高中数学第一章集合1_1_2集合的表示方法学案新人教B版必修 1
- 格式:doc
- 大小:66.00 KB
- 文档页数:7
1.1.1 集合及其表示方法1、了解集合、元素的概念,体会集合中元素的三个特征;2、熟练力解元素与集合的"属于"和"不属于"关系;3、知道常用数集及其记法;4、掌握集合的几种表示方法;【教学重点】1、掌握集合、元素的基本概念2、学会用描述法表示集合3、正确用区间表示集合【教学难点】1、集合中元素的三个特征2、空集的理解3、记住几种常见的数集符号1.元素与集合的概念(1) 集合:把一些能够__________________ 对象汇聚在一起,就说由这些对象组成一个(2) 元素:组成集合的_______________ 都是这个集合的________ 。
(3) 集合通常用_____________________ 表示,集合的元素通常用______________________ 表示。
2.集合的元素具有以下特点: ____________ 、 ________ 、 _________ .3.元素与集合的关系(1) 如果a是集合A的元素,就说_________________ ,记作_________ .(2) 如果a不是集合A的元素,就说____________________ ,记作_________ .4.实数集、有理数集、整数集、正整数集、自然数集、分别用字母___________ 、 _______ 、_______ 、______ 、______ 来表示.5.集合的分类空集:不含任何元素,记作6.集合的表示方法 1 •列举法把集合中的元素 _____________________________ 出来,并写在 _____________ ,以此来表 示集合的方法称为列举法.2 •描述法一般地,如果属于集合 A 的任意一个元素 x 都具有性质p (x ),而不属于集合 A 的元素 都不具有这个性质,则性质 p (x )成为集合A 的一个 ______________________ •此时,集合 A 可以 用它的特征性质 p (x )表示为 ____________________ ,这种表示集合的方法,称为特征性质描述 法,简称为描述法。
人教版高中必修1(B版)1.1.2集合的表示方法教学设计一、教学目标通过本节课的学习,学生应当具备如下的能力和知识:1.掌握集合的基本概念和基本操作;2.能够使用列举法、描述法、符号法等方法表示集合;3.能够通过集合的表示方法求出集合的元素个数;4.能够应用集合的表示方法解决实际问题;5.培养学生的逻辑思维能力和解决问题的能力。
二、教学重点1.集合的基本概念和基本操作;2.集合的表示方法;3.根据集合的表示方法求出集合的元素个数。
三、教学内容和方法1. 教学内容1.集合的基本概念和基本操作;2.集合的表示方法;3.根据集合的表示方法求出集合的元素个数;4.应用题。
2. 教学方法1.探究式教学方法;2.演示法;3.群体讨论法;4.板书法。
四、教学过程1. 引入本节课的引入部分应该围绕一个问题展开,例如:在小学数学中,我们已经学过了集合的概念。
那么,在你们看来,什么是集合?在学生回答完之后,可以通过一个演示来说明集合的概念:比如,我们可以放一堆东西在桌子上,然后将其中同属性的东西放在一起,比如一堆苹果,一堆香蕉,一堆葡萄等等。
这些被放在一起的对象就组成了一个集合。
2. 学习集合的基本概念接下来,可以通过上述的东西组成的集合为例,让学生深入理解什么是元素和集合,什么是空集合,什么是全集合,以及集合之间的包含关系等等。
3. 学习集合的表示方法在学习了集合的基本概念之后,接下来就是学习集合的表示方法,包括列举法、描述法、符号法等等。
在学习的过程中,可以通过一些实例来进行演示,并要求学生互相交流,分享彼此的思考。
4. 学习如何求出集合的元素个数在学习了集合的表示方法之后,为了更好地掌握集合的知识,我们需要学习如何求出一个集合中元素的个数。
这一部分教学可以通过数学公式引入,并让学生自行分析,理解和掌握。
5. 应用题练习最后,为了巩固学生所学的知识和能力,我们可以通过一些集合相关的实际问题来进行练习,在解决问题的过程中复习和应用所学的知识。
集合表示方法课堂探究探究一用列举法表示集合1.用列举法表示集合时,一般不必考虑元素间前后顺序,如{a,b}与{b,a}表示同一个集合.2.元素与元素之间必须用“,〞隔开.3.集合中元素不能重复.4.列举法也可以表示无限集.【典型例题1】用列举法表示以下集合:(1)36与60公约数构成集合;(2)方程(x-4)2(x-2)=0根构成集合;(3)一次函数y=x-1与y=-23x+43图象交点构成集合.思路分析:(1)要明确公约数含义;(2)注意4是重根;(3)要写成点集形式.解:(1)36与60公约数有1,2,3,4,6,12,所求集合可表示为{1,2,3,4,6,12};(2)方程(x-4)2(x-2)=0根是4,2,所求集合可表示为{2,4};(3)方程y=x-1与y=-23x+43可分别化为x-y=1与2x+3y=4,那么方程组解是所求集合可表示为.探究二用描述法表示集合1.使用描述法表示集合时要注意以下几点:(1)写清元素符号;(2)说明该集合中元素性质;(3)不能出现未被说明字母;(4)多层描述时,应当准确使用“且〞“或〞;(5)所有描述内容都要写在集合符号内;(6)用于描述语句力求简明、准确.2.