts 化学文摘citation 引证[saɪ'teɪʃ(ə)n]claim 权项classifier 分类员['klæsɪfaɪɚ]co-applicants 共同申请人co-inventors 共同发明人color coding 色码制commissioner 专利局长[kə'mɪʃ(ə)nə]Community Patent Convention 共同体专利公约complete application 完整的申请案complete description 完整的叙述complete specification 完整的说明书comptroller 专利局长[kəm'trəʊlə; kɒmp-] compulsory license 强制许可证['laɪsns]conception 概念conception date 概念日期confidential application 机密申请confidential information 保密情报conflict award 冲突裁定conflict procedure 冲突程序[prə'siːdʒəconflicting applications 冲突申请案continuation application 继续申请continuation-in-part application 部分继续申请案contractual license 契约性许可证contributory infringement 简介侵犯[kən'trɪbjʊt(ə)rɪ]convention application 公约申请convention country 公约国convention date 公约日期Convention Establishing the World IntellectualProperty Organization 建立世界知识产权组织公约convention period 公约期限convention priority 公约优先权[praɪ'ɒrɪtɪ]copyright 版权correction slip 勘误表counter pleadings 反诉状counterclaim 反诉country code 国家代号cross license 交叉许可证data 资料data exchange agreement 资料交换协议data of application 申请日期date of grant 授予日期date of issue 颁发日期['ɪʃu:]date of patent 专利日期date of publication 公布日期dedication to the public 捐献于公众defendant 被告人defenses 辩护defensive publication 防卫性公告deferred examination 延迟审查dependent claim 从属权项dependent patent 从属专利Derwent Publications Ltd. 德温特出版有限公司design patent 外观设计专利development 发展disclaimer 放弃权项disclosure 公开division 分案divisional application 分案申请domination patent 支配专利drawing 附图duration of patent 专利有效期[djuˈreɪʃn] economic patent 经济专利effective filing date 实际申请日期employee’s invention 雇员发明EPO 欧洲专利局European Patent Office 欧洲专利局ESARIPO 英语非洲工业产权组织esripou European Patent Convention 欧洲专利公约evidence 证据examination 审查examination countries 审查制国家examination for novelty 新颖性审查examiner 审查员examiner’s report 审查员报告exclusive license 独占性许可证exclusive right 专有权experimental use 实验性使用expired patent 期满专利[iks'paiəd] exploitation of a patent 实施专利[eksplɒɪ'teɪʃ(ə)n] exposition priority 展览优先权expropriation 征用[eks,prəʊprɪ'eɪʃən]extension of term of a patent 延长专利期限fee 费用[ɪk'stenʃ(ə)n; ek-]FICPI 国际工业产权律师联合会file copy 存档原件filing date 申请日期filing fee 申请费filing of an application 提出申请final action 终局决定书first-to-file principle 先申请原则first-to-invention principle 先发明原则force majeure 不可抗力[mæ'ʒɜ:foreign patent application 外国专利申请formal examination 形式审查gazette 公报[ɡə'zet]Geneva Treaty on the International Recording of Scientific Discoveries 关于科学发现国际注册日内瓦条约[dʒə'ni:və]grace period 宽限期grant of a patent 授予专利权holder of a patent 专利持有人ICIREPAT 专利局间情报检索国际合作巴黎联盟委员会Paris Union Committee for International Cooperation in Information Retrieval among Patent Offices 专利局间情报检索国际合作巴黎联盟委员会[rɪˈtri:vl]IFIA 国际发明人协会联合会International Federation of Inventor’s A ssociation 国际发明人协会联合会IBB 国际专利研究所Institut International des Brevets 国际专利研究所imitation 仿造impeachment 控告improvement 改进improvement patent 改进专利independence of patents 专利独立indication of source 产地标记indirect infringement 间接侵犯industrial applicability 工业实用性industrial design 工业品外观设计industrial property 工业产权information in the public domain 公开情报infringement of a patent 侵犯专利权infringement of a trade mark 侵犯商标权INID 著录资料识别码ICIREPAT Numbers for the Identification of Data 著录资料识别码INPADOC 国际专利文献中心INSPEC 国际物理学和工程情报服务部insufficient disclosure 公开不允分intellectual property 知识产权interdependent patents 相互依存的专利interference procedure 抵触程序interlocutory injunction 中间禁止令interlocutory order 中间命令International Convention for the Protection of New Varieties of Plants 保护植物新品种国际公约International Patent Classification Agreement 国际专利分类协定International Preliminary Examining Authority 国际初审单位international protection 国际保护International Searching Authority 国际检索单位invalidation 无效invention 发明inventive step 独创性inventor 发明人inventor’s certificate 发明人证书IPC 国际专利分类International Patent Classification 国际专利分类issue of a patent 办法专利joint applicants 共同申请人joint invention 共同发明joint inventors 共同发明人joint patentees 共同专利权人journal 公报judgment 判决junior party 后申请方know-how 技术诀窍lapsed patent 已终止的专利lawsuit of a patent 专利诉讼legal person 法人legend 说明LES International 国际许可贸易执行人协会Licensing Executives Society International 国际许可贸易执行人协会letters patent 专利证书license 许可证license agreement 许可证协议license of course 当然许可证licensing 许可证贸易licensor 许可人Lisbon Agreement for the Protection of Appellations of Origin and their International Registration 保护原产地名称及国际注册里斯本协定Locarno Agreement Establishing an International Classification for Industrial Design 建立工业品外观设计国际分类洛迦诺协定loss of a patent 专利权的丧失Madrid Agreement Concerning the International Registration of Marks 商标国际注册马德里协定Madrid Agreement for the Repression of False or Deceptive Indications of Source on Goods 制止商品产地虚假或欺骗性标记马德里协定main patent 主专利maintenance fee 维持费marking 标记memorandum of understanding 谅解备忘录method 方法microforms 微缩文件minimum documentation 最少限度检索文献minimum royalties 最低提成费misuse of patent 滥用专利权mixed license 混合许可证model laws 示范法most-favoured provision 最惠条款name of invention 发明名称national treatment 国民待遇natural person 自然人neighboring rights 邻接权new varieties of plants 植物新品种Nice Agreement Concerning the International Classification of Goods and Services for the Purposes of the Registration of Marks 商标注册用商品与服务国际分类尼斯协定non-examining countries 不审查制国家non-exclusive license 非独占性许可non-obviousness 非显而易见性non-use of a patent 不实施专利notary public 公正机关notice of infringement 侵权通知novelty 新颖性OAPI 非洲知识产权组织objection 异议office action 专利局审查决定书opposition 异议originality 独创性owner of a patent 专利所有人parent application 原申请Paris Convention 巴黎公约Paris Union 巴黎联盟patent 专利patent act 专利法patent agent 专利代理人patent applied for 已申请专利patent attorney 专利律师patent classification 专利分类patent documentation 专利文献patent documents 专利文件patent families 同族专利patent for an invention 发明专利patent law 专利法patent license 专利许可证patent number 专利号patent of addition 增补专利patent of confirmation 确认专利patent of importation 输入专利patent of introduction 引进专利patent of revalidation 再效专利patent office 专利局patent pending 专利未决patent right 专利权patent rules 专利实施细则patent system 专利制度patentability 专利性patented invention 专利发明patentee 专利权人patenting 授予专利权PCT 专利合作条约PCT Union 专利合作条约pending application 未决申请period of a patent 专利有效期person skilled in the art 所属技术领域的专业人员petition 请求书petty patent 小专利plaintiff 原告人plant patent 植物专利pleadings 起诉状precautional patent 预告专利precedents 判例prescription 时效prevention of unfair competitionprincipal patent 主专利prior art 先有技术prior use 先用priority 优先权priority claim 优先权声明priority declaration 优先权声明process patent 方法专利processing of an application 申请案的处理product patent 产品专利provisional specification 临时说明书publication 公布reclassification 再分类reexamination 复审refusal 驳回register of patents 专利登记册registered patent 登记专利registered trade mark 注册商标registration 登记registration countries 登记制国家reissue patent 再颁发专利rejection 驳回remedy 补救renewal fee 续展费request 请求书restoration of a lapsed patent 恢复已终止的专利restricted conditions 限制条款review 复审revival of an abandoned application 恢复已放弃的申请revocation of a patent 撤销专利royalties 提成费Science Abstracts 科学文摘scientific discovery 科学发现scope of protection 保护范围seal 盖章search 检索secret patent 机密专利service invention 职务发明service mark 服务标记signature 签署simple license 普通许可证single applicant 单独申请人sliding scale of royalties 滑动提成费sole license 排他性许可证specification 说明书state of the art 先有技术水平statement of claim 诉讼陈述statement of defense 辩护陈述substance patent 物质专利substantive examination 实质性审查succession 继承sufficiency of description 充分描述technical assistance 技术协助technical data 技术资料technology transfer 技术转移temporary protection 临时保护term of a patent 专利有效期世贸组织WTO WORLD TRADE ORGANIZATION关税及贸易总协定《GATT》GENERALAGREEMENT ON TARIFFS ANDTRADE亚太经济合作组织《APEC》ASIA PACIFIC ECONOMIC COOPERATION与贸易有关的知识产权协议《TRIPS》AGREEMENT ON TRADE RELATED ASPECTS OF INTELLECTUAL PROPERTY RIGHTS世界知识产权组织《WIPO》WORLD INTELLECTUAL PROPERTYORGANIZATION保护知识产权联合国际局INTERNATIONAL BOARD OF INTELLECTUALPROPERTY RIGHT保护工业产权巴黎公约PARIS CONVENTION FOR THE PROTECTION OF INDUSTRIAL PROPERTY商标国际注册马德里协定MADRID AGREEMENT CONCERNING THEINTERNATIONAL REGISTRATION OF MARKS 商标注册条约《TRT》TRADE MARK REGISTRATION TREATY商标注册用商品与国际分类尼斯协定NICE AGREEMENT CONCERNING THE INTERNATIONAL CLASSIFICATION OF GOODS AND SERVICES FOR THE PURPOSE OF THE REGISTRATION OF MARKS建立商标图形要素国际分类维也纳协定VIENNA AGREEMENT FOR ESTABLISHING AND INTERNATIONAL CLASSIFICATION OF THE FIGURATIVE ELEMENTS OF MARKS专利合作条约《PCT》PATENT CO-OPERATION TREATY共同体专利公约COMMUNITY PATENT CONVENTION斯特拉斯堡协定《SA》STRASBOURG AGREEMENT工业外观设计国际保存海牙协定THE HAGUE AGREEMENT CONCERNING THE INTERNATIONAL DEPOSIT OF INDUSTRIAL DESIGNS工业外观设计国际分类洛迦诺协定LOCARNO AGREEMENT ON ESTABLISHING AND INTERNATIONAL CLASSIFICATION FOR INDUSTRIAL DESIGNS商标,外观设计与地理标记法律常设委员会(SCT)STANDING COMMITTEE ON THE LAW OF TRADEMARK,INDUSTRIAL DESIGN AND GEOGRAPHICALINDICATION国际专利文献中心《INPADOC》INTERNATIONAL PATENT DOCUMENTATION CENTER欧洲专利局《EPO》EUROPEAN PATENT OFFICE 欧洲专利公约EUROPEAN PATENT CONVENTION比荷卢商标局TRADE MARK OFFICE OF BELGIUM-HOLLAND-LUXEMBURG法语非洲知识产权组织ORGANIZATION OF AFRICAN INTELLECTUAL PROPERTY国际商标协会THE INTERNATIONAL TRADEMARK ASSOCIATION中华人民共和国商标法TRADEMARK LAW OF THE PEOPLES REPUBLIC OF CHINA英国商标法TRADEMARK LAW OF UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND美国商标法TRADEMARK LAW OF THE UNITED STATES OF AMERICA日本商标法JAPANESE TRADEMARK LAW商标TRADE MARK商标局TRADE MARK OFFICCE商标法TRADE MARK LAW文字商标WORD MARK图形商标FIGURATIVE MARK组合商标ASSOCIATED MARK保证商标CERTIFICATION MARK集体商标COLLECTIVE MARK驰名商标WELL-KNOWN MARK著名商标FAMOUS MARK近似商标SIMILAR MARK防御商标DEFENSIVE MARK服务标记SERVICE MARK注册商标REGISTERED MARK商标注册申请人TRADE MARK REGISTRANT注册申请日APPLICATION DATE OF TRADE MARK注册申请号APPLICATION NUMBER商标注册证TRADE MARK REGISTRATION CERTIFICATE商标注册号TRADE MARK REGISTRATION NUMBER商标注册日TRADE MARK REGISTRATION DATE商标注册簿TRADE MARK REGISTERED BOOK注册有效期THE TERM OF VALIDITY商标注册官EXAMINATION FOR TRADE MARK REGISTRATION注册查询TRADE MARK ENQUIRIES注册续展RENEWAL OF TRADE MARK分别申请SEPARATE APPLICATION重新申请NEW REGISTRATION别行申请NEW APPLICATION变更申请APPLICATION REGARDING CHANGES注册代理TRADE MARK AGENCY注册公告TRADE MARK PUBLICATION申请注册APPLICATION FOR REGISTRATION 续展注册RENEWAL OF REGISTRATION转让注册REGISTRATION OF ASSIGNMENT变更注册人名义/地址/其它注册事项MODIFICATION OF NAME/ADDRESS OF REGISTRANT/OTHER MATTERS 补发商标证书REISSUANCE OF REGISTRATION CERTIFICATE注销注册商标REMOVAL证明CERTIFICATION异议OPPOSITION使用许可合同备案RECORDAL OF LICENSE CONTRACT驳回商标复审REVIEW OF REFUSED TRADEMARK驳回续展复审REVIEW OF REFUSED RENEWAL驳回转让复审REVIEW OF REFUSED ASSIGNMENT撤销商标复审REVIEW OF ADJUDICATION ON OPPOSITION异议复审REVIEW OF ADJUDICATION ON OPPOSITION争议裁定ADJUDICATION ON DISPUTED REGISTERED TRADEMARK撤销注册不当裁定ADJUDICATION ON CANCELLATION OF IMPROPERLY REGISTERED TRADEMARK撤销注册不当复审REVIEW ON CANCELLATION OF IMPROPERLY REGISTERED TRADEMARK 处理商标纠纷案件DEALING WITH INFRINGEMENT优先权PRIORITY注册申请优先日DATE OF PRIORITY注册商标使用人USER OF REGISTERED TRADE MARK注册商标专用权EXCLUSIVE RIGHT TO USE REGISTERED TRADE MARK注册商标的转让ASSIGNMENT OF REGISTERED TRADE MARK商标的许可使用LICENSING OF REGISTERED TRADE MARK使用在先原则PRINCIPLE OF FIRST TO USE 注册在先原则PRINCIPLE OF FIRSTAPPLICATION商标国际分类INTERNATIONAL CLASSIFICATION OF GOODS专利PATENT 专利权PATENT RIGHT 专利权人PATENTEE专利代理PATENT AGENCY 产品专利PRODUCT PATENT专利性PATENTABILITY专利申请权RIGHT TO APPLY FOR A PATENT实用新颖UTILITY MODEL 专有性MONOPOLY 专利的新颖性NOVELTY OF PATENT专利的实用性PRACTICAL APPLICABILITY专利的创造性INVENTIVE专利文件PATENT DOCUMENT专利申请文件PATENT APPLICATION DOCUMENT专利请求书PATENT REQUEST专利说明书PATENT SPECIFICATION专利要求书PATENT CLAIM专利证书LETTER OF PATENT商标淡化法TRADEMARK DILUTION ACT商标权的权利穷竭EXHAUSTION TRADEMARK平行进口PARALLEL IMPORT灰色进口GRAY IMPORT反向假冒REVERSE PASSING-OFF显行反向假冒EXPRESS REVERSE PASSING-OFF隐形反向假冒IMPLIED REVERSE PASSING-OFF附带使用COLLATERAL USE知识产权INTELLECTUAL PROPERTY工业产权INDUSTRIAL PROPERTY外观设计DESIGN发明INVENTION发明人INVENTOR货源标记INDICATION OF SOURCE原产地名称APPELLATION OF ORIGIN (AOS)地理标记GEOGRAPHICAL INDICATION (GI)1.A patent is a governmental grant of an exclusive monopoly as an incentive and a reward for a new invention.专利权是政府对一项新发明授予的独立性权利,以给予发明鼓励和奖励。
