定积分知识点
- 格式:docx
- 大小:238.16 KB
- 文档页数:5
一、定积分的定义和性质1. 定积分的概念定积分是微积分学中的重要概念,它是对函数在一个区间上的积分值进行求解的操作。
具体来说,如果函数f(x)在区间[a,b]上是连续的,则我们可以通过定积分的形式来求解函数f(x)在区间[a,b]上的积分值,即∫(a to b) f(x)dx。
这里,∫表示积分符号,a和b分别表示区间的起点和终点,f(x)表示要求解的函数,dx表示积分变量,并代表着在区间[a,b]上x的变化范围。
因此,定积分的求解可以看做是对函数在一个区间上的积分值进行求解的过程。
2. 定积分的性质定积分具有一系列的性质,这些性质在定积分的求解中起着重要的作用。
主要的性质包括线性性、可加性、积性、保号性、保序性等。
具体来说,线性性指的是定积分的线性组合仍然可以进行积分求解;可加性指的是如果一个区间可以分解成若干个子区间,那么对应的积分值也可以进行求和;积性指的是如果一个函数是另一个函数的乘积,那么对应的积分值也可以进行相乘;保号性指的是如果函数在区间上恒大于等于零(小于等于零),那么对应的积分值也恒大于等于零(小于等于零);保序性指的是如果函数在区间上恒大于等于另一个函数(小于等于另一个函数),那么对应的积分值也恒大于等于(小于等于)另一个函数在相同区间上的积分值。
这些性质在定积分的具体求解中是非常有用的,可以帮助我们简化求解的过程,提高计算的效率。
二、定积分的计算1. 定积分的计算方法定积分的计算方法主要包括定积分的定义法、不定积分法、分部积分法、换元积分法和定积分的几何意义。
其中,定积分的定义法是直接根据定积分的定义进行求解;不定积分法是将定积分转化成不定积分,通过求解不定积分再将得到的结果代入原来的定积分式中,从而得到最终的定积分值;分部积分法是将被积函数进行分解,然后利用分部积分公式对各项进行积分求解;换元积分法是通过变量代换的方法将被积函数进行转化,然后再进行积分求解;定积分的几何意义则是利用定积分代表曲线下面积的特性来进行求解。
定积分知识点总结数学一、定积分的定义1. 定积分的概念定积分是微积分中的一个重要概念,它是对函数在一个区间上的积分进行定义的一种方法。
定积分可以表示函数在一个区间上的“累积效果”,即函数在该区间上的总体积或总面积。
2. 定积分的符号表示定积分可以用符号∫ 来表示,即∫f(x)dx,其中f(x)是要积分的函数,dx表示自变量x的微元。
3. 定积分的定义设函数f(x)在区间[a, b]上连续,将区间[a, b]等分成n个小区间,每个小区间的长度为Δx,取每个小区间上任意一点ξi,计算出函数在每个小区间上的面积,然后将所有小区间上的面积相加,得到一个近似值。
当n趋于无穷大时,这个近似值趋于一个确定的值,称为定积分,记作∫a到b f(x)dx。
4. 定积分的几何意义定积分的几何意义是函数f(x)在区间[a, b]上的图像和坐标轴之间的面积,当函数为正值时,定积分表示曲线下面积;当函数为负值时,定积分表示曲线上面积减去曲线下面积。
二、定积分的性质1. 定积分的存在性定积分的存在性是指对于一个函数在一个区间上的定积分是否存在,存在的充分必要条件是函数在该区间上连续。
2. 定积分的线性性定积分具有线性性质,即若f(x)和g(x)在区间[a, b]上可积,c和d为常数,则有∫a到b(c*f(x)+d*g(x))dx=c*∫a到b f(x)dx+d*∫a到b g(x)dx。
3. 定积分的区间可加性若函数f(x)在区间[a, b]、[b, c]上都可积,则有∫a到c f(x)dx=∫a到b f(x)dx+∫b到c f(x)dx。
4. 定积分的不变性对于函数f(x)在区间[a, b]上的定积分,若将区间[a, b]内的点重新排列,定积分的结果不会受到影响。
5. 定积分的估值通过使用上下和左右长方形法、梯形法等方法,可以对定积分进行估值,获得定积分的近似值。
三、定积分的计算1. 定积分的基本计算方法定积分的基本计算方法是使用定积分的定义进行计算,即按照定义对函数在区间内每个小区间上的面积进行求和,并计算出极限值。
定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。
定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。
定积分的符号表示为∫。
对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。