集合A={x|y=x2+1},B={y|y=x2+1}与C={(x,y)|y=x2+1}不是一样集合.这是因为集合A代表元素是x,且x∈R;集合B代表元素是y,且y≥1;集合C代表元素是(x,y),且(x,y)表示平面直角坐标系内抛物线y=x2+1上点,所以它们是互不一样集合.3.{三角形}实际上是{x|x是三角形}简写,千万别理解成是由三个汉字组成集合,三角形构成集合不要写成{所有三角形},因为{ }本身就有“所有〞含义.【典型例题2】用描述法表示以下集合:(1)小于10所有非负整数构成集合;(2)数轴上与原点距离大于3点构成集合;(3)平面直角坐标系中第二、四象限内点构成集合;(4)方程组解构成集合;(5)集合{1,3,5,7,…}.思路分析:(1)“0≤x<10,x∈Z〞可作为集合一个特征性质;(2)要利用数轴上距离公式来表示,即|x|>3;(3),(4)注意代表元素为点坐标;(5)“x=2k-1,k∈N+〞可作为集合一个特征性质.解:(1)小于10所有非负整数构成集合,用描述法可表示为{x|0≤x<10,x∈Z};(2)数轴上与原点距离大于3点构成集合,用描述法可表示为{x||x|>3};(3)平面直角坐标系中第二、四象限内点构成集合,用描述法可表示为{(x,y)|xy<0};(4)方程组解构成集合,用描述法表示为或;(5){1,3,5,7,…}用描述法可表示为{x|x=2k-1,k∈N+}.反思用描述法表示集合之前,应先通过代表元素确定集合是“点集〞还是“数集〞.另外,二元一次方程组解,因为含有两个未知数,所以在表示时,可看成“点集〞形式进展描述.探究三含参数问题1.对于集合表示方法中含参数问题一定要注意弄清集合含义,也要清楚参数在集合中地位.2.含参数问题常用分类讨论思想来解决,在讨论参数时要做到不重不漏.【典型例题3】集合M={x|(x-a)(x2-ax+a-1)=0}中各元素之和等于3,求实数a 值,并用列举法表示集合M.解:根据集合中元素互异性知,当方程(x-a)(x2-ax+a-1)=0有重根时,重根只能算作集合一个元素,又M={x|(x-a)(x-1)[x-(a-1)]=0}.当a=1时,M={1,0},不符合题意;当a-1=1,即a=2时,M={1,2},符合题意;当a≠1,且a≠2时,a+1+a-1=3,那么a=32,M=,符合题意.综上所述,实数a值为2或32,当a=2时,M={1,2};当a=32时,M=.探究四易错辨析易错点1 认为集合中a具有一致性而致误【典型例题4】集合A={x|x=2a,a∈Z},B={x|x=2a+1,a∈Z},C={x|x=4a+1,a∈Z}.假设m∈A,n∈B,那么有( )A.m+n∈AB.m+n∈BC.m+n∈CD.m+n不属于A,B,C中任意一个错解:C错因分析:不能正确利用集合中元素特征性质,认为三个集合中a是一致,从而由m∈A,得m=2a,a∈Z.由n∈B,得n=2a+1,a∈Z.所以得到m+n=4a+1,a∈Z.进而错误判断m+n∈C.而实际上,三个集合中a是不一致.应由m∈A,设m=2a1,a1∈Z.由n∈B,设n =2a2+1,a2∈Z.所以得到m+n=2(a1+a2)+1,且a1+a2∈Z,所以m+n∈B,故正确答案为B.正解:B反思在分析集合中元素关系时,一定要注意字母各自取值独立性,并要注意用不同字母来区分,否那么会引起错误.易错点2 混淆集合中代表元素而致误【典型例题5】判断命题=真假,并说明理由.错解:此命题是真命题.理由如下:∵x与61x+范围一致,∴题中命题是真命题.错因分析:误认为两个集合代表元素一样而导致错误.实际上,代表元素是x,而代表元素是61x+,因而构成两个集合元素不同.正解:此命题是假命题.理由如下:∵x∈N,且61x+∈Z,∴1+x=1,2,3,6.∴x=0,1,2,5.∴={0,1,2,5}.而={6,3,2,1},∴题中命题是假命题.反思化简集合时一定要注意该集合代表元素是什么,看清楚是数集、点集,还是其他形式,还要注意充分利用特征性质求解,两者相互兼顾,缺一不可.。
1.1.2集合的表示方法使用时间:2021-9-6【使用说明及学法指导】1.先精读一遍教材P5—P7,用红色笔进行勾画,再针对导学案预习自学部分二次阅读教材并回答提出的问题,时间不超过20分钟;2.限时、认真、独立完成合作探究设置的问题,A 层完成全部题目,对于选做部分BC 层可以不做;3.找出自己的怀疑和需要争辩的问题预备课堂上争辩质疑。
【学习目标】1.理解集合的两种表示方法:列举法和描述法,会选择它们表示集合。
2.自主学习、合作沟通,探究并归纳应用列举法和描述法表示集合的规律。
3.激情投入、高效学习,感受集合语言的意义和作用。
一、预习自学(一)问题导学1.什么是列举法?具有什么特征的集合用列举法表示?【思考】(1){}a 与a 有什么区分?(2)集合{}4,3,2与集合{}2,4,3是表示两个不同的集合吗?为什么?2.课本上是怎样定义集合A 的一个特征性质的?怎样用特征性质描述法表示集合?【思考】(1)集合{}|1x R x ∈≥能写成{}|1x x ≥吗?为什么?(2)方程012=-x 的解用列举法怎样表示?二元一次方程0=-y x 的解集中的元素是什么?用描述法表示这个集合。