系统辨识是一门研究如何从系统的输入和输出数据中推断系统内部动态特性的学科。
在工程领域中,系统辨识被广泛应用于控制、信号处理、预测等领域。
随着科技的发展,系统辨识的应用范围也在不断扩大。
为了更好地掌握系统辨识的知识和技能,许多经典的英文书籍被撰写出来,以帮助读者深入了解系统辨识的理论和实践。
以下是一些经典的书籍:1. 《System Identification: Theory for the User. 2nd Edition》by P. J. G. Ramadge and W. M. Wetherall。
这本书是系统辨识领域的经典之作,涵盖了系统辨识的基本理论和实践方法,包括最小二乘法、递归辨识算法、稳定性分析等内容。
2. 《System Identification: Parameter and State Estimation》by Freddy Lindell。
这本书主要介绍了参数估计和状态估计的方法,包括最小二乘法、极大似然估计、卡尔曼滤波器等。
书中还通过实例演示了如何应用这些方法进行系统辨识。
3. 《Identification of Parameters in Linear Dynamic Systems》by H. Hjalmarsson。
这本书专注于线性动态系统的参数辨识,介绍了最小二乘法和递归最小二乘法等参数估计方法,以及如何应用这些方法进行系统辨识。
4. 《System Identification with an Introduction to Experimental Data Analysis》by Yuriy V. Gaiarsa and Joseph T. Lizier。
这本书不仅介绍了系统辨识的基本理论和方法,还详细介绍了如何进行实验数据分析和处理,包括数据预处理、噪声抑制、数据平滑等内容。
5. 《System Identification: A Practical Guide for Engineers and Scientists》by Tore Hagglund and Mats Åström。
TEM: Subject indexAberration 像差chromatic 色差spherical 球差astigmatic像散Absorption coefficient 吸收系数abnormal 反常吸收系数uniform 均匀吸收系数Aperture 光阑objective aperture 物镜光阑selective area aperture 选区光阑condenser lens aperture 聚光镜光阑size 光阑尺寸Astigmatism 像散Anomalous absorption coefficient 反常吸收系数Alignment of electron microscope电子显微镜的对准Antiphase domains反相畴Antiphase domain boundaries 反相畴界Artefacts in specimens 样品中的人为缺陷Atomic scattering amplitude 原子散射振幅Back focal plane 后焦面Beam current density 束流密度Beam direction 电子束方向Bend contours 弯曲条纹Bend center 弯曲中心Bend extinction contours 弯曲消光条纹Bright field 明场Bright field image 明场像Burgers vector determinations柏氏矢量确定Calibration of electron microscope电子显微镜的校准Camera constant 相机常数Camera length 相机长度Cavities 空洞Characteristic images from a perfect crystal完整晶体特征图像thickness fringes 厚度消光条纹bend extinction contours 弯曲消光条纹bend contours 弯曲条纹bend center 弯曲中心Chemical polishing for specimen preparation试样的化学抛光Chromatic abberation色差Coherency of precipitates 沉淀相的共格性Coherency strain contrast 共格应变衬度Column approximation 晶柱近似Condenser lens 聚光镜Constrained strain 约束应变Dark field 暗场Dark-field images 暗场像Defocus 欠焦Deformation of specimen 试样变形Depth of field 景深Depth of focus 焦深Deviation parameter 偏移参量effective value of 有效偏移参量Diffraction contrast 衍射衬度Diffraction function 衍射函数Diffraction mode 衍射模式Diffraction pattern 衍射花样Diffraction theory 衍射理论Direct lattice images直接点阵像Dislocations 位错contrast from 位错衬度density of 位错密度determination of Burgers vector of位错柏氏矢量的确定displacement fields around 围绕位错的位移场nodes 位错结perfect (whole) 完全位错partial 不全位错Displacement fringe contrast from precipitates沉淀相粒子的位移条纹衬度Domain boundaries 畴界Double condenser lens 双聚焦透镜Double diffraction 双衍射Dynamical theory of electron diffraction电子衍射的动力学理论Edwald sphere 厄瓦尔德球Effective value 有效(值)deviation parameter 有效偏移参量extinction distance 有效消光距离Electron beam 电子束transmitted 透射(电子)束diffracted 衍射(电子)束Electron diffraction 电子衍射Electron diffraction patterns 电子衍射花样accuracy of 电子衍射花样的精度calibration of 电子衍射花样的校准effects of crystal shape电子衍射花样的形状效应indexing of 电子衍射花样的标定Kikuchi lines 菊池线花样polycrystalline ring 多晶环状衍射花样single crystal spot 单晶斑点衍射衍射streaks on 电子衍射花样的芒线Electron gun 电子枪Electron microscope 电子显微镜analytical 分析电镜attachments for 电子显微镜的附件high resolution 高分辩电镜magnification of 电子显微镜的放大倍数ray diagrams for 电子显微镜的光路图resolving power of 电子显微镜的分辩力transmission 透射电镜Electron microscopy 电子显微学(术) analytical 分析电子显微学(术) conventional 常规电子显微学high resolution 高分辩电子显微学(术) transmission 透射电子显微学Electron wavelengths 电子波长Electropolishing for specimen preparation电解抛光制备电镜试样Extinction 消光Extinction contours 消光条纹Extinction distance 消光距离Extrinsic插入型的Faults 缺陷Focus distance 焦距Foil thickness 薄膜厚度measurement of 膜厚测量Fringes 条纹displacement 位移条纹magnetic domain wall 磁畴壁条纹moire Moirre条纹precipitates, from 由沉淀相粒子引起的条纹stacking fault 层错条纹thickness 厚度条纹Goniometer stage 测角台Heating stages 加热台High order Laue Zone 高阶劳厄区High resolution electron microscopy 高分辩电镜Identification of precipitates沉淀相鉴别Illumination of specimen 试样照明contamination by 试样照明引起的污染damage by 试样照明引起的破坏Image 图像bright field 明场像dark field 暗场像intermediate 中间像rotation of 像转Image contrast 图像衬度origin of 图像衬度的来源antiphase domains, from 反相畴图像衬度antiphase domain boundaries, from反相畴界图像衬度cavities, from 空洞图像衬度dislocations, from, 位错的衬度dipoles 位错偶极子的衬度double images 位错双线衬度edges 刃型位错衬度general dislocation 一般位错的衬度inclined 倾斜位错的衬度invisibility criteria for 位错不可见位错loops 位错圈的衬度oscillation effects at 位错衬度的振荡效应partial 不全位错的衬度screws 螺型位错的衬度superdislocations 超位错的衬度surface relaxation effects位错衬度的表面松弛效应visibility rules for 位错不可见规律width of images 位错图像宽度partial dislocations 不全位错的衬度Frank Frank位错的衬度Schockley Schockley位错的衬度precipitates,from, 沉淀相粒子的衬度coherency strain field images沉淀相粒子的共格应变场衬度dislocation ring contrast沉淀相粒子的位错圈衬度displacement fringe contrast沉淀相粒子的位移条纹衬度matrix contrast 沉淀相粒子的基体衬度moire fringes 沉淀相粒子的Morrie条纹衬度orientation contrast 沉淀相粒子的取向衬度structure factor contrast沉淀相粒子的结构因子衬度visibility of 沉淀相粒子的可见性stacking faults, from, 层错引起的衬度determination of nature of 层错性质的确定twin boundaries, from 孪晶界的衬度Image force 镜像力Image formation 图像形成(成像) Ab by’s theory of Abby成像理论Image function 像函数Image mode 图像模式Image plane 像平面Image rotation 像转Inclusions 夹杂Indexing of electron patterns 电子衍射花样标定trier and error 尝试校核法known camera constant 已知相机长度standard diffraction patterns 标准衍射谱法computer simulation 计算机标定法ambiguous 不唯一性Inelastic scattering 非弹性散射Interface contrast 界面衬度Intermediate image 中间像Intermediate image plane 中间像平面Intrinsic 抽出型的Ion bombardment technique for specimen preparation 离子束轰击制样法Kikuchi pattern 菊池线花样Kikuchi lines 菊池线Kikuchi maps 菊池线图Kinematical theory of diffraction contrast运动学衍衬理论Lattice image 点阵像two beam 双束点阵(平面)像many beam 多束点阵像structure image 结构像Lattice plane spacing 点阵面间距Laue circle 劳厄园Laue zones 劳厄区high order 高阶劳厄区Line defect 线缺陷Line of no contrast 无衬度线Magnetic lens 电磁透镜aberrations of 电磁透镜的像差focal length of 电磁透镜的焦距pole-piece of 电磁透镜的极靴Many-beam effects 多束效应Measurements of; dislocation density,位错密度测量elastic strain fields of precipitates沉淀相粒子弹性应变场测量foil thickness 膜厚测量precipitate size, 沉淀相粒子尺寸测量stacking fault energy 层错能测量nodes, by 用位错结测量层错能ribbon widths, by 用层错带宽度测量层错能Microanalysis 微区分析Moire patterns Moire花样from precipitates 沉淀相粒子Moire花样mixed 混合Moire条纹parallel 平行Moire条纹rotation 旋转Moire条纹spacing of Moire条纹间距Nodes, extended threefold, 三维扩展位错结stacking fault energy from三维扩展位错结测量层错能Objective wave function 物波函数Objective lens物镜Operating vector 操作矢量Operation reflection 操作反射Orientation determination 取向确定Orientation relationship 取向关系Parallel moire patterns 平行Moire条纹Partial dislocations, contrast from平行位错的衬度determination of Burgers vectors of位错柏氏矢量的确定Frank Frank位错柏氏矢量确定Shockley Shockley位错柏氏矢量确定Particles 粒子Planar defect 面缺陷Point defects in specimen 试样中的点缺陷Pole-piece of magnetic lens 电磁透镜极靴Precipitates 沉淀相粒子contrast from 沉淀相粒子衬度size of 沉淀相粒子尺寸visibility of 沉淀相粒子可见性Precipitation contrast 沉淀相衬度Projective lens投影镜Reciprocal lattice 倒易点阵construction 倒易点阵的构筑definition of 倒易点阵的定义properties of 倒易点阵的性质Replica 复型Resolution 分辩率Ring diffraction patterns 环状衍射花样Rotation moirre patterns 旋转Moirre花样Satellites on electron diffraction patterns衍射花样卫星斑点Scattering amplitude 散射振幅Scattering of electrons 电子散射Second phase particles 第二相粒子Selected area diffraction 选区电子衍射accuracy of 选区电子衍射的精度Shape effect 形状效应Single crystal diffraction patterns单晶电子衍射花样Specimen 试样contamination of 试样污染cooling of 试样冷却deformation of 试样变形heating of 试样加热microanalysis of 试样微区分析orientation of 试样的取向preparation of 试样制备chemical machining 试样加工chemical polishing, by 用化学抛光制备试样ion bombardment, by 离子轰击制备试样electropolishing 电解抛光制备试样jet machining, by, 电解双喷制样法Specimen holder 试样台top enrty 顶插式试样台side entry 侧插式试样台Spherical aberration 球差Spinodal decomposition 拐点分解Stacking faults 层错contrast of 层错的衬度determination of nature of 确定层错的性质energy of 层错能types of 层错类型Sterogram 极图Stereomicroseopy 体视显微术Stigmator 消像散器Strain fields 应变场Streaks on electron diffraction patterns衍射花样的星芒线Structure factor 结构因子contrast from, 结构因子衬度Subsidiary fringe 副条纹Superlattice 超点阵reflections 超点阵反射Theory of diffraction contrast 衍射衬度理论kinematic 运动学衍衬理论dynamic 动力学衍衬理论Two beam approximation 双束近似Uniform absorption coefficient 反常吸收系数Viewing screen 荧光屏Weak beam technique 弱束技术Weak beam dark field image 弱束暗场象Zone 晶带Zone law晶带定理Zone axis 晶带轴Zone axis patterns 晶带轴花样HREMAiry disc Airy园(盘) Amplitude object 振幅物Amplitude contrast 振幅衬度Astigmatism 像散Astigmator 消像散器Axial 轴向照明Axial alignment 合轴调整Chromatic aberration coefficient色差系数Chromatic aberration 色差Chromatic aberration limited resolution色差限制的分辩率Cluster 偏聚区Coherence 相干性Defocus 欠焦Diffraction contrast 衍射衬度Diffraction limit 衍射极限Diffraction limited resolution 衍射限制的分辩率Diffused circle 弥散园Exact focus 准确聚焦Experimental condition 实验条件Exsolution 脱溶Focus 聚焦, 焦距, 焦点Focal length 焦距Frensnel fringes 菲捏尔条纹Grain boundaries晶界small angle 小角度晶界high angle 大角度晶界symmetrical 对称晶界asymmetrical 不对称晶界tilt 倾斜晶界Guinier-Preston zones GP区HREM images高分辩电镜图像interpretation 高分辩电镜图像的解释information available 高分辩电镜图像的信息image analysis of 图像分析computer simulation of 计算机模拟Illumination 照明axial 轴向照明tilted 倾斜照明Illumination semi-angle 照明半角Image analysis 图像分析Imaging mode 图像模式lattice plane 点阵平面像many beam 多束点阵像structure 结构像Image restoration 图像修复Incident wave 入射波Interaction constant 交互作用常数Interplanar spacing 面间距Internal standards 内标Line to line resolution 线分辩率Multi-slice approximation 多片近似Optical diffraction 光学衍射Optimum defocus 最佳欠焦(量) Optimum resolution 最佳分辩率Optimum illumination semi-angle 最佳照明半角Optimum aperture size 最佳光阑尺寸Order/disorder transition 有序/无序转变Orientation 取向Bragg Bragg取向Laue Laue取向Over focus 过焦Phase change 相位变化induced by defocus 欠焦引起的相位变化by spherical aberration 球差引起的相位变化Phase contrast 相位衬度Phase contrast transfer function 相位衬度传递函数Phase grating 相位光栅Phase grating approximation 相位光栅近似Phase object 相位物Phase object approximation 相位物近似Phase shift 相位变化Phase transition 相转变Phase transformation 相变Point source 点源Point to point 点分辩率Projected potential 投影势Propagation function 传递函数Polymorphism 多型性(转变) Resolution 分辩率line to line 线分辩率point to point 点分辩率Resolution limit 分辩率极限Scattered wave 散射波Spherical aberration 球差Spherical aberration coefficient 球差系数(C S) Spherical aberration limited resolution球差限制的分辩率Weak phase approximation 弱相位近似Tilted illumination 倾斜照明Through focus series 聚焦系列Two beam lattice plane imaging双束点阵平面像Two beam lattice fringe imaging双束点阵条纹像AEMAamorphous carbon 非晶碳EELS absolute quantification 用于EELS绝对定量analytical electron microscope 分析电镜alignment 对中calibration for EELS or EDS EELS或EDS定标analytical electron microscopy 分析电子显微学annular dark-field imaging 环状暗场像annular detector 环状探头apertures 光阑2nd condenser lens (C2) 第二聚光镜光阑effect on microanalysis 对微区分析的影响effect on microdiffraction 对微束衍射的影响effect on probe convergence 对探针会聚性的影响objective 物镜光阑selected area (SA) 选区光阑ultra-thick 超厚光阑Auger electrons俄歇electron spectroscopy 俄歇谱Bbackground spectrum 本底(背底)谱in EELS EELS背底谱subtraction in EDS 扣除EDS谱背底subtraction in EELS 扣除EDS谱背底X-rays 