20.1.1平均数(1)教案
- 格式:doc
- 大小:46.50 KB
- 文档页数:3
20 年月日总第课时
本单元第课时课型
20.1.1平均数(1)
一、学习目标:
1、理解数据的权和加权平均数的概念
2、掌握加权平均数的计算方法
3、通过本节课的学习,还应理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、引入新课:老师对同学们每学期总评成绩是这样做的: 平时练习占30%, 期中考试占30%, 期末考试占40%. 某同学平时练习93 分, 期中考试87分, 期末考试95分, 那么如何来评定该同学的学期总评成绩呢?
1.在一个班的40名学生中,14岁的有5人,15岁的有30人,16岁的有4人,17岁的有1
(精确到1岁)
2.小明同学在初二年级第一学期的数学成
绩如下表格, 按图示的平时、期中、期末
的权重, 计算小明同学的学期总评成绩.
三、例题讲解
问题1如果公司想招一名综合能力较强
的翻译,请计算两名应试者的平均成绩,
应该录用谁?
问题2如果公司想招一名笔译能力较强
第1 页共1 页。
20.1.1 平均数(第1课时)一、内容和内容解析1.内容加权平均数.2.内容解析数据分析是统计的重要环节,平均数是衡量一组数据集中趋势的重要统计量,它反映了一组数据的平均水平.当一组数据中各个数据重要程度不同时,加权平均数能更好的反映对某些数据的侧重.权反映的是数据的相对重要程度,当一组数据中的每个数据的权相同时,加权平均数就是算术平均数.基于以上分析,本节课的教学重点是:对加权平均数统计意义的理解.二、目标和目标解析1.目标(1)理解加权平均数的意义.(2)会用加权平均数分析一组数据的集中趋势,发展数据分析能力,逐步形成数据分析观念.2.目标解析目标(1)是让学生能理解“权”是数据的相对“重要程度”,体会权的差异对平均数的影响,会计算加权平均数,能了解算术平均数和加权平均数的区别与联系.目标(2)是当学生面对一组数据时,能根据具体情境负于适当的权,会用平均数分析数据的集中趋势,解释其实际意义.三、教学问题诊断分析由于生活经验的局限,同时受认知水平的影响,学生对权的意义和作用的理解可能会有困难,在运用加权平均数分析数据时,容易混淆数据和权.另外学生会受到先前算术平均数学习经验的负迁移,在需要用加权平均数分析数据时却选用算术平均数.部分学生往往只会记住公式,而不会解释数据分析结果的实际意义(统计意义),把统计问题的学习仅仅停留在计算层面.本节课的教学难点是:对权的意义的理解,用加权平均数描述数据的集中趋势.四、教学过程设计 1.创设情境 提出问题当我们收集到数据后,通常是用统计图表整理和描述数据,为了进一步获取信息,还需要对数据进行分析.以前我们学习过平均数,知道它可以反映一组数据的平均水平.本节课我们将在实际问题情境中,进一步探讨平均数的统计意义.设计意图:通过教师讲述章前语(师生共同阅读),让学生回顾调查统计的一般步骤,了解本节课的学习内容,同时体会到数据分析是统计的重要环节,而平均数是数据分析中常用的统计量.问题 1 一家公司打算招聘一名英文翻译,对甲、乙两名候选人进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:如果这家公司想招一名综合能力较强的翻译,该录用谁?录用依据是什么?师生活动:学生提出评判依据,若学生提出以总分作为依据,教师要将学生的回答引导到算术平均数,再通过师生共同计算,理解公式12nx x x nx +++=的意义是所有数据的和与数据个数的商,体会公式中分子与分母意义,为后继学习奠定基础.设计意图:回顾小学平均数的意义:一组数据的平均数是这组数据的总和与数据个数的商.说明算术平均数在统计学中能反映一组数据总体的平均水平(集中趋势),为后面引入加权平均数作铺垫.问题2 如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定,应该录取谁?追问1:用算术平均数解决问题2合理吗?为什么?追问2:“听、说、读、写成绩按照2∶1∶3∶4的比例确定”说明在计算平均数中哪一项最重要?