(3)平行四边形的哪些性质可用来描述全部平行四边形构成的集合?(二)预习自测用适当方法表示下列集合,并说明它们是有限集还是无限集 (1)平方等于16的实数的集合; (2)大于3的全体偶数构成的集合;(3)方程012=++x x 的实数根组成的集合。
二、合作探究【例1】用列举法表示下列集合: (1)A={x ∈N|x ≤3}(2)B={x|0342=+-x x }(3){}+∈=+=N y x y x y x A ,,5|),(【变式】用列举法表示集合⎭⎬⎫⎩⎨⎧∈∈-=+Z m N m m D 且,56|【小结】。
1.1.2 集合的表示方法整体设计教学分析教材借助实例给出了集合的表示方法——列举法和描述法,这是用集合语言表达数学对象所必需的基本知识.教学中要注意引导学生,通过实例,从观察分析集合的元素入手,选择合适的方法表示集合.注意引导学生区分两种表示集合的方法.学习集合语言最好的方法是运用.在教学中,要创造机会让学生运用集合的特征性质描述一些集合,如数集、解集和一些基本图形的集合等.三维目标1.掌握集合的表示法——列举法和描述法,使学生正确把握集合的元素构成与集合的特征性质的关系,从而可以更准确地认识集合.2.能选择适当的方法表示给定的集合,提高学生分析问题和解决问题的能力.重点难点教学重点:集合的表示法.教学难点:集合的特征性质的概念以及运用特征性质描述法正确地表示一些简单的集合.课时安排1课时教学过程推进新课新知探究提出问题①上节所说的集合是如何表示的?②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?③集合共有几种表示法?活动:①学生回顾所学的集合并作出总结.教师提示可以用字母或自然语言来表示.②教师可以举例帮助引导:例如,24的所有正约数构成的集合,把24的所有正约数写在大括号“{}”内,即写出为{1,2,3,4,6,8,12,24}的形式,这种表示集合的方法是列举法.注意:大括号不能缺失;有些集合所含元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可用列举法表示,如:从1到100的所有整数组成的集合:{1,2,3,…,100},自然数集N:{0,1,2,3,4,…,n,…};区分a与{a}:{a}表示一个集合,该集合只有一个元素,a表示这个集合的一个元素;用列举法表示集合时不必考虑元素的前后次序,相同的元素不能出现两次.又例如,不等式x-3>2的解集,这个集合中的元素有无数个,不适合用列举法表示.可以表示为{x∈R|x-3>2}或{x|x-3>2},这种表示集合的方法是描述法.③让学生思考总结已经学习了的集合表示法.讨论结果:①方法一(字母表示法):大写的英文字母表示集合,例如常见的数集N、Q,所有的正方形组成的集合记为A等等;方法二(自然语言):用文字语言来描述出的集合,例如“所有的正方形”组成的集合等等.②列举法:把集合中的全部元素一一列举出来,并用大括号“{}”括起来表示集合,这种表示集合的方法叫做列举法.描述法:在大括号内先写上表示这个集合元素的一般符号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.注:在不致混淆的情况下,也可以简写成列举法的形式,只需去掉竖线和元素代表符号,例如:所有直角三角形的集合可以表示为{x|x是直角三角形},也可以写成{直角三角形}.③表示一个集合共有四种方法:字母表示法、自然语言、列举法、描述法.应用示例思路1例1用列举法表示下列集合:(1)A={x∈N|0<x≤5};(2)B={x|x2-5x+6=0}.解:(1)A={1,2,3,4,5};(2)B={2,3}.点评:本题主要考查集合表示法中的列举法.通过本题可以体会利用集合表示数学内容的简洁性和严谨性,以后我们尽量用集合来表示数学内容.如果一个集合是有限集,并且元素的个数较少时,通常选择列举法表示,其特点是非常明显地表示出了集合中的元素,是常用的表示法.列举法表示集合的步骤:(1)用字母表示集合;(2)明确集合中的元素;(3)把集合中所(1){-1,1};(2)大于3的全体偶数构成的集合;(3)在平面α内,线段AB的垂直平分线.解:(1)这个集合的一个特征性质可以描述为绝对值等于1的实数,即|x|=1.于是这个集合可以表示为{x||x|=1}.(2)这个集合的一个特征性质可以描述为x>3,且x=2n,n∈N.于是这个集合可以表示为{x|x>3,且x=2n,n∈N}.(3)设点P为线段AB的垂直平分线上任一点,点P和线段AB都在平面α内,则这个集合的特征性质可以描述为PA=PB.于是这个集合可以表示为{点P∈平面α|PA=PB}.点评:描述法表示集合的步骤:(1)用字母分别表示集合和元素;(2)用数学符号表达集合元素的共同特征;(3)在大括号内先写上集合中元素的代表符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.并写成A={…|…}的形式.描述法适合表示有无数个元素的集合.注意:当集合中的元素个数较少时,通常用列举法表示,否则用描述法表示.例1用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合;(3)方程x2-9=0的解组成的集合;(4){15以内的质数};(5){x|63-x∈Z,x∈Z}.