现代数字信号处理作业2014
- 格式:doc
- 大小:25.50 KB
- 文档页数:1
现代数字信号处理课后习题解答习题二1、求证:,()(,)x i j x i j xi xj R t t C t t m m =+。
证明:(,)(,)(,,,)xi j i j i jijijijR t t E x x x x p x x t t dx dx==(,)[(),()](),()(,,,)()(,,,)(,)(,)i j i j j i i j i j j i i j i jx i j i x j x i x j x i j i j i ji j i x j x x x i j i j i j x i j x x x x x x x i j x x C t t E x m x m x m x m p x x t t dx dx x x x m x m m m p x x t t dx dx R t t m m m m m m R t t m m =--=--=--+=--+=- 2、令()x n 和()y n 不是相关的随机信号,试证:若()()()w n x n y n =+,则w x ym m m =+和222w x y σσσ=+。
证明:(1)[()][()()][()][()]x ym E n E x n y n E x n E y n m m ωω==+=+=+ (2)2222222222[(())]{[()()()]}[(())(())][(())][(())]2[(())(())]2[]x y x y x y x y x y x y x y x y x y x yE n m E x n y n m m E x n m y n m E x n m E y n m E x n m y n m m m m m m m m m ωωσωσσσσ=-=+-+=-+-=-+-+--=++--+=+即222x y ωσσσ=+3、试证明平稳随机信号自相关函数的极限性质,即证明:①当0τ=时,2(0),(0)x x x x R D C σ==;②当τ=∞时,2(),()0x x x R m C ∞=∞=。
现代信号处理作业现代信号处理课程作业1.做⼀个⽹络检索,简述现代信号处理技术的主要特征和技术特点,并阐述信号处理在实际⼯程中的应⽤情况代信号处理技术的主要特征和技术特点:1)精度⾼:在模拟系统的电路中,元器件精度要达到10-3以上已经不容易了,⽽数字系统17位字长可以达到10-5的精度,这是很平常的?例如,基于离散傅⾥叶变换的数字式频谱分析仪,其幅值精度和频率分辨率均远远⾼于模拟频谱分析仪?2) 灵活性强:数字信号处理采⽤了专⽤或通⽤的数字系统,其性能取决于运算程序和乘法器的各系数,这些均存储在数字系统中,只要改变运算程序或系数,即可改变系统的特性参数,⽐改变模拟系统⽅便得多?3) 可以实现模拟系统很难达到的指标或特性:例如:有限长单位脉冲响应数字滤波器可以实现严格的线性相位;在数字信号处理中可以将信号存储起来,⽤延迟的⽅法实现⾮因果系统,从⽽提⾼了系统的性能指标;数据压缩⽅法可以⼤⼤地减少信息传输中的信道容量?4)可以实现多维信号处理:利⽤庞⼤的存储单元,可以存储⼆维的图像信号或多维的阵列信号,实现⼆维或多维的滤波及谱分析等?信号处理在实际⼯程中的应⽤情况:数字信号处理是利⽤计算机或专⽤计算机或专⽤处理设备,以数据形式对信号进⾏采集,变换,滤波,估值,增强,压缩,识别等处理,以得到符合⼈们需要的信号形式?数字信号处理是以众多科学为理论基础的,他所涉及的范围及其⼴泛?DSP 技术应⽤到我们的⽣活的每⼀个⾓落,从军⽤到民⽤,从航空航天到⽣产⽣活,都越来越多地使⽤DSP. DSP技术在航空⽅⾯,主要⽤于雷达和声纳信号处理;在通信⽅⾯,主要⽤于移动电话,IP电话,ADSL和HFC的信号传输;在控制⽅⾯,主要⽤于电机控制,光驱和硬盘驱动器;在测试/测量⽅⾯,主要⽤于虚拟仪器,⾃动测试系统,医疗诊断等;在电⼦娱乐⽅⾯,主要⽤于⾼清晰度电视,机顶盒,家庭影院,DVD 等应⽤;还有数字相机,⽹络相机等等都应⽤了SP技术?同时,SOC芯⽚系统,⽆线应⽤,嵌⼊式DSP都是未来DSP的发展⽅向和趋势?