扣除X-射线背底(请参见bremsstrahlung 和continuum)backscattered electrons 背散射电子detector 背散射电子探头images 背散射电子像beam 电子束beam damage 电子束损伤beam-sensitive specimens 电子束敏感试样beam-specimen interactions 电子束-试样交互作用beam spreading 电子束扩展beryllium window 铍窗bremsstrahlung X-rays 背底辐射X-射线bright field detector 明场探头bright field image in STEM STEM 明场像brightness of electron source 电子源亮度Ccalibration 校准, 定标cathode ray tube 阴极射线管cathodoluminescence 阴极荧光(辐射)Cliff-Lorimer equation Cliff-Lorimer 公式condenser lens —first (C1) 第一聚光镜condenser lens —second (C2) 第二聚光镜condenser objective lens 聚光镜物镜contamination 污染use to determine thickness 用于厚度测定continuum X-rays 连续(背底)X-射线convergent beam diffraction 会聚束衍射use to determine thickness 用于厚度测定convergent beam diffraction patterns (CBDP)会聚束衍射花样convergent electron probe 会聚电子探针crystal point group (晶体)点群Ddark field detector 暗场探头dark field image in STEM STEM暗场像deconvolution 解谱, EDS或EELS of EDS spectrum, of EELS spectrumdiad symmetry 二次对称diffraction groups 衍射群diffraction maxima 衍射极大值EEDS (Energy Dispersive Spectroscopy) 能谱(能量色散谱)EDS defector能谱探头EELS spectrometer 电子能量损失谱仪EELS 电子能量损失谱 (electron energy loss spectrum) zero loss peak 零损失峰 plasmon peak 等离子振荡峰 energy loss peaks 能量损失峰 ionization edge 电离损失峰(边) background subtraction 背底扣除elastic scatter 弹性散射electron detectors 电子探头 collection angle 收集角electron energy loss spectrometer 电子能量损失谱仪electron energy loss spectrometry 电子能量损失谱 energy loss processes 电子能量损失过程 imaging/mapping 电子能量损失成象 ionization losses 电离损失 limitations 极限 plasmon losses 等离子振荡损失 spatial resolution 空间分辨率electron-hole pairs 电子-空位对electron probe 电子探针 brightness 亮度 convergence angle 会聚角 current 电流 diameter 直径energy dispersive spectrometer 能谱仪 (See X-ray energy dispersive 58spectrometer)energy filtered images 能量过滤图像extended absorption fine structure 广延吸收精细结构extraction replica 萃取复型 Ffirst order laue zone (FOLZ) 一阶劳厄区fine structure in ionization edge 电离峰(边)精细结构 post-edge (EXAFS) 峰后(EXAFS) pre-edge 峰前forbidden reflections禁止反射full width half maximum 半高宽Gg vector g 矢量Gaussian 高斯Hhard X-rays 硬X-射线higher order laue zone (HOLZ)高阶劳厄区indexing 标定lines高阶劳厄区线 reflections 高阶劳厄区反射 rings高阶劳厄区环HOLZ lines 高阶劳厄区线Iillumination system 照明系统imaging in STEM STEM 成像image enhancement 图像增强Indexing 标定 HOLZ lines 高阶劳厄区线 HOLZ patterns 高阶劳厄区花样 ZOLZ patterns 零阶劳厄区花样inelastic scatter 非弹性散射(See also electron energy loss) effect on EDS 对EDS 的影响 effect on EELS 对EELS 的影响ionization 电离ionization edges 电离损失峰(边) post-edge fine structure 峰后精细结构 pre-edge fine structure 峰前精细结构KKossel patterns (conditions) Kossel 花样Kossel-Möllenstedt fringes use to determine thickness K-M 条纹9用于确定试样厚度)Kossel-Möllenstedt (K-M) patterns K-M花样Llanthanum hexaboride gun 六硼化镧电子枪lattice parameter determination 点阵常数确定lattice strain 点阵应变effect on HOLZ lines 对高阶劳厄区线的影响lenses 透镜auxiliary 辅助透镜condenser 聚光镜condenser-objective 聚光镜-物镜intermediate 中间镜objective 物镜projector投影镜light element analysis by EDS EDS轻元素分析by EELS EELS轻元素分析limitations to X-ray analysis X-射线分析极限low loss electrons 低能量损失电子Mmicrodiffraction 微束衍射microprobe mode 微区探针模式minimum detectable mass 最小可探测质量minimum mass fraction 最小质量分数Nobjective aperture 物镜光阑objective lens 物镜Ppeak to background ratio 峰/背比in EDS spectrum EDS谱in EELS spectrum EELS谱(See also signal to noise ratio) 参见信/噪比phonon energy loss 声子能量损失plasmon energy losses 等离子振荡能量损失probe convergence angle 探针会聚角Qqualitative analysis 定性分析using EDS EDS定性分析using EE LS EE LS定性分析quantitative analysis 定量分析using E DS EDS定量分析using EE LS EE LS定量分析Rradial distribution function 径向分布函数radiation damage 辐射损伤resolution 分辨率of EDS spectrometer EDS谱仪分辨率ot EELS spectrometer EELS谱仪分辨率of STEM image STEM图像分辨率Riecke microdiffraction Riecke法微束衍射Sscanning electron microscope 扫描电镜scanning images 扫描图像scanning transmission electron microscope扫描透射电镜screw axis 螺旋轴second order laue zone (SOLZ) 二阶劳厄区secondary electrons 二次电子detectorsensitivity limits灵敏度极限in EDS EDSin EE LS EE LSspace group 空间群spurious effects 杂散效应signal processing 信号处理signal to noise ratio(See also peak to background ratio) 信/噪比spatial resolution 空间分辨率in EDS EDS in EE LS EE LSin microdiffraction 微束衍射in STEM image STEM图像spurious effects 杂散效应in EDS spectrum EDS谱杂散效应stationary diffraction pattern 稳定衍射花样strain measurements 应变测量symmetry (crystal) (晶体)对称changes 对称变化determination 对称确定systematic absences 系统消光Tterminology of CBDPs 会聚束衍射术语thickness determination 厚度确定transmitted electrons 透射电子triad symmetry 三重(次)对称tungsten hairpin filament 钨灯丝Uultra-thin window 超薄窗ultra-thick condenser apertures 超厚聚光镜光阑Vvalence electron interactions 价电子交互作用wwavelength dispersive spectrometer (WDS)波谱仪weak beam imaging 弱束暗场成象x X-ray(s) X-射线Absorption 吸收fluorescence generation 荧光的产生images/maps 像/成份分布ionization cross section 电离截面microanalysis 微区分析X-ray energy dispersive spectrometerX-射线能谱仪Calibration 校准, 定标collection angle 接收角dead layer 死层dead time 死时间efficiency 效率X-ray peak X-射线峰peak fitting in EDS 能谱峰位拟合X-ray spectrum X-射线谱background subtraction 背底扣除deconvolution 解谱digital filtering 数字过滤Yyttrium-aluminum garnet 钇铝石榴石yttrium-aluminum perovskite 钇铝钙钛矿zZ-contrast 原子序数衬度ZAF correction ZAF校正zero loss peak 零损失峰zero order laue zone (ZOLZ) 零阶劳厄区indexing 标定pattern symmetry 对称性zone axis 晶带轴patterns 晶带轴花样symmetry 对称性。
基于响应面法的Hybrid III假人头颈部有限元模型的验证赖兴华林喆周青汽车安全与节能国家重点实验室清华大学汽车工程系北京100084摘要:在混三假人模型开发领域,头-颈部模型的验证仍然具有一定的挑战性。
本文利用HyperStudy软件研究了混三假人头-颈部有限元模型的材料参数标定。
基于实验设计方法(11因子2水平部分析因试验)评估不同材料参数的主效应,确定了该模型的主要影响因子。
根据主要影响因子,结合响应面理论和方法,对混三假人头-颈部模型进行优化计算。
优化过程获得了材料参数的最佳值组合,基于此,假人头-颈部模型响应和试验数据吻合较好。
关键词:有限元,混三假人,HyperStudy,响应面法,优化Response surface-based optimization for validation of a finite element model of Hybrid IIIhead-neck sub-assemblyXinghua Lai Zhe Lin Qing ZhouState Key Laboratory of Automotive Safety and Energy, Department of AutomotiveEngineering, Tsinghua University, Beijing 100084, ChinaAbstract:Finite element modeling of Hybrid III head-neck sub-assembly remains a big challenge in the field of the dummy modeling. This paper deals with the material calibration study in validation of a Hybrid III head-neck FE model against typical certification test using HyperStudy. Through assessment of main effects of different design variables by design of experiments (DOE), major influencing factors on the head-neck response are identified. Response surface-based optimization methodology is then employed for validation of the head-neck model based on determined influencing material parameters. The optimization process has yielded optimal set of material parameters values with which the head-neck modelcan reasonably correlate with the experimental data.Keywords: Finite element, Hybrid III, HyperStudy, Response Surface, Optimization1. IntroductionFinite element method (FEM) has shown a significant increase in use in the field of automotive passive safety research. Dummy model, which allows efficient evaluation of restraint-system effectiveness and prediction of the injury risk to occupants, has become an indispensible tool in car crash simulation.In the practice of dummy modeling, the most challenging work lies in material parameters calibration through validation of the model[1][2][3]. Traditional experience is a manually repeated parameter value-adjustment and model-calculation iteration, which is proceeding relatively slowly and extremely labor intensive. This method may be suitable for application to the simulation case in which not many design parameters get involved. The process, however, becomes highly inefficient when the number of model design parameters remarkably increases. Taking Hybrid III head-neck modeling for example, there are two loading conditions (flexion and extension), more than six design variables, and up to six performance requirements which are extremely challenging to satisfy through validation by traditional mean. Although optimization methodology is increasingly used in dummy modeling, the difficulty in validation of the Hybrid III neck bending response remains frequently observed by some authors[4][5] [6].Response surface methodology is currently one of the most prevalent optimization technologies. The method is capable of capturing globally optimal regions because of its smoothness and global approximation properties[7]. Therefore, the RSM is particularly applicable to the problem with many design variables to find the global optimal solution.In this paper, the response surface-based optimization is applied to the validation of a Hybrid III head-neck sub-assembly FE model by combined use of PAM-CRASH (ESI Group, Paris, France) and HyperStudy (Altair Engineering, Inc., USA). In the study, a total of twelve design variables are properly defined for assessment of their possible impacts to the head-neck response. Design of experiment is then carried out to screen out influencing factors, followed by optimization of the model under flexion loading condition. Results show that, response of the head-neck model with the optimal set of variable values correlates well with the experimental results.2. Response surface methodology (RSM)Response surface methodology (RSM) is the process, in which the construction of polynomial approximation function (response surface) based on response values calculated from a sequence of previous designed experiments is continued until an optimal response along with corresponding optimal set of factor levels are determined. A typical example of response surface is shown in Figure 1. The relationship between response value yand design variables x is given by1(,...,)n y f x x e=+ (1)Where1(,...,)n f x x , a function of independent design variables, is referred to as theresponse surface. The predictive capability of the response surface for optimization is largely dominated by the mathematical approximation model. Least squares fitting algorithm is commonly used to build the approximation model. Generally, first-order polynomial model (Eq. (2)) is used to estimate the response value which is far away from extrema, while the response value nearby the extrema is estimated by a higher accuracy model, second-order polynomial model (Eq. (3)). 