活动:教师指导学生思考列举法的书写格式,并讨论各个集合中的元素.明确各个集合中的元素,写在大括号内即可.提示学生注意:(2)中满足条件的数通常按从小到大排列时,从第二个数起,每个数比前一个数大3;(4)中除去1和本身外没有其他的约数的正整数是质数;(5)中3-x是6的约数,6的约数有±1,±2,±3,±6.解:(1)满足题设条件小于5的正奇数有1、3,故用列举法表示为{1,3};(2)能被3整除且大于4小于15的自然数有6、9、12,故用列举法表示为{6,9,12};(3)方程x2-9=0的解为-3、3,故用列举法表示为{-3,3};(4)15以内的质数有2、3、5、7、11、13,故该集合用列举法表示为{2,3,5,7,11,13};(5)满足63-x∈Z的x有3-x=±1、±2、±3、±6,解之,得x=2、4、1、5、0、6、-3、9,故用列举法表示为{2,4,1,5,0,6,-3,9}.点评:本题主要考查集合的列举法表示.列举法适用于元素个数有限个并且较少的集合.用列举法表示集合:先明确集合中的元素,再把元素写在大括号内并用逗号隔开,相同的元素写成一个.(1)二次函数y=x2图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;(3)不等式x-7<3的解集.活动:让学生思考用描述法的形式如何表示平面直角坐标系中的点,如何表示数轴上的点,如何表示不等式的解.学生板书,教师在其他学生中间巡视,及时帮助思维遇到障碍的同学.必要时,教师可提示学生:(1)集合中的元素是点,它是坐标平面内的点,集合元素代表符号用有序实数对(x,y)来表示,其特征是满足y=x2;(2)集合中元素是点,而数轴上的点可以用其坐标表示,其坐标是一个实数,集合元素代表符号用x来表示,其特征是对应的实数绝对值大于6;(3)集合中的元素是实数,集合元素代表符号用x来表示,把不等式化为x<a的形式,则这些实数的特征是满足x<a.解:(1)二次函数y=x2上的点(x,y)的坐标满足y=x2,则二次函数y=x2图象上的点组成的集合表示为{(x,y)|y=x2};(2)数轴上离原点的距离大于6的点组成的集合等于绝对值大于6的实数组成的集合,则数轴上离原点的距离大于6的点组成的集合表示为{x∈R||x|>6};(3)不等式x-7<3的解是x<10,则不等式x-7<3的解集表示为{x|x<10}.点评:本题主要考查集合的描述法表示.描述法适用于元素个数是有限个并且较多或无限个的集合.用描述法表示集合时,集合元素的代表符号不能随便设,点集的元素代表符号是(x,y),数集的元素代表符号常用x.集合中元素的公共特征属性可以用文字直接表述,最好用数学1.(口答)说出下面集合中的元素:(1){大于3小于11的偶数};(2){平方等于1的数};(3){15的正约数}.答案:(1)其元素为4,6,8,10;(2)其元素为-1,1;(3)其元素为1,3,5,15.2.方程ax 2+5x +c =0的解集是{12,13},则a =________,c =________. 解析:方程ax 2+5x +c =0的解集是{12,13},那么12、13是方程的两根, 即有⎩⎪⎨⎪⎧ 12+13=-5a ,12·13=c a ,得⎩⎪⎨⎪⎧ a =-6,c =-1,那么a =-6,c =-1.答案:-6 -13.用列举法表示下列集合:(1)所有绝对值等于8的数的集合A ;(2)所有绝对值小于8的整数的集合B.答案:(1)A ={-8,8};(2)B ={-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7}.4.定义集合运算A⊙B={z|z =xy(x +y),x∈A,y∈B},设集合A ={0,1},B ={2,3},则集合A⊙B 的所有元素之和为( )A .0B .6C .12D .18解析:∵x∈A,∴x=0或x =1.当x =0,y∈B 时,总有z =0.当x =1时,若x =1,y =2时,有z =6;当x =1,y =3时,有z =12.综上所得,集合A⊙B 的所有元素之和为0+6+12=18.答案:D5.分别用列举法、描述法表示方程组⎩⎪⎨⎪⎧ 3x +y =2,2x -3y =27的解集. 解:因⎩⎪⎨⎪⎧ 3x +y =2,2x -3y =27的解为⎩⎪⎨⎪⎧ x =3,y =-7,用描述法表示该集合为{(x ,y)|⎩⎪⎨⎪⎧ 3x +y =22x -3y =27};用列举法表示该集合为{(3,-7)}.拓展提升问题:集合A ={x|x =a +2b ,a∈Z ,b∈Z },判断下列元素x =0、12-1、13-2与集合A 之间的关系.活动:学生先思考元素与集合之间有什么关系,书写过程,将元素x 化为a +2b 的形式,再判断a 、b 是否为整数.描述法表示集合的优点是突出显示了集合元素的特征,那么判断一个元素是否属于集合时,转化为判断这个元素是否满足集合元素的特征即可.解:由于x =a +b 2,a∈Z ,b∈Z , ∴当a =b =0时,x =0.∴0∈A.又12-1=2+1=1+2, 当a =b =1时,a +b 2=1+2,∴12-1∈A. 又13-2=3+2, 当a =3,b =1时,a +b 2=3+2,而 3 Z ,∴13-2A. ∴0∈A,12-1∈A,13-2 A. 