可以说,没有DSP就没有对互联⽹的访问,也不会有多媒体,也没有⽆线通信?因此DSP仍将是整个半导体⼯业的技术驱动⼒?现在,DSP应⽤领域不断拓宽,其涵盖⾯包括宽带Internet接⼊业务,下⼀代⽆线通信系统的发展,数字消费电⼦市场,汽车电⼦市场的发展等诸多多⽅⾯?现代数字信号处理器是执⾏⾼速数字信号系统的IC电路,它恰好适合多媒体信息化社会需求,迅速发展壮⼤?如今,世界电⼦器件市场上,各种各样的DSP器件已相当丰富?⼤⼤⼩⼩封装形式的DSP器件,已⼴泛⽤于各种产品的⽣产领域,⽽且DSP的应⽤领域仍在不断的扩⼤,发展速度异常?2?简述信号的频率分析技术及其应⽤,阐述实现精细频率分析的实现⽅法?考虑到数字信号分析中,虽然提⾼信号的采样频率可以改善信号分析的频率分辨率,但是提⾼信号的采样频率通常需要付出额外的硬件代价,往往受制于可实现性与成本问题⽽难以实现?因此,就需要使⽤频谱细化技术在尽可能低的采样频率下提⾼数字信号分析的频率分辨率的措施?频谱细化的基本思路是对信号频谱中的某⼀频段进⾏局部放⼤,也即在某⼀频率附近局部增加谱线密度,实现选带频段分析?频谱细化技术在⽣产实践和科学研究中获得了⽇益⼴泛的应⽤?例如,齿轮箱的故障诊断要求准确分辨齿轮各阶啮合振动的主频和边频等,其频谱图上的频率间隔很细,但频率分布⼜较宽,为了识别谱图的细微结构,就必须对信号进⾏细化分析;直升机?坦克?巡航导弹的声⾳具有显著的⾮平稳性,为了得到准确的时延量,信号的取样不能太长,⽽FFT计算的频谱存在栅栏效应?因此必须采⽤有效的⽅法对频谱进⾏细化,这样才能保证⾜够的相关计算精度;在⽆线电通信信号和其他的实际⼯程信号的分析中,为了获取更⾼的测量精度和实时检测能⼒,需要对信号频谱进⾏细化分析,以提供有⽤信息?因此对频谱细化技术的研究受到普遍重视,也是当前信号处理技术研究中的⼀个⼗分活跃的课题?常见的经典⽅法有:复调制细化法?Chirp-Z变换?FFT+FT细化法?DFT补零法等很多⽅法?复调制细化法:⼜称为选带频率细化选带频谱分析,是20世纪70年代发展起来的?其传统的分析步骤为:移频(复调制)低通滤波器重抽样--FFT及谱分析频率成分调整,因其物理概念⾮常明确,所以⼀直沿⽤⾄今?FFT+FT细化法:该⽅法的原理本质是将连续傅⾥叶变换经过将积分化成求和?时域离散化和时域截断为有限长三个步骤变换得到时间离散?频率连续的特殊傅⾥叶变换形式?FFT+FT连续细化分析傅⾥叶变换法先⽤FFT做全景谱,再对指定的⼀个频率区间进⾏细化计算:先确定频率分辨率,再确定计算频率序列,最后⽤FT连续谱分析⽅法进⾏实部和虚部计算,合成幅值谱和相位谱? Chirp-Z变换:最早提出于1969年,CZT是⼀种在Z平⾯上沿着螺旋线轨道计算有限时宽的Z变换⽅法?基本原理是在折叠频率范围内任意选择起始频率和频率分辨率在这有限带宽⾥对样本信号进⾏Z变换这与频谱校正⽅法中的FFT + FT 连续细化分析傅⾥叶变换法的基本原理是⼀样的?3、通过⽹络检索,对弱信号检测技术进⾏调研,分析⼀下现代弱信号检测的⽅法微弱信号检测(WeakSignalDetection)是⼀门新兴的技术学科,应⽤范围遍及光?电?磁?声?热?⽣物?⼒学?地质?环保?医学?激光?材料等领域?其仪器已成为现代科学研究中不可缺少的设备?微弱信号检测技术是采⽤电⼦学?信息论?计算机及物理学的⽅法,分析噪声产⽣的原因和规律,研究被测信号的特点与相关性,检测被噪声淹没的微弱有⽤信号?微弱信号检测的⽬的是从强噪声中提取有⽤信号,或⽤⼀些新技术和新⽅法来提⾼检测系统输出信号的信躁⽐?信号处理系统的信躁⽐改善等于输⼊(⽩)躁声带宽与系统的躁声等效带宽之⽐?因此,减少系统的躁声等效宽度便可以提⾼系统的输出信躁⽐?对于信躁⽐⼩于1的被躁声淹没的信号,只要信号处理系统的躁声等效带宽做得很⼩,就可以将信号(或信号携带的信息)从躁声中提取出来,这就是通常的微弱信号检测的指导思想之⼀?现代弱信号检测的⽅法和原理窄带滤波法: 使⽤窄带滤波器,滤掉宽带躁声只让窄带宽信号通过(仅有极少量窄带躁声通过)?窄带滤波法能减少躁声对有⽤信号的影响?滤除掉通频带以外躁声,提⾼信号的信躁⽐?但是,由于⼀般滤波器的中⼼频率不稳定,不能满⾜更⾼的滤除躁声的要求?