1011(,...,)...n n nf x x x x βββ≈+++ (2)21011(,...,)nnnn j j jj j ij i jj j i jf x x x x x x ββββ==<≈+++∑∑∑ (3)RSM-based optimization engine in HyperStudy is called Adaptive Response Surface Method (ARSM)[8]. In this approach, a second-order polynomial function is used to approximate the objective and constraint functions, as given by 0()() 1, (1)nnj j ji i jii i k j iikg x g x x x x j m βββ∧≈=++=+∑∑∑ (4)where m is the number of constraints, n is the number of design variables, and 0j ji jii βββare the polynomial coefficients. The principle of determining an optimal design with the ARSM is schematically described by taking a one-dimensional optimization problem as example, as illustrated in Figure 1. In this case, the target is to determine the minima of the unknown function()f x through successiveapproximation within a given design variables space. At the start of the optimization process, a first-order response surface (RS1) is first constructed based on the starting response value (0) and a neighboring response value (1). A new response value (2) is then calculated with the design variable determined from the maxima on RS1. This is followed by construction of a second-order polynomial approximation (RS2) through fitting to the previously calculated response values. Then, the optimum on the RS2 as well as corresponding design variable value is determined and a new responsevalue (3) is calculated. Construction of second-order response surface based on the previously calculated response values is then repeated (RS3, RS4, RS5, etc) in each iteration until the solution of the function()f xconverges.R e s p o n s eResponse surfaceD e s i gnv a r i ab l e 1D es ig n v a r i a b l e 2ResponseX l Xu 2346 51Xf(X)Figure 1 Response surface (left) and principle of Adaptive Response Surface Method (right)3. RSM-based Optimization of the Head-Neck FF Model3.1Model description and problem definitionThe head-neck model was built in great detail to represent the hardware as realistically as possible. The total entities in the model comprise 28 parts, 7547 nodes and 5186 elements. Element size is controlled to maintain the time step larger than 1 microsecond for the purpose of computational efficiency. The model geometry properties comply with the specifications of the hardware in terms of external dimension, mass and inertia. Material properties of flexible parts are defined using appropriate material types available in PAM-CRASH [9][10].Linear visco-elastic material (type 5) and non-linear tension only bar (type 205) are used to model rubber material (head vinyl skin and the neck rubber) and neck cable, respectively. Upper neck load cell and occipital condyle (OC) joint are modeled with locked spherical joint (type 221) and revolutional joint (type 230), respectively. Among those material types, a number of material parameters which have tendency to affect the head-neck response are defined as design variables (Table 1).The head-neck model is properly setup for simulation of neck flexion (Table 2). Simulation starts from the lowest point when the pendulum in test first comes into contact with the honeycomb. An initial angular velocity is applied to the whole model while the pendulum’s motion is constrained by a given angular velocity time history, which is derived from the linear acceleration pulse. Head pot and pendulum pot arerealistically modeled to capture the rotational angle of the D-plane with respect to the pendulum. Upper neck load cell and OC joint outputs related variables, like force along x-axis, moment around y-axis and resultant moment of OC joint. All signals are filtered properly in accordance with the specifications of the dummy regulation for comparison with the experimental results [11].Five responses are defined in this optimization case, namely peak rotational angle of D-plane, time to peak P-plane rotational angle, peak moment of OC joint, time to peak OC moment and peak integral area of D-plane angle vs. time. Performance requirements to above former four responses (r1, r2, r3, r4) are defined as constraints while the remaining response (r5) is defined as the objective. The task of the optimization process is to approach a given target value while satisfying constraints functions through system identification.Table 1 Design variables for design of experiments (DOE)Design variablesOC jointNeck cable and neck rubber discs OC_H Hysterisis for OC unloadingCA_HHysterisis for cable unloading OC_DE Damping curve slope_extension(Nm/ms)*CA_KCable stiffness (kN)** OC_DFDaming curve slope_flexion (Nm.ms)NE_BDecay constantOC_FM Friction moment (Nm) NE_G0 Short time shear modulus (GPa) OC_SF Loading stiffness_flexion (Nm/deg) NE_GF Long time shear modulus (GPa) OC_SELoading stiffness_extension (Nm/deg)NE_KBulk modulus (GPa)*OC joint damping stiffness is defined as resistant moment per unit angular velocity **Cable stiffness is defined as resistance force per unit strainTable 2 Model setup and the problem definitionModel setupResponse definitionObjective andconstraintHead PotNeck rubberSym. unitExplanationLowerboundUpper bound r1degPeak rotational angleof D-plane6478r2 msTime to peak D-planerotational angle57 64 r3NmPeak moment of OC joint88108.4r4 ms Time to peak OC moment 47 58r5* deg.msPeak integral area ofD-plane angle vs. time Objective target**4422* response r5 is intended for evaluation of the time for D-plane decaying to zero**The target value 4422 is calculated from experimental curve3.2 Design of experiment (DOE) and main effects analysisSince a large number of design variables are involved, design of experiments byfull factorial design would be far too expensive. Therefore, two-level fractional factorial design is conducted for screening experiments, regardless of interaction effects. Table 3gives the experiments design, in which variable values increase to varying degrees from level “1” to level “2”.Key results from DOE are main effects of factors, which are defined as average variation in response ((2)(1)y y−) with change of design variable value. Influence of design variables on each response are schematically illustrated in Figure 2.It is observed from Figure 2 (a), (b) and (e) that, neck rubber short time shear modulus, decay constant and the cable stiffness are the top three influencing factorson the maximum D-plane rotation angle and the timing as well as time for D-plane decay to zero, which are insignificantly impacted by OC joint material properties. However, the maximum moment of OC joint is clearly varied with material propertiesof OC joint as well as the neck rubber and the neck cable, by observation of Figure 2 (c). In more detail, neck rubber short time shear modulus, decay constant and OC joint flexion stiffness are the top three influencing factors, followed by friction moment,joint damping stiffness and the cable stiffness. As for time related responses, as canbe seen from Figure 2 (b), (d) and (e), the stiffer the head-neck system, the earlier the time.Through screening experiments, significant influencing factors are identified, such as short time shear modulus, neck cable stiffness, OC joint damping stiffness, etc. Controlling these design variables is the top priority in the neck modeling. Insignificant influencing factors including hysteresis for OC unloading, hysteresis for cable unloading and neck rubber bulk modulus are defined as constant in subsequent optimization.Table 3 Experiments with two-level fractional factorial design (L16)Run OC_H OC_DE OC_DF OC_FM OC_SF OC_SE CA_H CA_K NE_B NE_G0* NE_K1 1** 1 1 12 1 1 2 1 2 2 2 2 1 1 1 1 1 2 2 2 2 13 1 2 1 1 1 2 1 2 2 1 24 2 2 1 1 2 2 2 2 1 1 15 1 1 2 1 1 2 2 1 1 2 26 2 1 2 1 2 2 1 1 2 2 17 1 2 2 1 2 1 2 1 2 1 28 2 2 2 1 1 1 1 1 1 1 19 1 1 1 2 1 2 2 1 2 1 1 10 2 1 1 2 2 2 1 1 1 1 2 11 1 2 1 2 2 1 2 1 1 2 1 12 2 2 1 2 1 1 1 1 2 2 2 13 1 1 2 2 2 1 1 2 2 1 1 14 2 1 2 2 1 1 2 2 1 1 2 15 1 2 2 2 1 2 1 2 1 2 1 1622222222222*NE_GF is linked to NE_G0 whose value must be larger than NE_GF according to visco-elastic behavior** Level “1” represents typical values with reference to public sourceM a i n e f f e c t s (d e g )M a i n e f f e c t s (m s )(a) r1(b) r2M a i n e f f e c t s (k N .m m )M a i n e f f e c t s (m s )(c) r3(d) r4M a i n e f f e c t s (d e g .m s )(e) r5Figure 2 Main effects of factors for each response3.3 Model optimization and validation resultsBased on the results of DOE, an optimization of the neck model is launched. Solution converges after 87 iterations. The objective and constraints time histories are shown in Figure 3. Figure 4 gives the kinematics of the head-neck sub-assembly with the optimal set of material parameters. Validation results, as displayed in Figure 5, indicate that the model with optimal design correlates reasonably with the experimental results. Note that experimental and modeling results are presented normalized.204060801002000250030003500400045005000Number of iterations r5Number of iterationsFigure 3 Iteration histories of the objective function (left) and the constraints functions (right)Figure 4 Kinematics of the head-neck model under flexion loadingNormalizedrotationalangleNormalized timeNormalizedupperneckloadcellFxNormalized time(a) D-plane rotation angle (b) Upper neck load cell force in x axisNormalizedupperneckloadcellMyNormalized timeNormalizedmomentofOCjointNormalized time(c) Upper neck load cell moment around y axis (d) Resultant moment of OC jointFigure 5 Correlation of the neck flexion modeling to experimental results*Corridor is indicated by shaded area4. ConclusionsIn this paper, the current status of model validation of the Hybrid III head-neck sub-assembly is presented. Through screening experiments and multi-objective optimization, design variables effects are assessed and reasonable correlation of the model under flexion loading to the certification test results is achieved. Next step,reliability of currently obtained optimal set of material parameters setting for other loading conditions, say extension and low velocity loading, will be evaluated. This is then followed by an integral optimization process in which multiple models with the same material parameters setting are simultaneously calculated in each iteration.The response surface-based optimization capability of HyperStudy has proven to be very effective and of high efficiency for the optimization of the dummy head-neck validation, which is highly complex as many design variables and a number of constraints are involved. The optimization practice in this study demonstrates that the response surface-based optimization is a very promising methodology in dummy model development.5. References[1] Khalil T B, Lin T C. Simulation of the Hybrid III dummy response to impact by nonlinearfinite element analysis. SAE Technical Paper No. 942227, 1994[2] Arnoux P J and Joonekindt S, et al. RADIOSS finite element model of the Thor dummy.International Journal of Crashworthiness 8(6): 529-541, 2003[3] Yu H, Zhou Q, Neat G W. Three-dimensional finite element modelling of the torso of theanthropomorphic test device THOR. International Journal of Vehicle Safety 2(1-2):116-140, 2007[4] Yang K H. and Le J L. Finite element modeling of Hybrid III head-neck complex. SAETechnical Paper No. 922526.1992[5] Noureddine A, Eskandarian A, Digges K. Computer modeling and validation of a Hybrid IIIdummy for crashworthiness simulation. Mathematical and Computer Modelling (35):885-893, 2002[6] Mohan P and Marzougui D, et al. Development and Validation of Hybrid III Crash TestDummy. SAE Technical Paper No. 2009-01-0473, 2009[7] LSTC, Inc. LS-OPT 4.1 User's Manual, 2010[8] Altair Engineering, Inc. HyperStudy 10.0 User's Guide, 2010[9] ESI Group. Virtual Performance Solutions-Explicit Solver Notes Manual, 2008[10] ESI Group. Virtual Performance Solutions- Explicit Solver Reference Manual, 2008[11] NHTSA 49 CFR 49 572.31 Subpart E-Hybrid III Test Dummy。
摘 要外骨骼是一种能够穿戴于人体外侧并协助人体行走的机械装置,可以帮助患者、老人、残疾人正常行走,有效提高其生活质量,因此对用于康复医疗的下肢外骨骼机器人的研究具有重要的现实意义和应用价值。
本文为开发一套下肢外骨骼机器人系统,涉及到机器人平台、系统参数辨识、人机运动控制的设计和实现,并利用该机器人平台开展相关健康人实验,为相关康复工程领域的关键问题研究奠定了基础。
首先搭建一套下肢外骨骼机器人平台。
主要工作有以下几点:1、首先在结构上通过设计可拉伸内凹连杆和腿部贴片以适应不同腿长人员穿戴的舒适性,使人机一体重心更偏向于中心,并根据腿部运动的极限位置设计可调安全限位模块,最后为充分检测人机之间耦合力和同步性,设计采用三维力传感器和姿态传感器测量人机之间各个维度耦合力矩和姿态误差。