点评:本题考查集合的描述法表示以及元素与集合间的关系.课堂小结本节学习了:(1)集合的表示法;(2)利用列举法和描述法表示集合的步骤.作业课本习题1—1A 2、3、4.设计感想集合的列举法和描述法的形式比较容易接受,在设计时注重让学生自己学习,重点引导学生学习这两种方法的应用.同时通过解决一系列具体问题,使学生自己体会到集合各种表示法的优缺点;针对不同问题,能选用合适集合表示法.在练习过程中熟练掌握集合语言与自然语言的转换.教师在教学过程中时时监控,对学生不可能解决的问题,如集合常见表示法的写法,常见数集及其记法应直接给出,以避免出现不必要的混乱.对学生解题过程中遇到的困难给予适当点拨.引导学生养成良好的学习习惯,最大限度地挖掘学生的学习潜力是我们教师的奋斗目标.备课资料[备选例题]例1 判断下列集合是有限集还是无限集,并用适当的方法表示.(1)被3除余1的自然数组成的集合;(2)由所有小于20的既是奇数又是质数的正整数组成的集合;(3)二次函数y =x 2+2x -10的图象上的所有点组成的集合;(4)设a 、b 是非零实数,求y =a |a|+b |b|+ab |ab|的所有值组成的集合. 思路分析:本题主要考查集合的表示法和集合的分类.用列举法与描述法表示集合时,一要分清元素是什么,二要明确元素满足的条件是什么.解:(1)被3除余1的自然数有无数个,这些自然数可以表示为3n +1(n∈N ).用描述法表示为{x|x =3n +1,n∈N }.(2)由题意得满足条件的正整数有:3,5,7,11,13,17,19,则此集合中的元素有7个,用列举法表示为{3,5,7,11,13,17,19}.(3)满足条件的点有无数个,则此集合中有无数个元素,可用描述法来表示.通常用有序数对(x ,y)表示点,那么满足条件的点组成的集合表示为{(x ,y)|y =x 2+2x -10}.(4)当ab <0时,y =a |a|+b |b|+ab |ab|=-1;当ab >0时,则a >0,b >0或a <0,b <0.若a >0,b >0,则有y =a |a|+b |b|+ab |ab|=3;若a <0,b <0,则有y =a |a|+b |b|+ab |ab|=-1.∴y=a |a|+b |b|+ab |ab|的所有值组成的集合共有两个元素-1和3.则用列举法表示为{-1,3}.例2 定义A -B ={x|x∈A,x B},若M ={1,2,3,4,5},N ={2,3,6},试用列举法表示集合N -M.解析:应用集合A -B ={x|x∈A,x B}与集合A 、B 的关系来解决.依据定义知N -M 就是集合N 中除去集合M 和集合N 的公共元素组成的集合.观察集合M 、N ,它们的公共元素是2、3,集合N 中除去元素2、3还剩下元素6,则N -M ={6}.答案:{6}.。
1.1.2 集合的表示方法1.掌握集合的两种表示方法——列举法、描述法.(重点)2.能够运用集合的两种表示方法表示一些简单集合.(重点、难点)[基础·初探]教材整理1 列举法阅读教材P5“列举法”~P6“描述法”以上部分,完成下列问题.把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.大于4并且小于10的奇数组成的集合用列举法可表示为________.【解析】由题意知集合中的元素为5,7,9,故用列举法可表示为:{5,7,9}.【答案】{5,7,9}教材整理2 描述法阅读教材P6“描述法”至P7“例1”以上部分,完成下列问题.集合A可以用它的特征性质p(x)描述为{x∈I|p(x)},它表示集合A是由集合I中具有性质p(x)的所有元素构成的.这种表示集合的方法叫做特征性质描述法,简称描述法.判断(正确的打“√”,错误的打“×”)(1)集合0∈{x|x>1}.( )(2)集合{x|x<5,x∈N}中有5个元素.( )(3)集合{(1,2)}和{x|x2-3x+2=0}表示同一个集合.( )【解析】(1)×.{x|x>1}表示由大于1的实数组成的集合,而0<1,所以(1)错误.(2)√.集合{x|x<5,x∈N}表示小于5的自然数,为0,1,2,3,4,共5个,所以(2)正确.(3)×.集合{(1,2)}中只有一个元素为(1,2),而{x|x2-3x+2=0}中有两个元素1和2,所以(3)错误.【答案】 (1)× (2)√ (3)×[小组合作型]用列举法表示集合用列举法表示下列集合: (1)36与60的公约数组成的集合;(2)方程(x -4)2(x -2)=0的根组成的集合;(3)一次函数y =x -1与y =-23x +43的图象的交点组成的集合.【精彩点拨】 (1)(2)可直接先求相应元素,然后用列举法表示.(3)联立⎩⎪⎨⎪⎧y =x -1,y =-23x +43→求方程组的解→写出交点坐标→用集合表示.【自主解答】 (1)36与60的公约数有1,2,3,4,6,12,所求集合为{1,2,3,4,6,12}. (2)方程(x -4)2(x -2)=0的根是4,2,所求集合为{4,2}.(3)方程组⎩⎪⎨⎪⎧x -y =1,2x +3y =4的解是⎩⎪⎨⎪⎧x =75,y =25,所求集合为⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫75,25.使用列举法表示集合时,需要注意以下几点1.