定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。
二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。
这就是定积分的计算方法。
在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。
这就是黎曼和的基本思想。
2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。
对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。
这个面积就是曲线下的面积。
如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。
3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。
在物理学中,可以用定积分来计算物体的质量、质心等物理量。
对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。
其中c1、c2为常数,f1(x)、f2(x)为函数。
定积分的计算知识点总结一、定积分的定义。
1. 概念。
- 设函数y = f(x)在区间[a,b]上连续,用分点a=x_0将区间[a,b]等分成n个小区间,每个小区间长度为Δ x=(b - a)/(n)。
在每个小区间[x_i - 1,x_i]上取一点ξ_i(i =1,2,·s,n),作和式S_n=∑_i = 1^nf(ξ_i)Δ x。
当nto∞时,如果S_n的极限存在,则称这个极限为函数y = f(x)在区间[a,b]上的定积分,记作∫_a^bf(x)dx,即∫_a^bf(x)dx=limlimits_n→∞∑_i = 1^nf(ξ_i)Δ x。
- 这里a与b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积表达式。
2. 几何意义。
- 当f(x)≥slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形的面积。
- 当f(x)≤slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形面积的相反数。
- 当f(x)在[a,b]上有正有负时,∫_a^bf(x)dx表示位于x轴上方的曲边梯形面积减去位于x轴下方的曲边梯形面积。
二、定积分的基本性质。
1. 线性性质。
- ∫_a^b[k_1f(x)+k_2g(x)]dx = k_1∫_a^bf(x)dx + k_2∫_a^bg(x)dx,其中k_1,k_2为常数。
2. 区间可加性。
- ∫_a^bf(x)dx=∫_a^cf(x)dx+∫_c^bf(x)dx,其中a < c < b。
3. 比较性质。
- 如果在区间[a,b]上f(x)≥slant g(x),那么∫_a^bf(x)dx≥slant∫_a^bg(x)dx。
- 特别地,<=ft∫_a^bf(x)dxright≤slant∫_a^b<=ftf(x)rightdx。
(完整版)定积分知识点汇总定积分是高中数学教学的重点难点之一,也是高数的基础知识。
我们通过汇总定积分的相关知识点,帮助同学们更好地掌握定积分的相关知识,以便在考试中取得好的成绩。
一、定积分的定义定积分是对函数在一定区间上的积分,也就是函数在此区间上的面积。
1. 定积分与区间的选取无关,即如果函数在 $[a,b]$ 上是可积的,则定积分$\int_a^b f(x) \mathrm{d}x$ 的值是唯一的。
2. 定积分具有可加性,即对于任意的 $c \in [a,b]$,有 $\int_a^b f(x)\mathrm{d}x = \int_a^c f(x) \mathrm{d}x + \int_c^b f(x) \mathrm{d}x$。
三、定积分的求解方法1. 函数曲线与坐标轴相交的情况:对于函数曲线与 $x$ 轴相交的区间,可以根据定义式直接求出该区间内的面积。
对于函数曲线与 $y$ 轴相交的区间,则要将积分区间平移后,再根据定义式计算面积。
2. 利用基本积分法和牛顿-莱布尼茨公式:可以利用基本积分法求出一个函数的原函数,然后利用牛顿-莱布尼茨公式,即$\int_a^b f(x) \mathrm{d}x = F(b) - F(a)$,其中 $F(x)$ 是 $f(x)$ 的一个原函数。
3. 利用换元积分法:换元积分法是利用一些特殊的代换,将积分式转化为某些基本形式的积分。