追问3:如何在计算平均数时体现“听、说、读、写”的差别?师生活动:教师提出问题,学生思考问题解决方案,若不能提出合适的方案,教师再通过3个追问进行引导.设计意图:追问1可引导学生从生活经验入手感性的进行分析;追问2让学生明白参与运算的各项“重要程度”不同,且这个不同点需要体现;追问3让学生自主研究问题的解决方法,将“重要程度”不同的数据纳入计算,并能说明这种计算方式的合理性;初步体会“重要程度”的作用,最后列出正确算式,给出权的意义.从追问1到时追问3,循序渐进,层层深入,为“权”的产生提供自然合理的背景,激发学生进一步思考,获得解决问题的方案——修订平均数的计算方法.2.抽象概括 形成概念思考:这个问题中,各个数据的重要程度不同(权不同),这种计算平均数的方法是否能推广到一般?追问:若n 个数据x 1,x 2,···,x n 的权分别为w 1,w 2,···,w n ,这n 个数据的平均数该如何计算?师生活动:教师引导学生得到加权平均数公式:一般的,若n 个数x 1,x 2,···,x n 的权分别是w 1,w 2,···,w n ,则这n 个数的加权平均数是:112212······n nnx x x w ++++++ w w w w w .设计意图:从特殊到一般,给出加权平均数的一般公式. 3.比较辨别 理解新知问题3:如果这家公司想招一名口语能力较强的翻译,应该侧重哪些分项成绩?如果听、说、读、写成绩按照3∶3∶2∶2的比确定两人的测试成绩,那么谁将被录取?与问题2中的(1)(2)相比较,你能体会到权的作用吗?师生活动:学生独立完成计算过程,难点是对权的作用的讨论,得到结论“同样的一组数据,如果规定的权变化,则加权平均数随之改变”.学生已有进一步的体会,但较难用语言来表达,教师要进行必要的指导.设计意图:在实例中根据需要,改变权的数值,得到不同的结果,让学生再次感受加权平均数中权的作用.问题4:你认为问题1中各数据的权有什么关系?通过上述问题的解决,说说你对权的认识.师生活动:引导学生概括问题1中各数可看作是权相同的,指出两种平均数之间的联系. 设计意图:帮助学生理解两种平均数的区别与联系,再一次体验权的作用. 4.例题教学 应用新知例1 一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均为百分制,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示,请确定两人的名次.师生活动:教师指导学生阅读例题,学生自主进行分析,适当的时候提示学生:演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度是用什么数据体现的?它们的权分别是什么?要确定两人的总成绩,实质是求他们各项成绩的加权平均数,如何计算?提示学生权是以百分数的形式呈现的;学生根据加权平均数的计算公式先分别计算出两名选手的总成绩,教师引导并板书解答过程,规范解题格式.设计意图:继续以“权的意义理解”为目标,选取典型的生活实例为背景,通过教师指导,学生自主阅读、分析、解题,提高学生独立分析问题、解决问题的能力,并规范解题格式.追问:A、B两名选手的单项成绩都是两个95分,一个85分,为什么他们的最后得分不同呢?师生活动:教师引导学生进行解题反思,同时引导学生思考:不计算,仅分析数据及其权,可否估计两人的名次.设计意图:通过追问,让学生深入体会权的作用,培养学生的估算能力.5.巩固应用解决问题练习 1 某公司欲招聘一名公关人员,对甲、乙两位应试者进行了面试与笔试,他们的成绩(百分制)如下表所示.(1)如果公司认为面试和笔试同等重要,从他们的成绩看,谁将被录取?(2)如果公司认为,作为公关人员面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?师生活动:学生独立解决问题,并说明权的变化怎样影响结果的变化.设计意图:加权平均数的概念提出后,直接进行巩固应用,加深学生对概念的理解.6.