用列举法书写集合时,先应明确集合中的元素是什么.如本题(3)是点集{(x ,y )},而非数集{x ,y }.集合的所有元素用“{ }”括起来,元素间用分隔号“,”.2.元素不重复,元素无顺序,所以本题(2)中,{4,4,2}为错误表示.3.对于含较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须把元素间的规律表述清楚后才能用省略号.4.适用条件:有限集或元素间存在明显规律的无限集.需要说明的是,对于有限集,由于元素的无序性,如集合{1,2,3,4}与{2,1,4,3}表示同一集合,但对于具有一定规律的无限集{1,2,3,4,…},就不能写成{2,1,4,3,…}.[再练一题]1.用列举法表示下列集合:(1)不大于10的非负偶数组成的集合;(2)方程x2=2x的所有实数解组成的集合;(3)直线y=2x+1与y轴的交点所组成的集合;(4)由所有正整数构成的集合.【解】(1)因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是 {0,2,4,6,8,10}.(2)方程x2=2x的解是x=0或x=2,所以方程的解组成的集合为{0,2}.(3)将x=0代入y=2x+1,得y=1,即交点是(0,1),故交点组成的集合是{(0,1)}.(4)正整数有1,2,3,…,所求集合为{1,2,3,…}.用描述法表示集合用描述法表示下列集合:(1)被3除余数等于1的整数的集合;(2)比1大又比10小的实数的集合;(3)平面直角坐标系中第二象限内的点组成的集合.【精彩点拨】先分析集合中元素的特征,再分析元素满足的条件,最后根据要求写出集合.【自主解答】(1){x|x=3n+1,n∈Z}.(2){x∈R|1<x<10}.(3)集合的代表元素是点,用描述法可表示为{(x,y)|x<0,且y>0}.利用描述法表示集合应关注五点1.写清楚该集合代表元素的符号.例如,集合{x∈R|x<1}不能写成{x<1}.2.所有描述的内容都要写在花括号内.例如,{x∈Z|x=2k},k∈Z,这种表达方式就不符合要求,需将k∈Z也写进花括号内,即{x∈Z|x=2k,k∈Z}.3.不能出现未被说明的字母.4.在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如,方程x 2-2x +1=0的实数解集可表示为{x ∈R |x 2-2x +1=0},也可写成{x |x 2-2x +1=0}.5.在不引起混淆的情况下,可省去竖线及代表元素,如{直角三角形},{自然数}等.[再练一题]2.用另一种方法表示下列集合: (1){能被3整除且小于10的正数}; (2){(x ,y )|x +y =6,x ∈N *,y ∈N *}; (3){-3,-1,1,3,5};(4){自然数中六个最小数的平方}; (5){y |y =-x 2+6,x ∈N ,y ∈N }.【导学号:60210004】【解】 (1){3,6,9}.(2){(1,5),(2,4),(3,3),(4,2),(5,1)}. (3){x |x =2k +1,-2≤k ≤2,k ∈Z }. (4){0,1,4,9,16,25}.(5)∵y =-x 2+6≤6,且x ∈N ,y ∈N , ∴x =0,1,2,y =6,5,2.∴集合为{6,5,2}.[探究共研型]列举法与描述法的灵活应用探究【提示】 {-1,0,1}.探究 2 集合{(x ,y )|y =x +1}与集合{(x ,y )|y =2x +1}中的元素分别是什么?这两个集合有公共元素吗?如果有,用适当的方法表示它们的公共元素所组成的集合,如果没有,请说明理由.【提示】 集合{(x ,y )|y =x +1}中的元素是直线y =x +1上所有的点;集合{(x ,y )|y =2x +1}中的元素是直线y =2x +1上所有的点,它们的公共元素是两直线的交点,由⎩⎪⎨⎪⎧y =x +1,y =2x +1,解得⎩⎪⎨⎪⎧x =0,y =1,即它们的公共元素为(0,1),用集合可表示为{(0,1)}.探究3 设集合A ={x |ax 2+x +1=0},集合A 中的元素是什么? 【提示】 集合A 中的元素是方程ax 2+x +1=0的解.集合A={x|kx2-8x+16=0},若集合A中只有一个元素,求实数k的值组成的集合.【精彩点拨】明确集合A的含义→对实数k加以讨论→求出实数k的值→用集合表示【自主解答】(1)当k=0时,方程kx2-8x+16=0变为-8x+16=0,解得x=2,满足题意;(2)当k≠0时,要使集合A={x|kx2-8x+16=0}中只有一个元素,则方程kx2-8x+16=0只有一个实数根,所以Δ=64-64k=0,解得k=1,此时集合A={4},满足题意.综上所述,k=0或k=1,故实数k的值组成的集合为{0,1}.若已知集合是用描述法给出的,读懂集合的代表元素及其属性是解题的关键,只有这样,才能清楚集合中的元素是什么,才能正确地解题.如例3中集合A的代表元素为x,x满足kx2-8x+16=0,则A中的元素就是所给方程的根,由此便把集合的元素个数问题转化为方程的根的个数问题.[再练一题]3.若将本例中的条件“只有一个元素”换成“至多有一个元素”,求相应问题.【解】集合A至多有一个元素,即方程kx2-8x+16=0只有一个实数根或无实数根.