2、其次根据下肢外骨骼系统应用场景设计测控系统。
其中电路系统的设计需要考虑电机驱动系统负载功率,硬件接口转换等。
其次为提高算法开发效率,针对下肢外骨骼机器人系统设计了一套基于MATLAB和LabVIEW联合开发软件平台,软件平台可自动将算法编译成控制器可识别的动态链接库并直接调用。
其次进行下肢外骨骼机器人系统建模与参数辨识。
对下肢外骨骼系统参数进行辨识是其运用的关键,根据其物理结构和运动特性对其采用拉格朗日动力学建模和人机接触力建模。
利用Bspline设计好的激励轨迹可减少回归矩阵病态,有效提高系统参数辨识结果的精度。
本文将采用一种基于生物地理学的学习粒子群优化(BLPSO)的启发式算法用于激励轨迹优化和系统参数识别,通过改善搜索策略,BLPSO不仅可以避免系统参数收敛到局部最小值,同时也可以提高系统参数的辨识精度。
然后为下肢外骨骼机器人设计控制器。
外骨骼机器人是一套高度非线性系统,结合系统辨识的模型参数并针对“机主人辅”控制方式设计了一套具有人机耦合力和运动摩擦力补偿的反步控制算法,通过稳定性分析证明了控制器的稳定性,该控制器相比与无模型控制(比如PID),具有更多设计上的灵活性。
数字图像相关方法在A508-3钢J积分测试中的应用邹宇明;高怡斐【摘要】J积分作为评定韧性金属材料结构安全性的基本数据在断裂力学实验中有着大量的应用,但目前对J积分测试中关键数据裂纹增量Δa的测量经常出现随实验力的增加,裂纹发生\"负增长\"的现象,且对加载过程中转动中心的定位存在偏差,导致修正公式不准确.为提升J积分测试准确性,应用数字图像相关方法对A508-3钢的紧凑拉伸试样在J积分测试实验过程中的全场变形情况进行分析,确定其加载过程中裂纹面转动中心的位置,并利用数字图像相关方法代替柔度法对裂纹增量Δa进行了测量,计算得到了A508-3钢的JR曲线.【期刊名称】《材料与冶金学报》【年(卷),期】2018(017)004【总页数】7页(P269-275)【关键词】数字图像相关方法;J积分;裂纹增量;裂纹负增长;裂纹面转动中心【作者】邹宇明;高怡斐【作者单位】东北大学材料科学与工程学院,沈阳 110819;钢铁研究总院分析测试研究所,北京 100081【正文语种】中文【中图分类】TG115.5A508-3钢属于低碳合金钢,因具有高强度、低韧脆转变温度、高淬透性及较好的低温冲击性能、良好的抗中子辐射脆性及焊接性能而被用作核电设备的主体材料[1-2].作为核电站的压力容器锻件用钢,A508-3钢工作环境极为恶劣,因此对其强度及断裂韧性存在较高要求,其力学性能对核电站乃至国家安全有着重要的影响.因此,对A508-3钢断裂力学方面的研究具有重要的意义.断裂是金属材料最常见的失效形式之一,表征参数为断裂韧度.对中、低强度材料的断裂韧度通常通过J积分的方式进行测试,但应用传统方法进行J积分测试时存在许多问题[3],最为常见的问题是在对裂纹增量Δa的测量过程中经常出现的裂纹扩展的“负增长”现象,即Δa随加载次数的增加在某一范围内下降.同时,对于紧凑拉伸(Compact tension,CT)试样,因其在实验的加载过程中,裂纹面会发生不同程度的刚性转动,为了精确估算试样的断裂韧性,测试结束后需对所得弹性柔度测试结果进行转动修正,而目前所应用的来源于F.J.Loss的修正公式[4]被大量研究人员质疑存在问题[5].为确定现行修正公式的准确性,并解决测试过程中存在的问题,选用DIC方法代替传统的柔度法对试验过程中的应变场及位移场进行测量.数字图像相关方法(digital image correlation,DIC)是一种通过对所采集的被测对象的图像(散斑场)的数字灰度进行直接的数字处理,从而实现物体变形场测量的测试方法,可以得到整个试样的全场位移、应变分布云图,从而对试样的变形状态加以评估[6-11].DIC方法的基本思想普遍被认为是在上世纪80年代,由日本的I.Yamaguchi[12]和美国South Carolina大学的Peter和Ranson[13]等人所同时、独立提出的,在断裂力学测量方面获得了大量应用.McNeill等应用DIC方法对应力强度因子进行了研究[14].Sutton等应用DIC方法进行了裂纹尖端塑性区的测量[15].Dawicke等则应用DIC方法测量了2024-T3铝合金薄板的裂纹尖端张开位移[16].Yates等应用DIC方法对裂纹尖端位移场进行了量化研究,包括对应力强度因子及裂纹尖端张开角度的研究,并验证了DIC方法的准确性[17].Mathieu等通过DIC方法研究了商业纯钛的裂纹扩展规律[18].Decreuse等对裂纹尖端区域的塑性流动进行了分析,并利用DIC方法确定了裂纹尖端附近区域的速度场[19].Vanlanduit等则利用DIC方法对裂纹生长过程进行了监测,并对裂纹长度及应力强度因子进行了估算[20].Wang等使用DIC方法测量了铜箔材料的断裂韧性,得出铜箔材料的断裂韧性在一定厚度范围内是厚度的函数的结论[21].本文应用DIC方法对A508-3钢CT试样的J积分试验过程进行全场应变测量,通过对所得到的位移场及应变场的分析,确定了CT试样在加载过程中所发生的刚性转动的转动中心的位置.同时,通过DIC方法得到了相对于柔度法更为准确的不同变形阶段的裂纹增量Δa,最后,应用DIC方法所测得裂纹增量计算得到A508-3钢的J积分曲线.1 材料及试验方法试验所用试样为A508-3钢的紧凑拉伸试样,试样尺寸及制备好散斑的试样如图1所示.需要注意的是所制备的散斑要求具有合适的大小及密度,以便获得试样的完整的变形信息.散斑过于细小则无法保证所采集图像具备足够的对比度,在试验后的分析过程中可能无法识别,从而导致所得试验结果出现误差;散斑过大则有可能在分析过程中填满整个甚至几个所划分的子区,导致噪点的出现;散斑过密或过疏则都会导致所采集图像的对比度不足.表1和2分别为试验用A508-3钢的成分及性能参数.表1 A508-3钢化学成分(质量分数)Table 1 Chemical composition of A508-3 steel (mass fraction) %CSiMnPSNiCrMoV0.180.181.380.002 50.00060.770.130.480.005 0表2 A508-3钢性能参数Table 2 Material properties of A508-3 steel弹性模量E/MPa泊松比υ屈服强度Rp0.2/MPa抗拉强度Rm/MPa断后伸长率A/%断面收缩率Z/%219 0000.3≥200≥550≥18≥38图1 试验试样及尺寸Fig.1 Size of the specimen试验在MTS万能试验机上完成.试样的散斑制备好后需先制备预裂纹,预裂纹制备完成后方可对试样进行拉伸试验.试验过程中通过CCD工业相机对变形图像进行采集;试验结束后对所采集图像进行分析,以获得相应的数据及全场变形云图.同时,采用柔度法测量试样的J积分的试验值.试验过程如图2所示.2 讨论与分析2.1 CT试样加载过程中转动中心位置的确定采用ZEISS金相显微镜对A508-3钢的金相组织进行观察(见图3),发现A508-3钢的主要组织组成物为贝氏体及条片状铁素体,同时含有部分细小的粒状珠光体. 图2 试验过程Fig.2 Testing process图3 A508-3钢金相组织Fig.3 Microstructures of A508-3 steel图4、5为加载过程中试样的位移场变化过程云图,图4所示为沿裂纹生长方向的位移U,图5所示为垂直裂纹生长方向的位移V.由图4可分析得到试样的变形情况.如图4所示,试验加载过程中,裂纹尖端区域位移值最大,为试样最大变形区域,沿裂纹方向的位移以裂纹为对称轴呈环状对称分布.同时,由图中裂纹尖端区域的位置变化情况可知,裂纹尖端在试验过程中不断向前扩展.试样在加载过程中的转动情况及裂纹面转动中心位置如图5所示,图中位移变化情况反映了裂纹的张开情况.由图可知,裂纹尖端区域的位移值随试验的进行而持续增大,说明裂纹在不断张开.通过在图像上添加趋势线的方法分析试样裂纹面的转动情况.由图5中趋势线的相交情况可知,CT试样的裂纹面在加载过程中存在明显的转动现象,转动中心位于裂纹尖端附近区域,而与试样的剩余韧带中心相距较远.随着裂纹的不断张开,转动中心的位置距裂纹尖端位置的距离逐渐增大,而距剩余韧带中心位置的距离逐渐减小,但仍位于裂纹尖端附近位置,距试样剩余韧带中心位置较远.综合上述实验现象可知,加载过程中,CT试样裂纹面转动中心的位置应位于裂纹尖端附近区域,而不是位于试样的剩余韧带中心位置.为验证通过DIC方法所得结论,通过铰链模型进行理论计算以确定转动中心的理论位置,并分别计算其与裂纹尖端位置及剩余韧带中心位置间的距离,从而验证实验结果的准确性.铰链模型原理及理论计算所得结果如图6所示,由图6可知,裂纹面转动中心位置距裂纹尖端位置很近而距剩余韧带中心位置较远.随着裂纹的不断张开,转动中心位置开始逐渐远离裂纹尖端而靠近试样的剩余韧带中心,但其距剩余韧带中心位置的距离仍远大于距裂纹尖端位置的距离.理论计算所得结论与通过DIC方法进行实验所得结论一致.图4 试样沿裂纹方向的位移Fig.4 Displacement along the direction of crack图5 试样垂直裂纹方向位移Fig.5 Displacement along the vertical direction of crack图6 铰链模型原理及裂纹面转动中心位置Fig.6 Schematic of the hinge model and locations of rotation center of crack surface(a)—铰链模型; (b)—裂纹面转动中心位置变化2.2 J积分测试过程中裂纹增量测量通过DIC方法所得裂纹增量Δa结果及与通过柔度法所得结果对比如图7所示.由图可知,通过柔度法所测得裂纹增量存在裂纹扩展“负增长”现象,而在实际的试验加载过程中,Δa应随力的增加而持续增大,不会出现此现象.通过DIC方法所得裂纹增量Δa随试验中加载循环次数的增加而逐渐增大,此现象符合试验过程中试样的实际裂纹扩展情况,试验结果更为合理.因此,相比于柔度法,DIC方法更适用于J积分试验中Δa的测试.图7 裂纹增量对比Fig.7 The comparison of crack increment为了验证DIC方法所测裂纹增量Δa的准确性,将DIC方法所测最终结果与试验结束后试样实际的裂纹增量进行对比.具体方法为,对已完成试验的试样进行加热以对试样进行“热着色”;待试样着色完成并冷却后,将试样打开,在显微镜下即可观察到试样的初始裂纹尖端及最终裂纹尖端;选择9个部位对试样的初始裂纹长度及最终裂纹长度进行测量,并按照下式对裂纹长度进行计算:热着色方法及打开后试样情况如图8所示,所测得数据列于表3中.由表3可知,通过上式所计算得出的初始裂纹长度a0=29.58 mm,最终裂纹长度a=31.73 mm,将a与a0作差,所得试样的实际最终裂纹增量Δa实际=2.15 mm,而通过DIC方法所测得最终裂纹增量Δa=2.27 mm,两者间差值小于0.15 mm,符合国家标准中对裂纹测量误差范围的规定,表明通过DIC方法对试样裂纹增量的测量具有准确性,满足J积分测试的要求.图8 实际裂纹增量测量Fig.8 Measurement of crack increment表3 各位置裂纹长度Table 3 Crack length at different locations位置初始裂纹长度最终裂纹长度mm128.5629.89229.3930.31329.7532.20429.7933.48529.7832.87629.9532.7 5729.8731.78829.4530.34928.7430.34计算结果29.5831.73通过DIC方法所测得Δa计算J值,根据所得计算结果拟合R曲线,如图9所示.通过计算得到A508-3钢的JIC值为501 kJ/m2,其上边界为Jmax=503.07kJ/m2,JIC<Jmax,结果有效.换算得到A508-3钢KJIC=331.24 MPa/m1/2. 图9 A508-3钢R曲线Fig.9 Resistance curve of A508-3 steel3 结论本文将数字图像相关(DIC)方法对应用于A508-3钢的紧凑拉伸(CT)试样的J积分测试实验,应用DIC方法对实验中试样的变形情况进行了分析,对加载过程中裂纹面的转动中心位置进行了直接观测.同时,以DIC方法作为测试手段对试样的裂纹增量进行了测量,得出以下结论:(1)CT试样在J积分试验加载过程中裂纹面存在转动现象,其转动中心并不位于试样的剩余韧带中心,而是靠近裂纹尖端附近;(2)J积分试验加载过程中,随着裂纹的不断张开,裂纹面转动中心距裂纹尖端位置距离增大,而距剩余韧带中心位置距离减小,但仍位于裂纹尖端附近位置,距试样剩余韧带中心位置较远;(3)应用DIC方法得到J积分实验过程中试样的裂纹增量Δa,解决了应用柔度法测裂纹增量时存在的裂纹扩展“负增长”的问题,并通过计算得到A508-3钢的R 曲线及JIC值为501 kJ/m2.参考文献:【相关文献】[1] Druce S G,Edwards B C.Development of PWR pressure vessel steels[J].Nuclear Energy,1980,19: 347.[2] Suzuki K.Neutron irradiation embrittlement of ASME SA508 - 3 steel[J].Journal of Nuclear Materials,1982,443: 108-109.[3] Landes J D,Begley J A.Test results from J-integral studies: an attempt to establish a JIC testing procedure.fracture analysis[J].American Society for Testing andMaterials,1974.170-186.[4] Loss F J,Structural integrity of water reactor pressure boundary components [R].NRL-Memo-4112,1979.[5] Cravero S,Ruggieri C.Estimation procedure of J resistance curves for SE(T) fracture specimens using unloading compliance [J].Engineering Fracture Mechanics,2007,74: 2735-2757.[6] Teaca M,Charpentier I,Martiny M,et al..Identification of sheet metal plastic anisotropyusing hetero geneous biaxial tensile tests [J].International Journal of Mechanical Sciences,2010,52: 572-580.[7] Rossi M,Broggiato G B,Papalini S.Application of digital image correlation to the study of planar anisotropy of sheet metals at large strains[J].Meccanica,2008,43: 185-199. [8] Chasiotis.Mechanics of thin films and microdevices[J].IEEE Transactions on Device and Materials Reliability,2004,4: 176-188.[9] Chasiotis,Knauss W G.A new microtensile tester for the study of MEMS materials with the aid atomic force microscopy[J].Experimental Mechanics,2002,42: 51-57.[10] Li N,Sutton M A,Li X.Full-field thermal deformation measurements in a scanning electron microscopy by 2D digital image correlation[J].Experimental Mechanics,2008,48: 635-646.[11] Pascal D,Michel B.Micromechanical application of digital speckle correlation techniques[M].Conference on Interferometry in Speckle Light,2000,109: 67-74.[12] Ymagauchi I.A laser-speckle srtain gauge[J].Journal of Physics E: Scientific Instruments,1981,14: 1270-1273.[13] Peters W H,Ranson W F.Digital imaging techniques in experimental stressanalysis[J].Opt Eng,1981,21: 427-431.[14] McNeill S R,Peters W H,Sutton M A.Estimation of stress intensity factor by digital image correlation [J].Engineering fracture mechanics,1987,28: 101-112.[15] Sutton M A,Turner J L,Chao Y J,et al.Experimental investigation of three-dimensional effects near a crack tip using computer vision[J].International Journal of Fracture,1992,53: 201-228.[16] Dawicke D S,Sutton M A.CTOD and crack-tunneling measurements in thin sheet 2024-T3 aluminum alloy [J].Experimental Mechanics,1994,34: 357-368.[17] Yates J R,Zanganeh M,Tai Y H.Quantifying crack tip displacement fields withDIC[J].Engineering Fracture Mechanics,2010,77: 2063-2076.[18] Mathieu,Hild F,Roux S.Identification of a crack propagation law by digital image correlation[J].International Journal of Fatigue,2012,36: 146-154.[19] Decreuse P Y,Pommier S,Poncelet M,et al.A novel approach to model mixed mode plasticity at crack tip and crack growth.Experimental validations using velocity fields from digital image correlation [J].International Journal of Fatigue,2012,42: 271-283.[20] Vanlanduit S,Vanherzeele J,Longo R,et al.A digital image correlation method for fatigue test experiments [J].Optics and Lasers in Engineering,2009,47: 371-378.[21] Wang H W,Kang Y L,Zhang Z F,et al.Size effect on fracture toughness of thin metallic foil[J].International Journal of Fracture,2003,123: 177-185.。
DMF格式FDA要求此文件以8.5英寸*11英寸的纸张提交。
如遇平面布置图,工艺流程图,或批记录等较大纸张,需将这些页折成8.5英寸*11英寸装订(也可以用A4纸),此文件中所含的所有资料需以英文写,如原文非英文,须将原文稿及英文搞一并提交。
文件每一页须标明页码及日期。
(月/年)该申请须递交给FDA的CDER或CVM,一式两份。
公司的美国代理及制造商各保留副本。
SECTION A: 地址文件 ADDRESS FILE1. 企业地址提供地址,联系方式2. 生产地址提供地址,联系方式3. 相关代理3.1 本国联络人指出本国联络人,联系方式3.2 美国代理FDA要求国外生产商在美国指定一个文件代理,须明确该代理的职责。
联系方式。
联系方式应包括:名称,国家,省市,县,街道门牌号,电话,传真,电子邮件地址,甚至该原料药生产设施注册登记号。
对无菌原料药应包括进行无菌处理的区域。
SECTION B:承诺声明 STATEMENT of COMMITMENT我们承诺严格按照文件所描述的生产条件及规程生产***产品,我们承诺在生产操作中遵守cGMP.没有与文件描述不一致的地方,任何重大变更都将呈报FDA及该DMF的授权引用人征得其审核和批准。
文件每年修正一次,任何小的变化都应在修正中显示出来。
We hereby commit to producing strictly according to manufacturing conditions and procedures described in the DMF as well as cGMP.No deviation of description in this document is permitted.Any major amendment will be submitted to FDA and also submitted to the person(s) authorized to refer to the document for their review and approval. 我们特此证明,我们不会在任何情况下接受违反联邦食品,药品和化妆品法案1992年修订本501(a)或(b)与本申请文件有关部分的人的服务。