深化拓展灵活运用练习2 某广告公司欲招聘职员一名,对A,B,C三名候选人进行了三项素质测试,他们的各项测试成绩如下表所示:(1)公司可从网络维护员、客户经理、创作总监这三种岗位中招聘一名职员,给三项成绩赋予相同的权合理吗?(2)请你设计合理的权重,为公司招聘一名职员.师生活动:教师呈现开放题,学生赋权,重点让学生在加权平均数的应用过程中,主动赋权,体会权的作用.设计意图:设置开放性问题,让学生主动运用权的作用,影响一组数据的平均水平,帮助学生内化权的意义的理解,发展数据分析观念.7.小结结合以下问题,教师与学生一起回顾本节课所学主要内容:(1)加权平均数在数据分析中的作用是什么?(2)权的作用是什么?设计意图:问题(1)引导学生回顾加权平均数的意义,体会它产生的必要性;问题(2)引导学生回顾权的意义和作用.五、目标检测设计1.某次歌唱比赛中,选手小明的唱功、音乐常识、综合知识成绩分别为88分、81分、85分,若这三项按4∶3∶2的比计算比赛成绩,则唱功、音乐常识、综合知识成绩的权分别为________、________、和________,小明的最后成绩是_______.设计意图:考核权的意义和加权平均数的概念.2.某班共有50名学生,平均身高168 cm,其中30名男生的平均身高为170 cm,则20名女生的平均身高为________.设计意图:考核用加权平均数估计数据的集中趋势.3.学校食堂午餐供应5元、8元和12元的3种价格的盒饭.根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂销售午餐盒饭的平均价格是________.设计意图:结合扇形统计图考查加权平均数.4.小明所在班级为希望工程捐款,他统计了全班同学的捐款情况,并绘制成如图所示的统计图,根据统计图,可计算全班同学平均每人捐款_____元.设计意图:考查学生由条形图获取信息并应用加权平均数解决实际问题的能力.。
nx x x x x n +++= 32120.1.1 《平均数》教案教学目标:(一)知识与技能:1.掌握算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数。
2.体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题,发展学生数学应用能力。
(二)过程与方法:经历在实际问题中求平均数和加权平均数的过程,发展学生的计算能力和解决问题的能力。
(三)情感、态度与价值观:通过经历在实际问题中求平均数和加权平均数的过程,让学生进一步明白身边处处是数学。
教学重点:会求一组数据的算术平均数和加权平均数。
教学难点:体会平均数在不同情境中的应用。
教学方法:引导-讨论-交流。
教学手段:多媒体教学课时:1课时教学过程:一、出示学习目标, 让学生自学(自学指导)。
二、检查自学1.有6个数,它们的平均数是12,则它们的和为_______。
2.四个同学把压岁钱存入银行,存入的钱数分别为1180元、350元、420元、880元,平均每人存入______元。
3.已知某5个数的和是A ,另6个数的和是B ,则这11个数的平均数是_______。
4.像这样,对于n 个数x 1,x 2,x 3,…x n ,则就叫做这n 个数的算术平均数。
简称平均数,记为 .读作“x 拔”.5.某校规定:学生期末总评成绩由考试成绩、平时成绩、社会实践成绩三部分构成,它们依次占60%、20%、20%。
小明本学期三部分的成绩分别为90分、80分、85分,则他的总评成绩为_________.像上面的几个题中60%、20%、20%就是90分、80分、85分的权,权表示数据的重要程度。
若n 个数,x 1,x 2,x 3,…,x n 的权分别是w 1,w 2,w 3…,w n ,则n nn w w w w x w x w x w x w x +++++++= 321332211叫做这n 个数的加权平均数三、例题解析例题: 一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:绩按照3:3:2:2的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2:2:3:3的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?四、当堂训练:1、某公司欲招聘公关人员,对甲、乙候选人进行了面视和笔试,他们的(1)如果公司认为面试和笔试同等重要,从他们的成绩看,谁将被录取(2)如果公司认为,作为公关人员面试的成绩应该比笔试更重要,并分别赋予它们6和4的权,计算甲、两人各自的平均成绩,看看谁将被录取。