∴k=0或Δ=64-64k≤0,解得k=0或k≥1.故所求k的值组成的集合是{k|k≥1或k=0}.1.用列举法表示大于2且小于5的自然数组成的集合应为( )A.{3,4} B.A={2,3,4,5}C.{2<x<5} D.{x|2<x<5,x∈N}【解析】大于2且小于5的自然数为3和4,所以用列举法表示其组成的集合为{3,4}.【答案】 A2.如果A={x|x>-1},那么( )A .-2∈AB .{0}∈AC .-3∈AD .0∈A【解析】 A .∵-2<-1,∴A 错误.B.{0}为集合,不是元素,∴B 错误.C.∵-3<-1,∴C 错误.D.∵0>-1,∴0∈A 成立.故选D.【答案】 D3.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示B =________. 【解析】 由题意知,A ={-2,2,3,4},B ={x |x =t 2,t ∈A },∴B ={4,9,16}. 【答案】 {4,9,16}4.设集合A ={x |x 2-3x +a =0},若4∈A ,则集合A 用列举法表示为________.【导学号:60210005】【解析】 ∵4∈A ,∴16-12+a =0,∴a =-4, ∴A ={x |x 2-3x -4=0}={-1,4}. 【答案】 {-1,4}5.用适当的方法表示下列集合:(1)方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8的解集;(2)所有的正方形;(3)抛物线y =x 2上的所有点组成的集合.【解】 (1)解方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧x =4,y =-2,故解集为{(4,-2)}.(2)集合用描述法表示为{x |x 是正方形},简写为{正方形}. (3)集合用描述法表示为{(x ,y )|y =x 2}.。
高考一轮复习学案一 —— 集合与集合的表示方法一、预习:必修1第3—9页二、考纲要求:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;三、知识要点:(一)集合:某些指定的对象集在一起成为集合。
(1)集合中的对象称元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,记作A b ∉;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(4)常用数集及其记法:非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +;整数集,记作Z ; 有理数集,记作Q ;实数集,记作R; 复数集,记作C(二)主要方法:1.解决集合问题,首先要弄清楚集合中的元素是什么,即元素分析法的掌握.2.弄清集合中元素的本质属性,能化简的要化简;3.抓住集合中元素的3个性质,对互异性要注意检验;4.正确进行“集合语言”和普通“数学语言”的相互转化四、典型例题例1:已知集合{}3,M x x n n Z ==∈,{}31,N x x n n Z ==+∈,{}31,P x x n n Z ==-∈,且a M ∈,b N ∈,c P ∈,设d a b c =-+,则( ).A d M ∈ .B d N ∈ .C d P ∈ .D d M N ∈U例2集合{}220P x x =-=( )、{}220Q x x x =+=( )、{}22M y y x x ==+( )、()2{,2T x y y x x ==+且0}y =( )..A =∅ .B {}2,0=- .C ()(){}2,0,0,0-.D 恰有一个元素 .E ()1,=-+∞ .F [)1,=-+∞例3.用列举法表示集合*6{|,}5m N m Z m∈∈-为 。
1.1.2 集合的表示方法
学习目标 1.掌握用列举法表示有限集.2.理解描述法格式及其适用情形.3.学会在不同的集合表示法中作出选择和转换.
知识点一列举法
思考要研究集合,要在集合的基础上研究其他问题,首先要表示集合.而当集合中元素较少时,如何直观地表示集合?
梳理如果一个集合是________,元素又不太多,常常把集合的所有元素都________出来,写在花括号“{ }”内表示这个集合,这种表示集合的方法叫做列举法.
知识点二描述法
思考能用列举法表示所有大于1的实数吗?如果不能,又该怎样表示?
梳理 1.集合的特征性质
如果在集合I中,属于集合A的任意一个元素x________________,而不属于集合A的元素________________,则性质p(x)叫做集合A的一个特征性质.
2.特征性质描述法
集合A可以用它的特征性质p(x)描述为________,它表示集合A是由集合I中______________的所有元素构成的.这种表示集合的方法,叫做特征性质描述法,简称描述法.
类型一用列举法表示集合
例1 用列举法表示下列集合.
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合.
反思与感悟(1)集合中的元素具有无序性、互异性,所以用列举法表示集合时不必考虑元素的顺序,且元素不能重复,元素与元素之间要用“,”隔开.