常见的代换包括:$u=g(x), x=h(u)$ 和 $\mathrm{d}u = f(x) \mathrm{d}x$。
分部积分法是将原积分式做一个变形,转化成两个积分乘积的形式,从而更容易求解。
5. 利用定积分的对称性:如积分区间对于 $0$ 对称,或者函数具有四象限对称性等,可以根据对称性减少计算量。
1. 几何应用:用定积分可以求解函数曲线与坐标轴围成的图形的面积、体积和质心等几何特征。
利用定积分可以求解质点运动的速度、加速度、位移和质量等物理量。
积分知识点总结公式一、基本概念1. 定积分定积分是对函数f(x)在区间[a, b]上积分的概念,表示为∫f(x)dx。
它的几何意义是函数f(x)与x轴所围成的面积。
定积分的概念可以表示成:∫f(x)dx = lim[n→∞]∑[i=1]ⁿ f(xᵢ)Δx其中,Δx = (b - a)/n,xᵢ = a + iΔx。
求解定积分通常使用牛顿-莱布尼茨公式:∫[a, b]f(x)dx = F(b) - F(a)其中,F(x)是f(x)的不定积分。
2. 不定积分不定积分是对函数f(x)的积分的概念,表示为∫f(x)dx。
它的几何意义是求解函数f(x)的原函数F(x)。
求解不定积分的常用方法包括换元法、分部积分法、特殊积分法等。
3. 曲线的长、面积、体积通过积分的方法可以求解曲线的长度、曲线围成的面积以及体积。
曲线的长度可以表示成:L = ∫[a, b]√(1 + (dy/dx)²)dx曲线围成的面积可以表示成:S = ∫[a, b]f(x)dx体积可以表示成:V = ∫[a, b]A(x)dx其中A(x)是截面积。
二、常见积分公式1. 基本积分公式基本积分公式包括:∫xⁿdx = (1/(n+1))x^(n+1) + C,其中n≠-1∫eˣdx = eˣ + C∫aˣdx = (1/lna)aˣ + C,其中a>0,a≠1∫sinxdx = -cosx + C∫cosxdx = sinx + C∫sec²xdx = tanx + C∫csc²xdx = -cotx + C∫secxtanxdx = secx + C∫cscxcotxdx = -cscx + C∫1/(1+x²)dx = arctanx + C∫1/√(1-x²)dx = arcsinx + C∫1/(x²+a²)dx = (1/a)arctan(x/a) + C2. 分部积分公式分部积分公式是对两个函数的积分的概念,表示为∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx。
定积分知识点总结等价在本文中,我们将对定积分的基本概念、性质和求解方法进行总结,希望能够帮助读者更好地理解和运用定积分。
一、定积分的基本概念定积分可以看作是一个区间上面积的度量,它描述了函数在一定区间上的总体变化情况。
在数学上,定积分可以理解为函数在指定区间内的面积或者是曲线的弧长,在物理上可以表示为质量、能量、熵等的总量。
1.1 定积分的定义设f(x)在区间[a, b]上有定义,且[a, b]是有限闭区间,将[a, b]上的分割记作Δ,记Δ的任一分点为x0, x1, ..., xn,对应的区间为[x0, x1], [x1, x2], ..., [xn-1, xn]。
则对应的分割Δ表示为:Δ = {x0, x1, ..., xn}Δ的长度记作δxi = xi - xi-1,假设Δ长度的最大值为δ = max{δxi}。
我们将区间[a, b]分成n个小区间,当n趋于无穷大时,(也就是每个小区间的长度趋于0),则这个过程称为区间[a, b]的分割,也称之为区间[a, b]的划分。
对于函数f(x)在区间[a, b]上的定积分,可以用如下的极限形式定义:∫(a->b)f(x)dx = lim(Δ->0)Σ(i=1->n)f(xi*)δxi其中,xi*是区间[xi-1, xi]上的任意一点。
1.2 定积分的几何意义定积分的几何意义是非常直观的,它表示了曲线与坐标轴以及两条直线之间的面积。
当函数f(x)在区间[a, b]上是非负的时候,定积分表示了曲线y=f(x)与x轴以及直线x=a, x=b之间的面积。
当函数f(x)在区间[a, b]上是有正有负的时候,定积分表示了曲线y=f(x)与x轴之间的面积,其中函数f(x)在区间[a, b]上的正值与负值部分面积互相抵消,最终得到曲线与x轴之间的面积。
1.3 定积分的物理意义在物理上,定积分可以用来描述某一物理量在一定的时间或空间范围内的总量。