一,图纸中常见英文缩写对照缩写全称翻译ACCESS Accessory 附件ADJ Adjustable, Adjust 调整ADPT Adapter 使适应ADV Advance 提前AL Aluminum 铝ALLOW Allowance 允许ALT Alternate 改变AL Y Alloy 合金AMT Amount 数量ANL Anneal 锻炼ANSL American National Standard Label APPROX Approximate 大约ASME American Society of Mechanical Engineers ASSEM Assemble 装配ASSY Assembly 装配AUTH Authorized 授权的AUTO Automatic 自动的AUX Auxiliary 辅助的A VG Average 平均AWG American Wire GaugeBC Bolt Circle 螺栓圆周BET Between 之间BEV Bevel 斜角BHN Brinell Hardness Number 布氏硬度值BLK Blank ,Block 空白B/NM Bill of Material 材料费BOT Bottom 底部BP or B/P Blueprint 蓝图BRG Bearing 轴承BRK Break 破裂BRKT Bracket 支架BRO Broach 钻孔BRS Brass 黄铜BRZ Bronze 青铜B&S Brown&Shape 棕色&形状BSC Basic 基本的BUSH Bushing 套管BWG Birmingham Wire GaugeC TO C Center-to-Center 中心到中心CAD Computer-Aided Drafting 电脑辅助设计CAM Computer-Aided MfgCAP SCR Cap Screw 螺帽CARB Carburize 使渗碳CBORE Counter bore 扩孔CCW Counter Clockwise 逆时针CDRILL Counter drillCDS Cold-Drawn SteelCS Cast Steel 铸铁CSA Canadian Stds AssociationCSK Countersink 埋头孔CSTG Casting 铸件CTR Center 中心CU Cubic 立方米CW Clockwise 顺时针CYL Cylinder,Cylindrical 柱面DBL Double 双倍DEC Decimal 小数DEG Degree 摄氏度DET Detail 详情DEV Develop 发展DFT Draft 草稿DIA Diameter 直径DIM Dimension 尺寸DIST Distance 距离DN Down 向下DP Deep,Diametral Pitch 深度,径节DR Drill,Drill Rod 钻孔DSGN Design 设计DVTL Dovetail 吻合DWG Drawing 图纸DWL Dowel 木钉DWN Drawn 拔出EFF Effective 有效的ENCL Enclose, Enclosure 附上ENG Engine 引擎ENGR Engineer 工程师ENGRG Engineering 工程学EQLSP Equally Spaced 等距EQUIV Equivalent 相等EST Estimate 估计EX Extra 额外EXH Exhaust 消耗EXP Experimental 实验性的EXT Extension, External 范围,外部FAO Finish All OverFDRY Foundry 铸造FIG Figure 数据FIL Fillet, fillister 带子FIM Full Indicator MovementFIN FinishFLX Fixture 结构FLX Floor. Fluid, Flush 基地,液体,冲洗FLEX Flexible 易弯曲的FLG Flange 边缘FORG Forging 锻炼FR Frame, Front 边框FIG Fitting 装置FURN Furnish 提供FWD Forward 向前GA Gage, Gauge 测量GALV Galvanized 电镀GR Grade 等级GRD Grind 磨碎GRV Groove 凹槽GSKT Gasket 垫圈H&G Harden and Grind 加硬和磨碎HD Head 主要的HDL Handle 处理HDLS Headless 无领导的HDN Harden 使硬化HDW Hardware 硬件HEX Hexagon 六边形HGR Hanger 衣架HGT Height 高度HOR Horizontal 水平的HRS Hot-Rolled SteelHSG Housing 外罩HT TR Heat TreatNTS Not to ScaleHVY Heavy 重量HYD Hydraulic 水压ID Inside Diameter 内部直径IDENT Identification 鉴定ILLUS Illustration 说明IN Inch 英寸INCL Include,Including 包括INCR Increase 增加INFO Information 信息INSP Inspect 检查INSTL Install 安装INST Instruct,Instrument 指示,工具INT Interior,Internal,Intersect 内部的,内在的,交叉IR Inside Radius 内部半径ISO Internal Stds Organization 国际标准化组织JCT Junction 连结JNT Journal 杂志JT Joint 连接K Key 关键KNRL Knurl 硬节KST KeyseatKWY Keyway 键沟LB Pound 英镑LBL Label 标签LG Length,Long 长度LH Left Hand 左手LMC Least Material ConditionLOC Locate 位于LT Light 光LTR Letter 信LUB Lubricate 润滑MACH Machine 机器MAINT Maintenance 维护MATL Material 材料MAX Maximum 最大MECH Mechanical,Mechanism 机械MED Medium 媒介MFG Manufacturing 制造业MI Malleable Iron 可锻造的铁MIN Minimum, Minute 最小,秒MISC Miscellaneous 混杂的MM Millimeter 毫米MMC Max Material ConditionMS Machine SteelMTG Mouting 装备MULT Multiple 倍数MWG Music Wire GagugNA Not Applicable 不可应用的NA TL National 国内的NC Numerical Control 数字电脑控制NEG Negative 忽略的NO. Number 号码NOM Nominal 名义上的NPSM Natl Pipe Straight MechNPT Natl Pipe TaperedSCR Screw 螺丝SEC Second 秒SECT Section 部分SEP Separate 独立SEQ Sequence 顺序SER Serial,Series 系列SERR Serrate 锯齿状SF SpotfaceSFT Shaft 轴SGL Single 单个SH Sheet 纸SI Intl System of UnitsSL Slide 使滑动SLV Sleeve 袖子SOC Socket 插座SP Space,Spaced,Spare 空间SPL Special 特别SPEC Specification 规格SPG Spring 跳SPHER Spherical 球体SPRKT Sprocket 链轮齿SQ Square 平方SST Stainless Steel 纯铁STD Standard 标准STK Stock 存货STL Steel 铁STR Straight,Strip 直的SUB Substitute 替代物SUP Supply,Support 供应SURF Surface 表面SYM Symmetrical 对称的SYS System 系统T Teeth,Tooth 牙齿TECH Technical 技术TEMP Template,Temporary 模板,暂时的THD Thread 线THK Thick 厚的TOL Tolerance 公差TOT Total 总计TPF Taper per FootTPI Taper per In,Threads per InchTPR Taper 锥形TS Tool SteelTYP Typical 典型UNC Unified Natl CoarseUNEF Unified Natl Extra FineUNF Unified Natl FineUNIV Universal 普遍V AR Variable 变量VERT Vertical 垂直的VOL Volume 音量VS Versus 与..相对W Wide,Width 宽度WASH Washer 垫圈WI Wrought Iron 熟铁WT Weight 重量OA Over All 所有OBS ObsoleteOC On CenterOD Outside Diameter 外直径OPP Opposite 对立OPTL Optional 可选择的OR Outside Radius 外半径ORIG Original 初始的PA T. Patent 专利PATT Pattern 形式PC Piece, Pitch Circle 件,节距圆PCH Punch 打孔PD Pitch DiameterPERF Perforate 打孔PERM Permanent 永久的PERP Perpendicular 垂直的PFD Preferred 首选的PKG Package, Packing 包装PL Parting Line, Places, PlatePNEU PneumaticPNL Panel 面板POL Polish 磨光POS Position, Positive 位置PR Pair 对立PRI Primary 基本的PROC Process 程序PROD Product, Production 产品,产量PSI Pounds per Square InchPT Part, Point 零件,点QTR Quarter 四份之一QTY Quantity 数量QUAL Quality 质量R Radius 半径RA Rockwell Harden, A-ScaleRB Rockwell Harden, B-ScaleRC Rockwell Harden, C-ScaleRECD Received 巳收到的RECT Rectangle 长方形REF Reference 相关的REINF Reinforce 增强REL Release, Relief 释放,缓解REM Remove 移除REQD Required 有需要REE Retainer, ReturnREV Reverse, Revision, RevolutionRFS Regardless of Feature SizeRGH Rough 粗糙的RH Right Hand 右手RIV Rivet 起皱RM Ream 扩展RND Round 周围RPM Revolutions per MinuteRPW Resistance Projection WeldSAE Society of Automotive Engineers SCH Schedule 进度表A/F——Across Flats——对边C`SINK——Counter Sink——沉头锥孔C`BORE——Counter Bore——沉头平底孔C——Chamfer——倒角EXT——External——外(外在的)INT——Internal——内(内在的)MATL——Material——材料LH——Left Hand——左旋(螺纹)RH——Right Hand——右旋(螺纹)REV——Revision——版本U`CUT——Under Cut——空刀槽S.FACE——Spot Face——刮平S.R——Spherical radius——球面半径R——Radius——半径P.F——Press Fit——紧配S.F——Slide Fit——滑配PCD——Pitch Circle Diameter——节圆直径DP——Deep——深度CL——Center Line——中心线FF——Force Fit——压配HRC——Hardened——热处理(淬火)BSF——British standard fine thread——英国细牙螺纹处理BSP——British standard pipe thread——英国管螺纹标准BSW——British standard worth thread——英国惠氏螺纹标准BSD——British standard dimension——英国度量标准尺寸BSG——British standard gauge——英国标准线规BSS——British standard specification——英国标准技术规格G——美国标准管牙M——Metric——公制螺纹NPT——国家管用螺纹(美制斜牙齿)UNC——United coarse thread——统一标准粗牙螺纹UNEF——United extreme fine thread——公称制细牙UNF——United fine thread——公称细牙CYL——Cylinder or cylindrical——圆柱DIA——Diameter——直径DWG NO——Drawing NO——图纸编号ANGLE 角度NA TURE R 自然RALL ROUND 周边,全周NG 粗牙BOT (BOTT) 底部NF 细牙CB 沉头孔PART NO 料号CL 中心线PUNCH 冲头C+0.02 单边放大0.02间隙PIERCE PUNCH 落料冲头chamfer(C) 倒角PCS 个,块,件CA(NCA) 清角(不清角)Q'TY 数量CENTER(CEN) 中心,园心REF 参考DWG NO 图号REV 版次DEEP(DEP) 深度RIGHT 右EDGE 刀口SYM 中心对齐ECN NO 设变号码SMALL 小端EWL (newl) 清线头(不清线头)S落料斜度FINISH 硬度SCALE 比例GAP 单边间隙SECTION A-A 剖视A-AHEIGHT 高度SHEET 表单,页次HA TCHING 阴影线SURFACE 表面HEAT TREATMENT 热处理TAP 攻牙INSERT 入块TYP 相同,尺寸一致LARGE 大端THRU(THR) 贯穿LEFT 左TOP 顶部MM 螺纹的规格THICK 厚度MARK 记号标记TAPPER 锥度斜度MATEL 材料材质TAN 切点MAX 最大值TAP1/2NPT 1/2英制管牙MIN 最小值UNIT 单位NAME 名称VIWE A 视图ANEF 特别攻牙SECA-A A-A剖视NRT 新制管牙二,图纸中标题对应含义1. PART NO(P/N) 料号2. TITLE(PART NAME) 品名3. SIZE 型号4. MODEL NO 使用机型机种5. MATERIAL 材料,材质6. THICKNESS/DIMENSIONS 厚度/尺寸7. TOLERANCE 公差LINER:线性尺寸公差ANGLES:角度公差TOLERANCE AREA:公差区分表8. TREATMENT 处理9. FINISH 产品完成后细加工方面10. SCALE 比例尺11. REVISIONS(REV) 变更项(其中REV也表示版别)12. DIMENSIONS(UNIT)单位13. NOTES 注意事项14. METRIC 米制的,公制的,15. BURR DIRECTION 毛边方向三.图纸中常见符号含义1. R:圆弧半径2. ψ:圆直径(內径,外径)3. Sψ(SR):球面直径或半径4. M:攻牙(普通牙型)5. P:螺距6. C:倒角(等腰直角三角形C為直邊尺寸)7. T(δ):厚度8. 平面度//:平行度9. ⊥:垂直度◎:同轴度10.SECTION A---A分解图中代号)11.DETAIL A: A部放大12. 锥度⁄—⁄ (∫---∫):线条省略若能觅得一方喜欢的山水,在空旷的风里,种上淡暖如许,清欢如许。
摘要发动机是汽车最主要的激振源,因此降低发动机振动向车身的传递,对于提升汽车NVH性能有着重要作用。
发动机惯性参数包括质量、质心、转动惯量和惯性积,精确识别发动机惯性参数,是对发动机进行动力学分析以及减振隔振的前提和关键。
本文以精确高效地识别发动机惯性参数为目的,基于频响函数质量线,进行发动机惯性参数识别方法与识别装置的若干研究。
首先,研究质量已知和未知情况下的发动机惯性参数识别方法,设计了一种发动机惯性参数识别原理性实验装置,利用仿真分析惯性参数识别精度的影响因素,通过搭建原理性实验装置,用已知惯性参数的标准块作为研究对象,进行惯性参数识别实验与标定实验。
其次,研究发动机在安装状态的惯性参数识别方法,实现发动机惯性参数的识别与悬置参数的识别,利用仿真分析安装状态发动机惯性参数识别精度的影响因素,以某乘用车发动机为研究对象,进行实车安装状态下发动机惯性参数识别实验。
最后,研究基于发动机惯性参数识别的激振力识别方法,利用多体动力学软件建立发动机多刚体动力学模型,通过仿真验证发动机激振力识别方法的正确性,并分析发动机惯性参数识别误差对激振力识别精度的影响,在识别发动机惯性参数的基础上,以某乘用车发动机为测试对象,进行稳态工况下的激振力识别实验。
研究结果表明:本文惯性参数识别方法与识别装置可应用于发动机惯性参数识别。
质量已知和未知的发动机惯性参数识别方法中,激励点和响应点的坐标误差对识别精度的影响最为明显,其中质量已知的惯性参数识别方法的实验识别误差在4.48%以内,质量未知的惯性参数识别方法的实验识别误差在9.3%以内,对实验装置的惯性参数进行标定后二者变为4%和8.97%。
在对安装状态的发动机进行惯性参数识别时,噪声对发动机惯性参数识别精度的影响最为明显,发动机惯性参数实验识别结果满足工程应用要求。
发动机激振力识别中,质心对激振力识别精度的影响较为明显、而转动惯量和惯性积对激振力矩识别精度的影响较为明显,对激振力识别精度无影响,激振力识别实验结果表明,发动机二阶激振力以Z 向为主,而绕Z轴力矩很小,与理论分析符合。
基于人工鱼群算法的随机结构 AMD 控制系统 LQR 权矩阵优化王磊;谭平;李森萍【摘要】针对随机结构在平稳随机激励下线性二次最优控制的权参数选取问题,提出了基于人工鱼群算法的随机结构 AMD 控制系统权矩阵优化设计方法。
该方法以结构随机响应和控制力均方值的加权组合为目标函数,考虑了结构和外激励的随机性对于控制效果的影响。
其优化结果不仅保证了控制器的控制效果,而且降低了控制效果对于随机参数的敏感性,增强了控制器的鲁棒性。
最后结合数值算例,验证了所述方法的有效性和正确性。
%In allusion to the choice of the weight matrices Q and R in LQR algorithm in the stochastic structure-AMD system under stationary random excitation,the optimization method of the weight matrices is proposed based on the artificial fish algorithm.The method resolves the weight matrices optimization via the objective function with the weighted root mean square of the stochastic structural responses and active control force,taking into account the effect of the randomness in the structure and excitation on the control effect.The effectiveness and validity of the procedures of the optimal designs of the weight matrices are proven by a numerical example.Numerical results preliminarily show that the optimized weight matrices can effectively suppress undesirable vibration,reduce the sensitivity of the control effectiveness to the random parameters and improve the robustness of AMD.【期刊名称】《振动与冲击》【年(卷),期】2016(035)008【总页数】5页(P154-158)【关键词】随机结构;权矩阵;主动质量阻尼器;鱼群算法【作者】王磊;谭平;李森萍【作者单位】广州大学工程抗震研究中心,广州 510405;广州大学工程抗震研究中心,广州 510405;广州大学工程抗震研究中心,广州 510405【正文语种】中文【中图分类】TU352线性二次型经典最优控制算法(Linear Quadratic Optimal Control,LQR)因其性能指标物理意义明确,最优控制解可以解析表达,易于实现闭环反馈控制,而被广泛运用于结构振动控制之中[1-4]。
6th World Congresses of Structural and Multidisciplinary OptimizationRio de Janeiro, 30 May - 03 June 2005, BrazilExperimental Force Identification by using Natural OptimizationFelipe A. Chegury Viana, Jhojan E. Rojas Flores, Domingos A. Rade, Valder Steffen, Jr.Federal University of Uberlândia, School of Mechanical EngineeringAv. João Naves de Ávila 2121 – Campus Santa Mônica – P.O. Box 593 – CEP 38400-902 – Uberlândia, MG - Brazil1. AbstractIn various applications related to structural engineering, it is important to determine the external loading under real service conditions to evaluate, for example, the level of safety of the structure. However, the determination of external loading is not simple from the experimental point of view. On the other hand, the influence exerted by the external load on the dynamic response of the system through the so-called stress-stiffening effect can be taken into account in order to obtain information about the load distribution, by exploring the dynamic responses, through an inverse problem approach. In the present paper, optimization methods are used to solve the inverse problems, involving both classical and heuristic approaches. The authors explore an identification procedure based on the LifeCycle Model. This heuristic is inspired on the biological concept of life cycle, which defines the passage through various phases during the life of an individual. Genetic Algorithm and Particle Swarm Optimization are used as search methods and the LifeCycle Model intends to combine the advantageous characteristics found in both methods. Applications are performed based on numerical simulations and experimental tests on a column loaded in compression with various boundary condition configurations, for which a set of natural frequencies is used to form the cost function to be minimized. The results obtained demonstrate the feasibility of the identification procedure.2. Keywords: Inverse problems, experimental identification, LifeCycle model, Particle Swarm Optimization3. IntroductionIn Structural Engineering, it becomes of paramount importance to determine the external loading under real operational conditions, aiming at evaluating the level of security of the structure, to verify the design configurations that were adopted at the design stage, or for redesigning structural elements for new operating conditions. However, the determination of external loading is not simple from the experimental point of view because, in general, transducers cannot be easily introduced in the structure during its construction and/or assembling. On the other hand, it is well known the fact that external loads can influence the static and dynamic behavior of structural systems, through the so-called stress-stiffening effect [1], [2]. Reference [3] was the first one to put in evidence the effect of axial loads on the natural frequencies of structural components. In [4] it was recognized a common theoretical foundation underlying free