(2)列举法表示的集合的种类:①元素个数少且有限时,全部列举,如{1,2,3,4};②元素个数多且有限时,可以列举部分,中间用省略号表示,如“从1到1 000的所有自然数”可以表示为{1,2,3,…,1 000};③元素个数无限但有规律时,也可以类似地用省略号列举,如:自然数集N可以表示为{0,1,2,3,…}.
跟踪训练1 用列举法表示下列集合.
(1)由所有小于10的既是奇数又是素数的自然数组成的集合;
(2)由1~20以内的所有素数组成的集合.
类型二用描述法表示集合
例2 试用描述法表示下列集合.
(1)方程x2-2=0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合.
引申探究
函数y=x2-2图象上所有的点组成的集合用描述法可表示为________.
反思与感悟用描述法表示集合时应注意的四点
(1)写清楚该集合中元素的代号.
(2)说明该集合中元素的性质.
(3)所有描述的内容都可写在集合符号内.
(4)在描述法的一般形式{x∈I|p(x)}中,“x”是集合中元素的代表形式,I是x的范围,“p(x)”是集合中元素x的共同特征性质,竖线不可省略.
跟踪训练2 用描述法表示下列集合.
(1)方程x2+y2-4x+6y+13=0的解集;
(2)二次函数y=x2-10图象上的所有点组成的集合.
类型三集合表示的综合应用
命题角度1 选择适当的方法表示集合
例3 用适当的方法表示下列集合.
(1)由x=2n,0≤n≤2且n∈N组成的集合;
(2)抛物线y=x2-2x与x轴的公共点的集合;
(3)直线y=x上去掉原点的点的集合.
反思与感悟用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素满足的条件;三要根据集合中元素的个数来选择适当的方法表示集合.
跟踪训练3 若集合A={x∈Z|-2≤x≤2},B={y|y=x2+2 000,x∈A},则用列举法表示集合B=________.
命题角度2 新定义的集合
例4 对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn,则在此定义下,集合M={(a,b)|a※b=16}中的元素个数是( )
A.18 B.17 D.16 D.15
反思与感悟命题者以考试说明中的某一知识点为依托,自行定义新概念、新公式、新运算和新法则,做题者应准确理解此定义,通过给出新的数学概念或新的运算法则等,在新的情况下完成某种推理证明或指定要求.
跟踪训练4 定义集合运算:A※B={t|t=xy,x∈A,y∈B},设A={1,2},B={0,2},则集合A※B的所有元素之和为________.
1.用列举法表示集合{x|x2-2x+1=0}为( )
A.{1,1} B.{1}
C.{x=1} D.{x2-2x+1=0}
2.一次函数y=x-3与y=-2x的图象的交点组成的集合是( )
A.{1,-2} B.{x=1,y=-2}
C.{(-2,1)} D.{(1,-2)}
3.设A={x∈N|1≤x<6},则下列正确的是( )
A.6∈A B.0∈A
C.3∉A D.3.5∉A
4.第一象限的点组成的集合可以表示为( )
A.{(x,y)|xy>0} B.{(x,y)|xy≥0}
C.{(x,y)|x>0且y>0} D.{(x,y)|x>0或y>0}
5.下列集合不等于由所有奇数构成的集合的是( )
A.{x|x=4k-1,k∈Z} B.{x|x=2k-1,k∈Z}
C.{x|x=2k+1,k∈Z} D.{x|x=2k+3,k∈Z}
1.在用列举法表示集合时应注意:
(1)元素间用分隔号“,”;(2)元素不重复;(3)元素无顺序;(4)列举法可表示有限集,也可以表示无限集.若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.
2.在用描述法表示集合时应注意:
(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式;
(2)当题目中用了其他字母来描述元素所具有的属性时,要去伪存真(元素具有怎样的属性),而不能被表面的字母形式所迷惑.
答案精析
问题导学
知识点一
思考把它们一一列举出来.
梳理
有限集列举
知识点二
思考不能.表示集合最本质的任务是要界定集合中有哪些元素,而完成此任务除了一一列举,还可用元素的共同特征(如都大于1)来表示集合,如大于1的实数可表示为{x∈R|x>1}.
梳理
1.都具有性质p(x) 都不具有性质p(x) 2.{x∈I|p(x)} 具有性质p(x)
题型探究
例1 (1){0,1,2,3,4,5,6,7,8,9}.
(2){0,1}.
跟踪训练1 (1){3,5,7}.
(2){2,3,5,7,11,13,17,19}.
例2 (1){x∈R|x2-2=0}.
(2){x∈Z|10<x<20}.
引申探究{(x,y)|y=x2-2}
跟踪训练2 (1){(x,y)|x=2,y=-3}.
(2){(x,y)|y=x2-10}.
例3 解(1)列举法:{0,2,4}(或描述法:{x|x=2n,0≤n≤2且n∈N}).
(2)列举法:{(0,0),(2,0)}.
(3)描述法:{(x,y)|y=x,x≠0}.
跟踪训练3 {2 000,2 001,2 004}
解析由A={x∈Z|-2≤x≤2}={-2,-1,0,1,2},所以x2∈{0,1,4},x2+2 000的值为2 000,2 001,2 004,所以B={2 000,2 001,2 004}.
例4 B
跟踪训练4 6
当堂训练
1.B 2.D 3.D 4.C 5.A。