例如,对于质量密度为ρ(x)的一根杆在区间[a, b]上的质量总量可以表示为:m = ∫(a->b)ρ(x)dx这里ρ(x)dx表示了杆上长度为dx的小段的质量。
定积分知识点总结[汇编]一、定积分定义定积分是一种数学概念,它表示函数在一定区间内的面积或体积。
如果将定积分定义为数学公式,则其表示为:∫abf(x)dx其中,a和b是定积分的区间,f(x)是积分被积函数,dx表示积分的自变量。
二、定积分的性质定积分具有以下性质:1. 定积分与区间无关性如果一个函数在a和b两个点之间积分结果相同,则称该函数在这个区间上有定积分。
换句话说,定积分与积分的区间无关。
2. 可积性如果一个函数在一个区间上是有限的,则称该函数是“可积的”。
在这种情况下,函数的积分是一个有限的数。
如果一个函数可积,则它的积分在区间上是可加的。
4. 积分中值定理如果一个函数f在一个区间[a,b]上连续,则在这个区间上有一个c,使得积分的平均值等于函数在这个点的值。
即,其中,c位于[a,b]范围内的某个点。
三、定积分的求解方法1. 不定积分求解定积分对于给定的被积函数f(x),可以通过求解它的不定积分F(x)来解决定积分的问题。
即,这种方法也被称为“牛顿-莱布尼茨公式”。
定积分可以通过几何方法求解。
即将定积分的积分区间分成若干小区间,计算每个小区间与x轴之间的面积,并将这些小区间的面积相加。
通过计算所有小区间的面积,可以得到整个函数曲线与x轴之间的面积。
如果无法使用解析方法求解定积分,则可以使用数值积分法来进行近似计算。
数值积分法基于面积法的原理,通过数值计算来估计定积分的值。
最常见的数值积分法包括梯形法、辛普森法和矩形法等。
定积分在数学和物理科学领域有广泛的应用。
例如:1. 确定函数之间的关系定积分可以用于确定函数之间的关系,例如求出两个函数之间的相关系数、协方差和提高回归模型。
2. 计算物体的体积通过找到物体的外形和切割平面之间的物体的截面积,可以使用定积分来计算物体的体积。
4. 计算电子包络通过使用定积分来计算电子包络的位置和波函数,可以推导出相关的量子力学方程。
高数定积分知识点总结一、定积分的定义定积分是微积分中的一个重要概念,它是对一个函数在一个区间上的积分结果进行计算的过程。
在数学上,定积分是用来计算曲线下面的面积或者函数在某一区间上的平均值的方法。
定积分可以写成以下形式:\[ \int_{a}^{b} f(x)dx \]其中,\( f(x) \)是被积函数,\( a \)和\( b \)是积分区间的端点。
定积分的计算过程就是求解被积函数在给定区间上的曲线下面的面积。
定积分在物理学、工程学和经济学等领域都有着广泛的应用,是微积分中不可或缺的重要工具。
二、定积分的性质1. 定积分的可加性如果函数\( f(x) \)在区间\([a, b]\)上是可积的,那么对于任意的\( c \)满足\( a \leq c \leq b \),都有:\[ \int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \]这个性质表明了定积分的可加性,即在一个区间上进行积分的结果可以根据任意划分点\( c \)进行分割。
2. 定积分的线性性对于任意的实数\( \alpha, \beta \)和函数\( f(x), g(x) \),如果\( f(x), g(x) \)在区间\([a, b]\)上是可积的,那么有:\[ \int_{a}^{b} (\alpha f(x) + \beta g(x))dx = \alpha \int_{a}^{b} f(x)dx + \beta \int_{a}^{b} g(x)dx \]这个性质表明了定积分的线性性,即在一个区间上进行线性组合的函数的积分等于线性组合的函数的积分的线性组合。
3. 定积分的保号性如果在区间\([a, b]\)上有\( f(x) \geq 0 \),那么有:\[ \int_{a}^{b} f(x)dx \geq 0 \]这个性质表明了定积分的保号性,即当被积函数在一个区间上非负时,其积分结果也是非负的。
定积分计算知识点总结一、定积分的概念1.1 定积分的定义定积分是在微积分学中给定一个连续函数$f(x)$,对它在区间$[a, b]$上的积分值的确定。
具体地,定积分可以定义为:$$\int_{a}^{b} f(x) dx = \lim _{n \rightarrow \infty} \sum _{i=1}^{n} f(x_{i}^{*})\Delta x $$其中,$\Delta x = (b-a)/n$,$x_i^* \in [x_{i-1}, x_i]$。