双路消躁声法:由于信号与躁声性能完全不同,信号⼀般为⼀些变化规律已知的量,⽽躁声是⼀些随机量满⾜统计规律?当随机性的躁声从两路到达加法器时,极性正好相反,经过加法器相加后把躁声消掉?只有少数强躁声才通过阀值电路⽽产⽣本底计数,根据统计规律?本底计数时间较长时为恒定值?故可以先测出它,然后从总计数中把它减得到信号计数?这种⽅法只能检测到微弱的正弦信号是否存在,⽽不能复现信号波形?同步累积法:利⽤信号的重复性,躁声的随机性,对信号进⾏重复累积(⼏次),使SNIR提⾼,但需耗费时间?锁定接收法(频域分析法) :锁定检测法是利⽤互相关原理,使输⼊待测的周期信号与频率相同的参考相关器中实现互相关,从⽽将深埋在躁声中的周期信号携带的信息检测出来?相关检测法: 相关检测技术是应⽤信号周期性和噪声随机性的特点,通过⾃相关或互相关运算,达到去除躁声检测出信号的⼀种技术?由于信号和躁声是相互独⽴的过程,根据相关函数和互相关函数的定义,信号只与信号本⾝相关与躁声不相关??取样积分法:取样积分(或信号平均)法是将待测的重复信号逐点多次取样并进⾏同步积累,从⽽达到从噪声中恢复信号波形的⽅法?取样积分也采⽤同步相关检测的原理和⽅法,实现从噪声中提取信号,但它的参考信号只在窗⼝持续期间与被测信相关,每周相关时间很短,此外它的相移也是在很慢的变化?取样积分由单点取样积分与多点取样积分两种?4.利⽤MATLAB产⽣出⼀个线性调频信号(chirp信号),采样频率=8000Hz,持续时间1s,起始频率=500Hz,终⽌频率=1300Hz,给出其时域波形图,请利⽤短时FFT分析函数对数据进⾏时间-频率分析,观测频率随时间的变化情况分析结果:00.10.20.30.40.50.60.70.80.91-1-0.50.51时间t/s幅度线性调频信号Time F r e q u e n c y 线性调频信号的STFT 频谱图50010001500200025003000350015. 研究⼀下利⽤⾃相关实现含噪声的正弦信号检测⽅法,并利⽤MATLAB 进⾏验证:答:相关函数的应⽤很⼴,例如,噪声中信号的检测?信号中隐含周期性信号的检测,信号相关性的检测等?设信号)(n f 由正弦信号) (n x 加均值为零的⽩噪声)(n s 所组成,即)()()(n s n x n f +=;那么)(n f 的⾃相关为∑∞=++++=0)]()()][()([1)(n m n s m n x n s n x N m R=)()()()(m R m R m R m R ss sx xs xx +++其中)(m R xs 和)(m R sx 分别是正弦信号)(n x 和⽩噪声)(n s 的互相关?⽩噪声是随机的,和信号)(n x 应⽆相关性,所以)(m R xs 和)(m R sx 应趋近于零?⽩噪声)(n s 的⾃相关函数)(m R ss 主要在n=0处有值,当0||>n 时,衰减很快?由于)(n x 是周期函数,那么)(m R xx 将呈周期变化,从⽽揭⽰出隐含在)(m R xx 中的周期性?由于)(n x 总为有限长,所以这些峰值将是逐渐衰减的,且)(m R xx 的最⼤延迟应⼩于数据长度?01002003004005006007008009001000-4-224含噪声时域正弦信号01002003004005006007008009001000-0.500.5⾃相关检测出的正弦信号6. 简述⼩波滤波的原理,并利⽤MATLAB 中的⼩波⼯具进⾏⼀个⼩波滤波练习,给出计算结果,并进⾏分析答 :信号去噪是信号处理领域的⼀个经典问题,传统的去噪⽅法主要是线性滤波和⾮线性滤波,例如中值滤波和Wiener 滤波等?⼩波变换具有下列良好特性:①低熵性②多分辨率特性③去相关性④选基灵活性?⼩波在信号去噪领域已经取得越来越⼴泛的应⽤?阈值去噪的⽅法是⼀种较好的⼩波去噪法?阈值去噪⽅法的思想就是对⼩波分解后的个层系数中模⼤于和⼩于某阈值的系数进⾏处理,然后对处理完的⼩波系数再进⾏反变换,重构出经过去噪的信号?01002003004005006007008009001000-11原始信号01002003004005006007008009001000-22含噪信号01002003004005006007008009001000-202去噪后的信号。