vibration and stability analyses. In [5] it was demonstrated the existence of a linear relation between the axial load and the natural frequencies corresponding to the lateral motion of a simply supported column. The changing of natural frequencies as related to stability problems was also discussed in the works reported in [6] and [7]. More recently other authors investigated analytically and experimentally the influence of axial loads on the vibration of beams under various boundary condition configurations [8], [9]. In [10] the authors demonstrated the possibility of introducing residual stresses as a mean to improve the mechanical behavior of thin plates.It has been demonstrated elsewhere [11] that, by taking into account the influence exerted by the external loading on the dynamic response of the system through the so-called stress-stiffening effect, it is possible to obtain information about the loading distribution, given the dynamic responses, by solving an inverse problem. Such procedure presents a number of advantages but also some difficulties that have to be dealt with, as pointed-out by [12]. In the context of inverse problems, reference [13] used modal parameters combined with Least Squares to estimate the axial loads of Euler-Bernoulli beams having elastic supports. In [14] it was studied the effect of the application of an axial load to one of the bars in a truss structure by using experimental dynamic responses in a model fitting approach, in which the axial loads were considered as parameters to be adjusted. The results were then compared to the static loads as calculated from experimental measurements by using strain gages. The sensitivity analysis of the parameters to be adjusted has also been carried out. Besides, through experimental tests in a similar structure, reference [15] analyzed the effect of residual stresses due to the construction process on the modal characteristics of the structure.There exist various techniques to solve inverse problems by using optimization methods, involving either classical as well as heuristic approaches. Once the parameters are identified, the mathematical model becomes an effective tool to analyze and predict the dynamics of the structure under different operating conditions. It is broadly recognized that the solution of inverse problems by using classical gradient-based optimization methods is a difficult task due to the existence of local minima in the design space. Moreover, such methods require an initial guess to the solution and it is not possible to assure global convergence. These aspects have motivated the authors of this paper to explore a hybrid approach for the determination of external loading in structures, based on two heuristic methods, namely Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) combined in an strategy known as LifeCycle model, which has been introduced in reference [16].In this paper the optimization procedure is used for the identification of axial loads applied to a straight column subjected to different boundary condition configurations. Both numerical simulations and experimental tests are considered in such applications, in which a set of natural frequencies and vibration mode shapes of the loaded structure as well as a finite element model of the structural system are used to construct an objective function that is minimized to determine the optimal values of the external loads.4. Finite Element Modeling of the Dynamic Behavior of Beam-Columns Including the Stress-stiffening EffectIn this section it is briefly reviewed the finite element modeling of two-dimensional beam-like structures, according to the theory of Euler-Bernoulli, including the effect of the axial load, as illustrated in Fig. 1.Figure 1. Two-dimensional beam element. In Fig.1 l i is the length of the element; A i is the area of the cross section; I i is the area moment of inertia; p i is the distributed longitudinal load; q i is the distributed transversal load; N i is the nodal load applied in the axial direction; E i is the modulus of elasticity of the material; ρi is the density of the material; θi is the nodal cross section rotation, u i and v i are the longitudinal and transversal nodal displacements, respectively.The indexes L and R indicate, respectively, the displacements and rotations at the left hand and right hand nodes of the element.Using a linear interpolation function to represent the longitudinal displacement and a cubical function for the transversal displacement, the following expressions for the element stiffness and mass matrices are obtained [17]:3232232000012661126610510510426121015103000126615104215i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i E A E A l l E I N E I E I N E I N N l l l l l l E I E I E I N l N N l l l l E A l E I N E I N l l l E I sim N l l ⎡−⎢⎢⎢++−−+⎢⎢⎢+−−−⎢⎢=⎢⎢⎢⎢⎢+−−+⎣i K ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦(1)2221400070001562205413401337000420156224i i i i i i i i l l l l l m l sim l ⎡⎤⎢⎥−⎢⎥⎢⎥−=⎢⎥⎢⎥⎢⎥−⎢⎥⎢⎥⎣⎦i M (2)where i i i i m Al ρ=.The effect of the axial load can be observed in the stiffness matrix at the elements corresponding to the bending stiffness, representing, therefore, the so-called stress-stiffening effect.The element matrices are mounted by using the standard finite element (FE) matrix assembling procedure based on the connectivity of elements.Figure 2 illustrates a column elastically supported at both ends for different boundary conditions. Such boundary conditions were modeled in this work to account for the flexibilities of the supports, which lead to deviations from the ideal perfectly rigid conditions. Then, pinned-pinned (P-P), pinned-clamped (P-C), and clamped-clamped (C-C) boundary conditions were substituted by appropriate flexible supports. The flexibility of the supports can be introduced in the model by a proper modification of the stiffness matrix, in which the values of the translational and rotational spring coefficients are added to the diagonal terms corresponding to the coordinates to which they are attached.Figure 2. Flexible support for various boundary conditions - (a): P-P, (b): P-C, (c): C-C.Equation (3) represents the global equations of motion in the matrix form:()()()()t t t += M X K p X Q (3)where p is the vector of the axial loads applied to the beam elements that form the finite element model of the structure.From the equations of motion, the following eigenvalue problem can be derived:()λ⎡−⎤=⎣⎦0K p M X(4)where 2ωλ= is an eigenvalue (natural frequency) and X is an eigenvector (mode shape).The matrix form of the frequency response functions (FRFs) is calculated as:()()12−⎡⎤Ω=−Ω⎣⎦H K p M (5)where Ω is the excitation frequency.The equations above show that the dynamic responses depend on the axial loads (p ), which depend directly on the external load applied to the structure. Before performing the dynamic analysis of the structure, a static analysis must be carried out to determine the axial loads for each element, as explained in [11].5. Load Identification as an Optimization Problem5.1. Problem FormulationLoad identification is dealt with by formulating a constrained optimization problem in which the design variables are the parameters that characterize the external loads and the boundary conditions. In this paper, it was adopted a cost function representing the dimensionless difference between the values of the experimental natural frequencies of the loaded beam and those predicted by the Finite Element Model, as described in Section 4. Thus, the optimization problem is formulated as follows:()(){}()11min n m c p p p p J W p ωωω=⎡⎤=−⎣⎦∑ (6)()11n m i i n ωω==∑ (7)where {p }designates, generically, the set of unknown load parameters, n is the number of natural frequencies used for identification, W p are user-defined weighting factors and ωp (m) and ωp (c) designate the measured and calculated values of the natural frequencies, respectively.Side constraints are introduced to limit the values of the design variables within a feasible design space, avoiding the possibility of buckling or yielding due to extreme external load levels.In the applications considered in this work, using the first six natural frequencies and limiting the value of the total load between zero and approximately 75% of the buckling load value of the structure, the cost function was constructed. Obviously, when both the position and the direction of the load are to be identified, the design space becomes discrete and its dimension depends on the maximum number of nodes of the finite element model (considered as candidate positions).5.2. LifeCycle Model – an OverviewFrom the biology point of view, the term refers to the passage through the phases during the life of an individual. As examples of life phases, can be cited the sexual maturity and the mating seasons. LifeCycle Model is inserted in the natural optimization context, following other heuristics such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). As in nature, the ability of an individual to actively change its own phase or stage in response to its success to the environment is the main inspiration for LifeCycle. In fact, the idea behind LifeCycle is to use the transitions to handle the mechanism of self-adaptation to the optimization problem. The fitness value offers a criterion used by each individual to shift from one life stage to another and vice-versa. To close the definition, LifeCycle stages must be defined. In the present work, two heuristics are used as stages, namely the GA and the PSO. Other versions of the LifeCycle can be proposed by considering other heuristics and even a mix of them, as shown in [16].To obtain details about GA see [18] and [19]. To learn more about PSO, see [20] and [21]. For more detailed information about LifeCycle Model check [16] and [12]. The outline of a basic LifeCycle algorithm is as follows:Figure 3. Outline of a basic LifeCycle algorithm.6. Numerical SimulationFigure 4 shows a finite element model of two columns used in the identification, which are submitted to different load scenarios.Figure 4. Finite element model of the beam-like column.According to Fig. 4, the following scenarios are considered: 1- identification of the magnitude, position and direction of F 1; 2 - identification of the magnitude of F 2 and the values of the each spring that determine the boundary condition. From the optimization point of view, scenario 1 illustrates an optimization problem containing continuous and discrete variables simultaneously. Table 1 shows the setup for LifeCycle. Table 2 presents the identification results for the various loading scenarios. As in real applications, identification methods have to be robust enough to deal with experimental errors. Consequently, it is also considered a situation in which the values of the natural frequencies are corrupted with 5% of random error, as also presented in Tab. 2. The results show that the optimization approach used in the force identification procedure was efficient for all scenarios analyzed.Table 1. LifeCycle parameters