1.2 定积分的几何意义定积分的几何意义是函数$y=f(x)$在区间$[a, b]$上的曲边梯形的面积,可以用积分来表示。
当积分区间的$[a, b]$上的函数是非负值函数时,它的定积分可以表示该函数与$x$轴所夹的曲边梯形的面积。
1.3 定积分的基本性质① 定积分与积分区间的顺序无关,即$\int_{a}^{b}f(x)dx = -\int_{b}^{a}f(x)dx$。
② 定积分的线性性:$\int_{a}^{b}(\alpha f(x)+\beta g(x))dx = \alpha \int_{a}^{b} f(x)dx + \beta \int_{a}^{b} g(x)dx$。
③ 定积分的加法性:$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$。
1.4 定积分的计算方法定积分的计算方法主要包括:几何意义法、切割法、定积分的性质、换元积分法、分部积分法等。
这些方法在不同的情况下都有其适用范围,学习者需要根据具体问题进行选择和灵活运用。
二、定积分的计算2.1 几何意义法几何意义法是通过将定积分代表的曲边梯形进行适当的分割和逼近,最终得到定积分的值。
这种方法适用于简单的函数和几何形状,容易理解和操作。
2.2 切割法切割法是将定积分的积分区间进行适当的分割,然后对每个小区间内的函数求积分,最后将所得的和加起来。
定积分知识点标准化管理部编码-[99968T-6889628-J68568-1689N]
定积分知识点
1.定积分的概念:一般地,设函数()f x 在区间[,
]a b 上连续,用分点 将区间[,]a b 等分成n 个小区间,每个小区间长度为x (b a
x
n
),在每个小区间
1,i i x x 上任取一点()1,2,,i i n ξ=,作和式:1
1
()()n
n
n i i i i b a
S f x f n
ξξ==-=∆=∑∑
如果x 无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。
记为:()b
a S f x dx =⎰,
其中-⎰积分号,b -积分上限,a -积分下限,()f x -被积函数,x -积分变量,
[,]a b -积分区间,()f x dx -被积式。
说明:(1)定积分()b
a f x dx ⎰是一个常数,即n
S 无限趋近的常数S (n →+∞时)记为()b
a
f x dx ⎰,而不是n S .(2)用定义求定积分的
一般方法是:①分割:n 等分区间,a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:
1
()n
i i b a
f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑⎰;(3)曲边图形面积:()b
a
S f x dx =⎰;变速运动路程2
1
()t t S v t dt =⎰;变力做功()b
a
W F r dr =⎰
2.定积分的几何意义
从几何上看,如果在区间,
a b 上函数()f x 连续且恒有
()0f x ≥,那么定积分()b
a f x dx ⎰表示由直线
,(),0x a x b a b y ==≠=和曲线()y f x 所围成的曲边
梯形(如
图中的阴影部分)的面积,这就是定积分()b a
f x dx ⎰的几何意义。
说明:一般情况下,定积分()b
a f x dx ⎰的几何意义是介于x 轴、函数()f x 的图形以及直线
,x a x b 之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积去
负号。
分析:一般的,设被积函数()y f x ,若()y f x 在[,]a b 上可取负值。
考察和式()()()12()i n f x x f x x f x x f x x ∆+∆+
+∆+
+∆
不妨设1(),(),,()0i i n f x f x f x +<
于是和式即为()()()121(){[()][]}i i n f x x f x x f x x f x x f x x -∆+∆+
+∆--∆+
+-∆
()b a
f x dx ∴=⎰阴影A 的面积—阴影B 的面积(即x 轴上方面积减x 轴下方的面积) 3.定积分的性质 性质1()b
a kdx k
b a =-⎰;
性质2()()()b b
a
a
kf x dx k f x dx k =⎰⎰为常数(定积分的线性性质);
性质31212[()()]()()b b b
a
a
a