1-2习题1-2图所示为一个理想采样—恢复系统,采样频率Ωs =8π,采样后经过理想低通G jΩ 还原。
解:(1)根据余弦函数傅里叶变换知:)]2()2([)]2[cos(πδπδππ-Ω++Ω=t F ,)]6()6([)]6[cos(πδπδππ-Ω++Ω=t F 。
又根据抽样后频谱公式:∑∞-∞=∧Ω-Ω=Ωk s a a jk j X T j X )(1)(,得到14T= ∑∞-∞=∧--Ω+-+Ω=Ωk a k k j X )]82()82([4)(1ππδππδπ∑∞-∞=∧--Ω+-+Ω=Ωk a k k j X )]86()86([4)(2ππδππδπ所以,)(1t x a ∧频谱如下所示)(2t x a ∧频谱如下所示(2))(1t y a 是由)(1t x a ∧经过理想低通滤波器)(Ωj G 得到,)]2()2([)()()]([11πδπδπ-Ω++Ω=ΩΩ=∧j G j X t y F a a ,故)2cos()(1t t y a π=(4π) (4π) (4π)(4π)(4π) (4π) Ω-6π-10π-2π 2π0 6π10π)(1Ω∧j X a Ω10π-10π -6π-2π 0 2π6π-14π 14π(4π)(4π) (4π)(4π) (4π) (4π)(4π) (4π))(2Ω∧j X a同理,)]2()2([)()()]([22πδπδπ-Ω++Ω=ΩΩ=∧j G j X t y F a a 故)2cos()(2t t y a π=(3)由题(2)可知,无失真,有失真。
原因是根据采样定理,采样频率满足信号)(1t x a 的采样率,而不满足)(2t x a 的,发生了频谱混叠。
1-3判断下列序列是否为周期序列,对周期序列确定其周期。
(1)()5cos 86x n A ππ⎛⎫=+ ⎪⎝⎭(2)()8n j x n eπ⎛⎫- ⎪⎝⎭=(3)()3sin 43x n A ππ⎛⎫=+ ⎪⎝⎭解:(1)85πω=,5162=ωπ为有理数,是周期序列,.16=N (2)πωπω162,81==,为无理数,是非周期序列; (3)382,43==ωππω,为有理数,是周期序列,8=N 。
第一章离散时间系统4.判断下列每个序列是否是周期的,若是周期的,试确定其周期。
(1)⎪⎭⎫ ⎝⎛-=873cos )(ππn A n x (2)⎪⎭⎫⎝⎛=n A n x π313sin )( (3))6()(π-=nj e n x解:(1)由⎪⎭⎫ ⎝⎛-=873cos )(ππn A n x 可得31473220==ππωπ,所以)(n x 的周期是14。
(2)由⎪⎭⎫⎝⎛=n A n x π313sin )(可得136313220==ππωπ,所以)(n x 的周期是6。
(3)由⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-==-6sin 6cos 6sin 6cos )()6(n j n n j n e n x nj πππ,所以)(n x 是非周期的。
6.试判断(1)∑-∞==nm m x n y )()(是否是线性系统?解:根据∑-∞==nm m x n y )()(可得 ∑-∞===nm m x n x T n y )()]([)(111,∑-∞===nm m xn x T n y)()]([)(222∑∑∑∑∑-∞=-∞=-∞=-∞=-∞=+=+=++=+nm n m n m nm nm n xb n x a n bx m ax n bx n ax T n x b n x a n by n ay )()()]()([)]()([)()()()(2121212121所以系统是线性的。
9.列出图P1-9系统的差分方程并按初始条件y(n)=0,n<0,求输入为x(n)=u(n)时的输出序列y(n),并画图。