used in numerical simulation. Number of Individuals Number of Iterations Stage IntervalLifeCycle 100 75 5Table 2. Identification results for the beam-like column. Without corrupted data With corrupted dataScenarios Exact Optimum Error [%] Optimum Error [%]F 1 [N ] 267.6317 270.23450.9725 259.5107 -3.0344 P9 9 - 9 - 1 D2 2 - 2 - F 2 [N ]535.26 535.18 -0.0161 565.15 5.5835 1x k 1.0 x 1011 1.0434 x 1011 4.3385 9.6086e+010 -3.91441y k1.0 x 1011 1.0276 x 10112.7648 1.0731e+011 7.3099 2x k 1.0 x 10111.0356 x 1011 3.5629 9.9948e+010 -0.05209 2y k 1.0 x 10119.8459 x 1010 -1.5412 1.0304e+011 3.0378 1t k 1.0 x 10119.498 x 1010 -5.02 1.0415e+011 4.1474 2 2t k1.0 x 1011 9.6635 x 1010 -3.3653 9.3371e+010 -6.6293The evolution of the LifeCycle along the iterations can be observed in Fig. 5 for scenario 1, for the case in which the effect of simulated random noise was included. Figure 5-(a) shows the transitions due to its self-adaptation skills. Figure 5-(b) shows which heuristics is conducting the optimization process at a given iteration.Figure 5. Evolution and performance of Lifecycle7. Experimental Results7.1. Experimental SetupThe load identification procedure was performed using experimental data obtained from laboratory tests as performed on steel-made columns subjected to an instrumented test apparatus, which is capable of applying compressive loads. Such device is originally intended for the demonstration of the buckling phenomenon. Figure 6 shows the experimental setup in which, by choosing proper boundary conditions various scenarios can be studied. In this way, three different boundary conditions could be tested, namely, C-C, P-C, and P-P. For each value of the load, a set of frequency response functions (FRF) was obtained by processing the Fourier-transforms of the input (impact forces) and output (transverse accelerations).6(a) (b)1 – Hammer (with a force transducer)2 – Accelerometer3 – Load cell4 – Force transducer signal conditioning5 – Accelerometer signal conditioning6 – ComputerFigure 6. Scheme of the experimental test rig 7.2. Demonstration of the Stress-stiffening EffectIn order to illustrate the stress-stiffening effect, the FRFs for a clamped-pinned column subjected to two different loads are presented in Fig. 7. It can be seen that as the compression load increases the natural frequencies decrease. In fact, the stress-stiffening generated by the external load leads to a smaller column bending stiffness.()f ε=(8) where:•ε: is the normalized random error, •2()xy f γ: is the coherence function taken under resonance conditions, and• d n : is the number of averages considered.Table 3. Values of the natural frequencies of the beam-like column (P-C)Load [N]Natural Frequency 1 2 3 4 5 6 7Frequency [Hz] 31.24 106.01 227.30 391.57 602.72 854.09 1164.70 250Estimator Error [%] 3.50 4.96 2.79 2.56 2.53 2.44 2.47Frequency [Hz] 37.35 98.07 218.88 383.34 594.82 852.06 1158.50 750Estimator Error [%] 18.56 2.86 3.00 2.47 2.34 1.60 1.77It should be noticed that the high value of the error obtained for the first natural frequency preclude any conclusion about its variation when the external load is increased.7.3. Load IdentificationThe identification procedure was applied by using the experimental data obtained from tests performed on the beam-like column to check whether residual stress, initial strain, possibly introduced by manufacturing or previous tests, could have some significant influence on the identification results.Table 4 shows the setup for LifeCycle used in experimental tests.Table 4. LifeCycle parameters used in experimental load identification.Number of Individuals Number of Iterations Stage IntervalLifeCycle20 505A set of identification results for the different boundary conditions of the system is given in Tab. 5. It can be concluded that the algorithm satisfactorily identified the experimental loads.Table 5. Identification results for the beam-columns.Force [N] BoundaryCondition Experimental Identified Error [%]150 147.32 -1.79P-P350 310.42-11.31250 211.81-15.28P-C750 831.8410.911000 1132.93 13.29C-C1500 1580.35 5.36The behavior of the LifeCycle along the iterations can be observed in Fig. 8for the identification of a 750 N load for the P-C boundary condition. As for the numerical simulation, the transitions due to its self-adaptation skills can be seen in Fig. 8-(a); Fig. 8-(b) shows which heuristics is conducting the optimization process at a given iteration.Figure 8. Evolution and performance of Lifecycle for the experimental tests.Table 6 summarizes the values of the experimental natural frequencies used in the optimization procedure and the values of the “identified” natural frequencies, corresponding to the identified values of the load parameter shown in Tab. 5. It can be seen that, in general the variation between natural and “identified” frequencies are very small. In some cases one of the natural frequency had tobe discarded in the identification process due to unacceptable frequency estimation error.Table 6. Natural frequencies and percentage errors for the loaded structure. Mode Shape Boundary Condition Force (N) Frequencies 1 2 3 4 5 6 7 Objective Function JExperimental - 85.91 197.91 351.86 559.17 804.97 1096.90Identified - 85.86 197.37 353.79 555.89 805.10 1103.80 150 Error (%) - -0.06 -0.28 0.55 -0.59 0.02 0.630.02Experimental - 82.24 194.86 351.21 555.27 802.19 1093.00Identified - 81.32 193.00 349.48 551.61 800.85 1099.60 P-P 350 Error (%) - -1.11 -0.96 -0.49 -0.66 -0.17 0.610.04Experimental 31.24 106.01 227.30 391.57 602.72 854.09 1164.70Identified 30.55 108.12 230.61 398.25 611.90 873.17 1184.50 250 Error (%) -2.21 2.00 1.46 1.71 1.52 2.23 1.700.13Experimental - 98.07 218.88 383.34 594.82 852.06 1158.50Identified - 98.13 220.60 388.18 601.78 863.02 1174.40 P-C 750 Error (%) - 0.06 0.78 1.26 1.17 1.29 1.380.55Experimental 34.54 115.42 239.89 403.23 616.72 885.99 1171.20Identified 36.78 122.24 255.14 433.65 658.68 931.96 1255.90 1000 Error (%) 6.50 5.91 6.36 7.54 6.80 5.19 7.230.34Experimental 25.31 106.96 232.42 399.43 613.89 884.93 1181.20Identified 27.22 112.72 245.64 424.03 648.97 922.18 1246.00 C-C1500 Error (%) 7.55 5.38 5.68 6.16 5.71 4.21 5.49 0.308. ConclusionsThis paper presented an identification procedure to determine external forces applied to a beam-like column for various boundary conditions. The inverse problem solver is based on the LifeCycle method, a heuristics that considers different stages along the evolution, to mimic nature in the passage through the phases experienced by an individual along life. In the present contribution, GA and PSO represented these phases. Load identification was performed both for numerical FE data and real experimental data. The experimental data were obtained by using a buckling test apparatus that was adapted to perform vibration tests. The goal of the numerical investigation was to test the procedure for the case in which discrete and continuous design variables are considered simultaneously and to check efficiency for various load scenarios and boundary conditions. Finally, the experimental investigation illustrated the possibility of using the present technique in real engineering environment. The results are very encouraging in the sense that more complex inverse problem will be analyzed in further research.9. AcknowledgmentsMr. Viana and Mr. Rojas are thankful to CNPq and CAPES, respectively, for their PhD scholarship. Dr Rade and Dr Steffen, they both acknowledge CNPq for their research grant.10. References1. Greening P D and Lieven N A J. Modeling Dynamic Response of Stressed Structures. Proceedings of the 17th International Modal Analysis Conference, 1999, Florida, 103-108.2. Lurie H. Lateral Vibrations as Related to Structural Stability. Journal of Applied Mechanics, 19, 1952, 195-204.3. Rayleigh Lord. Theory of Sound. 2 (2nd edition), Dover, New York, 1877, 1945 re-issue.4. Stephens B C. Natural Vibration Frequencies of Structural Members as an Indication of end Fixity and Magnitude of Stress. Journal of the Aeronautical Sciences, 1936, 4: 54-56.5. Chu T H. Determination of Buckling Loads by Frequency Measurements. Thesis at the California Institute of Technology, 1949.6. Wittrick W H. Rates of Changes of Eigenvalues, with Reference to Buckling and Vibrations Problems. Journal of the Royal Aeronautical Society, 1962, 66: 590-591.7. Baruch M. Integral Equations for Nondestructive Determination of Buckling Loads fos Elastic Plate and Bars. Israel Journal of Technology, 1973, 11: 1-8.8. Virgin L N and Plaut R H. Effect of Axial Load on Forced Vibrations of Beams. Journal of Sound and Vibration, 1993, 168 (3): 395-405.9. Go C G and Liou C D. Load-response Determination for Imperfect Column Using Vibratory Data. Journal of Sound and Vibration, acepted 20 December 2002, in press.10. Almeida S F M and Hansen J S. Enhanced Elastic Buckling Loads of Composite Plates with Tailored Thermal Residual Stresses. Journal of Applied Mechanics, 1997, 64 (4): 772-780.11. Rojas J E. Characterization of Stress-stiffening Effect and Identification of Loads in Structures from Dynamic Responses (in portuguese). M. Sc. Dissertation, Federal University of Uberlândia, Uberlândia-MG, Brazil, 2004.12. Rojas J E, Viana F A C, Rade D A and Steffen Jr V. Identification of External Loads in Mechanical Systems Through Heuristic-based Optimization Methods and Dynamic Responses. Latin American Journal of Solids and Structures, 2004, 1 (3): 297-318.13. Livingston T, Béliveau J G and Huston D. R. Estimation of Axial Load in Prismatic Members Using Flexural Vibrations.Submitted to Journal of Sound and Vibration, 1993.14. Greening P D and Lieven N A J. Identification and Updating of Loading in Frameworks Using Dynamic Measurements. Journalof Sound and Vibration, 2003, 260 (1): 101-115.15. Lieven N A J and Greening P D. Effect of Experimental Pre-stress and Residual Stress on Modal Behavior. PhilosophicalTransactions of Royal Society London, 2000, A 359: 97-11.16. Krink T and Løvberg M. The LifeCycle Model: Combining Particle Swarm Optimisation. Genetic Algorithms and HillClimbers,Proceedings of the 7th International Conference on Parallel Problem Solving from Nature, Granada, Spain, 2002 September 7-11, Granada, 2002, 621-630.17. Craig R R Jr. Structural dynamics: An Introduction to Computer Methods, Wiley-Interscience, New York , 1981, 544.18. Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs. 2nd ed., Springer-Verlag, New York, 1994.19. Haupt R L and Haupt S E. Practical Genetic Algorithm. 1st ed, Wiley-Interscience, New York, 1998.20. Kennedy J and Eberhart R C. Particle Swarm Optimization. Proceedings of the 1995 IEEE International Conference on NeuralNetworks, Perth, Australia, Perth, 1995, 1942-1948.21. Venter G and Sobieszczanski-Sobieski J. Particle Swarm Optimization. Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics and Materials Conference, Denver, CO - USA, 2002 April 22-25, Denver, 2002 (AIAA): 2002-1235.22. Bendat J S and Piersol A G. Random Data – Analysis and Measurement Procedures. (2nd edition). Wiley-Interscience, New York,1986, 561.。