f x f x dx f x dx f x dx ±=±⎰⎰⎰(定积分的线性性质);
性质4()()()()b c b
a
a
c
f x dx f x dx f x dx a c b =+<<⎰⎰⎰其中(定积分对积分区间的可加性)
(1) ()()b a a
b
f x dx f x dx =-⎰⎰; (2) ()0a
a
f x dx =⎰;
说明:①推广:
②推广:12
1
()()()()k
b
c c b
a
a
c c f x dx f x dx f x dx f x dx =++
+⎰⎰⎰⎰
4.微积分基本定理(牛顿—莱布尼兹公式):⎰-==b a
b a a F b F x F dx x f )()(|)()(
(熟记'⎪⎪⎭
⎫ ⎝⎛+=+11n x x n n (1-≠n ),()'=x x ln 1,()'-=x x cos sin ,()'=x x sin cos ,'⎪⎪⎭
⎫ ⎝⎛=a a a x
x ln ,()'=x x e e ) 巩固训练题
一.选择题:
1. 5
0(24)x dx -⎰=( ) A .5 B. 4 C. 3 D. 2
2. 2
11ln xdx x ⎰
=( ) A .21
ln 22 B. ln 2 C. 2ln 2 D.ln 2 3. 若11
(2)3ln 2a x dx x
+=+⎰,且a >1,则a 的值为( )A .6
4. 已知自由落体运动的速率v=gt ,则落体运动从t=0到t=t 0所走的路程为( )
A .203gt
B .2
0gt C .202gt D .206
gt
5.由抛物线x y =2
和直线
x =1所围成的图形的面积等于( )
A .1
B .
34 C .32 D .3
1
6.如图,阴影部分的面积是( )
A .32
B .329-
C .
332 D .3
35 7.320|4|x dx -⎰=( )A .321 B .322 C .323 D .325
8. dx e e x x ⎰-+10)(=( )A .e e 1+ B .2e C .e 2 D .e
e 1-
9.曲线]2
3
,0[,cos π∈=x x y 与坐标轴围成的面积( )
A .4
B .2
C .2
5
D .3
10.230(2cos 1)2x dx π
-⎰=( ) A .1
2
- C.12 二.填空题:
11.若20(345)a
x x dx +-⎰=a 3-2(a >1),则a=
12.曲线2x y =与直线2+=x y 所围成的图形的面积等于 13.由曲线22y x =-与直线y x =-所围成的平面图形的面积为
14.已知弹簧每拉长0. 02 米要用9. 8N 的力,则把弹簧拉长0. 1米所作的功为
15.2
-=
⎰
三.计算下列定积分的值
16.
⎰--3
12
)4(dx x x ; 17. dx x x ⎰+20
)sin (π
; 18. dx x ⎰π
π222
cos ;
19.4x ⎰; 20.(cos 5sin 2)d a a x x x x --+⎰ 21. 12
2
32
(9)x x dx -⎰;
四.解答题:
22.设)(x f y =是二次函数,方程0)(=x f 有两个相等的实根,且22)(+='x x f . (1)求)(x f 的表达式.(2)若直线)10(<<-=t t x 把)(x f y =的图象与坐标轴所围成的图形的面积二等分,求t 的值.
23. 求曲线x x x y 223++-=与x 轴所围成的图形的面积. 答案:AADCB ,CCDDD ;;12.
29;13.2
9
;14.变力函数为F = 490x .于是所求的功为 2
0.10.10
490490()
2.45 2
x W xdx ===⎰
(J );15. 2π; 16. 20
3;17.2
18π+;18.2
14-π;
19. 提示:3
2221()32
x x x '+=;271
6;20. 提示:(sin 6cos 2)cos 5sin 2x x x x x x x '++=-+,4a;
21. 提示:31
32322
2((9))(9)9
x x x '--=-,529;22. (1)12)(2++=x x x f ;(2)
3
2
11-=t .
23. 首先求出函数x x x y 223++-=的零点:11-=x ,02=x ,23=x .又易判断出在
)0 , 1(- 内,图形在x 轴下方,在)2 , 0(内,图形在x 轴上方,所以所求面积为
dx x x x A ⎰
-++--
=0
1
23)2(dx x x x ⎰
++-+
2
23)2(12
37=。