解:x 1(n)=x(n)+x 1(n-1)/4 x 1(n)- x 1(n-1)/4=x(n) x 1(n-1)- x 1(n-2)/4=x(n-1) y(n)=x 1(n)+x 1(n-1) y(n-1)/4=x 1(n-1)/4+x 1(n-2)/4y(n)-y(n-1)/4=x(n)+x(n-1) y(n) =x(n)+x(n-1) +y(n-1)/4y(0)=u(0)=1y(1)=u(1)+u(0)+y(0)/4=2+1/4y(2)=u(2)+u(1)+y(1)/4=2+(2+1/4)/4=2(1+1/4)+(1/4)2 y(3)=u(3)+u(2)+y(2)/4==2(1+1/4+(1/4)2)+(1/4)3y(n)=2(1+1/4+……+(1/4)n-1)+(1/4)ny(n)=2(1-(1/4)n )/(1-1/4)+(1/4)n =[8/3-5/3(1/4)n ]u(n)11.有一理想抽样系统,抽样角频率为π6=Ωs ,抽样后经理想低通滤波器)(ωj H a 还原,其中:⎪⎩⎪⎨⎧≥<=πωπωω30321)(j H a令有两个输入信号)2cos()(1t t x a π=,)5cos()(12t t x a π=输出信号有没有失真?为什么?解:抽样频率大于两倍信号最大频率则无失真,)2cos()(1t t x a π=信号角频率为2π<3π,y a1(n)无失真。
第三章仿真作业3.17(1)代码clear;N=32;m=[-N+1:N-1];noise=(randn(1,N)+j*randn(1,N))/sqrt(2); f1=0.15;f2=0.17;f3=0.26;SNR1=30;SNR2=30;SNR3=27;A1=10^(SNR1/20);A2=10^(SNR2/20);A3=10^(SNR3/20);signal1=A1*exp(j*2*pi*f1*(0:N-1));signal2=A2*exp(j*2*pi*f2*(0:N-1));signal3=A3*exp(j*2*pi*f3*(0:N-1));un=signal1+signal2+signal3+noise;uk=fft(un,2*N);sk=(1/N) *abs(uk).^2;r0=ifft(sk);r1=[r0(N+2:2*N),r0(1:N)];r=xcorr(un,N-1,'biased');figuresubplot(2,2,1)stem(m,real(r1));xlabel('m');ylabel('FFT估计r1实部');subplot(2,2,2)stem(m,imag(r1));xlabel('m');ylabel('FFT估计r1虚部');subplot(2,2,3)stem(m,real(r));xlabel('m');ylabel('平均估计r实部');subplot(2,2,4)stem(m,imag(r));xlabel('m');ylabel('平均估计r虚部');仿真结果(2)代码 clear; N=256;noise=(randn(1,N)+j*randn(1,N))/sqrt(2); f1=0.15; f2=0.17; f3=0.26; SNR1=30; SNR2=30; SNR3=27;A1=10^(SNR1/20); A2=10^(SNR2/20); A3=10^(SNR3/20);signal1=A1*exp(j*2*pi*f1*(0:N-1)); signal2=A2*exp(j*2*pi*f2*(0:N-1)); signal3=A3*exp(j*2*pi*f3*(0:N-1)); un=signal1+signal2+signal3+noise;-40-2002040-200020004000mF F T 估计r 1实部-40-2002040-2000-1000010002000mF F T 估计r 1虚部-40-2002040-200020004000m平均估计r 实部-40-2002040-2000-1000010002000m平均估计r 虚部spr=fftshift((1/NF)*abs(fft(un,NF)).^2);f1=(0:length(spr)-1)*(1/(length(spr)-1))-0.5; M=64;r=xcorr(un,M,'biased');bt=fftshift(abs(fft(r,NF)));f2=(0:length(bt)-1)*(1/(length(bt)-1))-0.5; figuresubplot(1,2,1)plot(f1,10*log10(spr/max(spr))); xlabel('w/2pi'); 仿真结果(3) 代码clear; N=1000;fai1=rand(1,1)*2*pi; fai2=rand(1,1)*2*pi;noise=(randn(1,N)+j*randn(1,N))/sqrt(2);un=exp(j*0.5*pi*(0:N-1)+j*fai1)+exp(-j*0.3*pi*(0:N-1)+j*fai2)+noise; p=8;cx=xcorr(un,p,'biased'); rxx=cx(p+1:2*p)'; R=toeplitz(rxx); [u,s]=eig(R);w/2piw/2piww=[-128:128]/128*pi;e=exp(-j*ww'*[0:p-1])%k行m列ev=e*u(:,1:p-2);pw=1./real(diag(ev*ev'));plot(ww/(2*pi),10*log10(pw)/max(pw));仿真结果-4-0.5-0.4-0.3-0.2-0.100.10.20.30.40.53.20(1)代码clear;N=1000;fai1=rand(1,1)*2*pi;fai2=rand(1,1)*2*pi;noise=(randn(1,N)+j*randn(1,N))/sqrt(2);un=exp(j*0.5*pi*(0:N-1)+j*fai1)+exp(-j*0.3*pi*(0:N-1)+j*fai2)+noise;p=8;cx=xcorr(un,p,'biased');rxx=cx(p+1:2*p)';R=toeplitz(rxx);[u,s]=eig(R);nw=128;ww=[-128:128]/128*pi;e=exp(-j*ww'*[0:p-1])%k行m列ev=e*u(:,1:p-2);pw=1./real(diag(ev*ev'));plot(ww/(2*pi),10*log10(pw)/max(pw));仿真结果距离单位圆最近的两个解为-0.2363-0.9717i和0.3747+0.9271i,对应的归一化频率为0.1889和-0.2880(2)代码clear;N=1000;fai1=rand(1,1)*2*pi;fai2=rand(1,1)*2*pi;noise=(randn(1,N)+j*randn(1,N))/sqrt(2);un=exp(j*0.5*pi*(0:N-1)+j*fai1)+exp(-j*0.3*pi*(0:N-1)+j*fai2)+noise; p=8;cx=xcorr(un,p,'biased');rxx=cx(p+1:2*p)';R=toeplitz(rxx);[u,s]=eig(R);nw=128;ww=[-128:128]/128*pi;e=exp(-j*ww'*[0:p-1])%k行m列ev=e*u(:,1:p-2);pw=1./real(diag(ev*ev'));plot(ww/(2*pi),10*log10(pw)/max(pw));仿真结果3.21-2-1123456-3clear;N=1000;fai1=rand(1,1)*2*pi;fai2=rand(1,1)*2*pi;noise=(randn(1,N)+j*randn(1,N))/sqrt(2);un=exp(j*0.5*pi*(0:N-1)+j*fai1)+exp(-j*0.3*pi*(0:N-1)+j*fai2)+noise; p=8;for k=1:N-pxs(:,k)=un(k+p-1:-1:k)';endrxx=xs(:,1:end-1)*xs(:,1:end-1)'/(N-p-1);rxy=xs(:,1:end-1)*xs(:,2:end)'/(N-p-1);[u,e]=svd(rxx);ev=diag(e);emin=ev(end);z=[zeros(p-1,1),eye(p-1);0,zeros(1,p-1)];cxx=rxx-emin*eye(p);cxy=rxy-emin*z;[U,E]=eig(cxx,cxy);Z=diag(E);ph=angle(Z)/(2*pi);err=abs(abs(Z)-1);仿真结果最接近单位圆的两个解分别为0.5867+0.8097i和0.0349-0.9984i,对应的归一化频率为0.1502和-0.2444。
现代数字信号处理技术复习题一、填空题1、平稳随机信号是指:概率分布不随时间推移而变化的随机信号,也就是说,平稳随机信号的统计特性与起始时间无关,只与时间间隔有关。
判断随机信号是否广义平稳的三个条件是:(1)x(t)的均值为与时间无关的常数:C t m x =)( (C 为常数) ;(2)x(t)的自相关函数与起始时间无关,即:)(),(),(ττx i i x j i x R t t R t t R =+=;(3)信号的瞬时功率有限,即:∞<=)0(x x R D 。
高斯白噪声信号是指:噪声的概率密度函数满足正态分布统计特性,同时其功率谱密度函数是常数的一类噪声信号。
信号的遍历性是指:从随机过程中得到的任一样本函数,好象经历了随机过程的所有可能状态,因此,用一个样本函数的时间平均就可以代替它的集合平均 。
广义遍历信号x(n)的时间均值的定义为: ,其时间自相关函数的定义为: 。
2、连续随机信号f(t)在区间上的能量E 定义为:其功率P 定义为:离散随机信号f(n)在区间上的能量E 定义为:其功率P 定义为:注意:(1)如果信号的能量0<E<∞,则称之为能量有限信号,简称能量信号。
(2)如果信号的功率0<P<∞,则称之为功率有限信号,简称功率信号。
3、因果系统是指:对于线性时不变系统,如果它在任意时刻的输出只取决于现在时刻和过去时刻的输入,而与将来时刻的输入无关,则该系统称为因果系统。
4、对平稳随机信号,其自相关函数为)(τx R ,自协方差函数为)(τx C , (1)当0→τ时,有:)(τx R =x D ,)(τx C =2x σ。
(2)当∞→τ时,有:)(τx R =2x m ,)(τx C =0。
5、高斯-马尔可夫随机信号的自相关函数的一般表达式可表示为:||)(τβητ-e R x = 。
6、高斯–马尔可夫信号)(t x 的自相关函数为||410)(ττ-e R x =,其均值 0)(=∞=x x R m ,均方值10)0(==x x R D ,方差102==x D σ。
现代数字信号处理作业
1、请用MATLAB编程举例阐述一维信号压缩与重建(P349 例8.7.1)。
2、请用MATLAB编程举例阐述图像压缩与重建(P350 例8.7.2)。
3、请举例用MATLAB的Spectrum.m进行功率谱估计(P530 13.5)。
4、请用MATLAB编程举例介绍现代普估计各种算法的优缺点(至少3种,P584)。
5、请用MATLAB编程举例阐述自适应谱线增强(P631)。
6、请用MATLAB编程举例阐述自适应滤波在系统辨识中的运用(P625 16.5)。
7、请用MATLAB编程举例阐述自适应噪声抵消(P628 16.5.2)。
8、请用MATLAB编程举例阐述自适应预测(P630 16.5.3)。
9、请用MATLAB编程举例阐述自适应均衡(P632 6.5.4 自适应均衡)。
10、请用MATLAB编程举例阐述卡尔曼滤波的运用。
11有限冲激响应(FIR)数字滤波器设计的设计,请用MATLAB编程举例阐述12图像DCT变换及图像压缩,,请用MATLAB编程举例阐述
13自适应抵消的应用,请用MATLAB编程举例阐述
14经典功率谱分析应用,请用MATLAB编程举例阐述
15卡尔曼滤波应用的一个例子,请用MATLAB编程举例阐述
16自适应滤波器应用的一个例子,请用MATLAB编程举例阐述
17 谢锦华-基于DCT的一维信号的压缩与重建的一个例子,请用MATLAB编程举例阐述
18 自适应均衡应用的一个例子,请用MATLAB编程举例阐述
19自适应预测应用的一个例子,请用MATLAB编程举例阐述
20 自适应滤波器应用的一个例子,请用MATLAB编程举例阐述
21 图像加密与解密的一个例子,请用MATLAB编程举例阐述。