人教版义务教育课程标准实验教科书八年级下册20.1.1平均数(1) 教学设计一、内容和内容解析1.内容人教版八年级下册“20.1.1平均数”第一课时.2.内容解析统计活动的几个环节中,数据的分析是在对数据的收集、整理基础之上进行的,是统计活动中最重要的环节.平均数是最常用、最基本的数据分析方法,反映一组数据的“平均水平”,并与中位数、众数相结合,通过对数据集中趋势的描述,体现数据向其中心值靠拢或聚集的程度,因此平均数(尤其是加权平均数)是统计中的一个重要概念.本节着重研究加权平均数,“权”的重要性在于它反映的是数据的相对“重要程度”.尽管学生在以前的学习中已初步了解了平均数的意义,并会计算权数相等情况下的算术平均数,但对加权平均数的意义以及“权”的作用理解仍将非常困难,教学中应尽量列举典型的、贴近学生生活和具有现实意义的生活例子,在对实际问题的分析和解决中加深对“权”的理解和体会,渗透平均数和“权”的统计思想,为更好地进行数据的描述与分析,为实现后继统计知识的学习目标──建立统计观念、突出统计思想奠定基础.基于上述分析,确定本节教学重点是:以具体问题为载体,在实际问题情景中理解加权平均数的意义和作用,学会运用加权平均数解决实际问题.二、目标和目标解析1.通过本节教与学的活动,使学生了解平均数(加权平均数)的统计意义,理解“权”的意义和作用,学会计算加权平均数.教学中,以具体实例研究为载体,了解平均数可以描述一组数据的“平均水平”,理解“权”反映数据的相对“重要程度”,体会“权”的作用,使学生更全面的理解加权平均数,正确运用加权平均数解决实际问题.2.通过对加权平均数的学习,经历运用数据描述信息,作出推断的过程,体验统计与生活的联系,形成和发展统计观念,体会权的统计思想,养成用数据说话的习惯和实事求是的科学态度.3.通过具体问题的解决,培养学生严谨的统计精神,思维的深刻性.通过设计“我来决策”等教学活动,让学生学会从不同的侧面有侧重地对评价对象进行全面的客观的考察和评价,培养科学严谨的数学精神和思维的深刻性.三、教学问题诊断分析1.教师教学可能存在的问题:(1)就本论本,不能很恰当地列举典型的、贴近学生生活的现实例子,以具体的实际问题为载体,创设问题情景,揭示概念;(2)不能设计有效的数学问题,使学生通过有思维含量的数学活动,引导学生对“权”的意义和作用有深刻的理解;(3)过分强调知识的获得,忽略了统计思想的揭示和统计观念的建立;(4)对前两个学段中学生已经具有的相关平均数的知识经验了解不足,致使引入的问题太过简单或难度要求过高,导致学生的学习积极性不高.2.学生学习中可能出现的问题:(1)由于生活经验不足,同时受认知水平的影响,对抽象的“权”的意义和作用的理解会有所困难;(2)尽管在第一、第二学段已经学习了统计的简单知识,但对统计的意义和统计思想的理解尚处在最粗浅的认识层面,加之对“权”理解的困难,所以可能会感到这部分知识的学习比较抽象,缺少学习的激情.鉴于上述分析,确定本节的教学难点是:列举典型的、贴近学生生活的、和具有现实意义的生活例子,通过设计有效的、有思维含量的数学问题,激活学生的数学思维,深入理解数据的权的意义和作用.三、学准备:多媒体课件、导学案四、学过程。
《平均数》学历案(第一课时)一、学习主题本课学习主题为“初中数学课程《平均数》”,旨在让学生掌握平均数的概念、计算方法及其在日常生活中的应用。
通过本课的学习,学生将能够理解平均数的意义,学会用平均数来描述一组数据的整体水平。
二、学习目标1. 知识与技能:(1)理解平均数的概念,知道平均数是一组数据的和除以数据的个数所得的结果。
(2)掌握平均数的计算方法,能够熟练地运用平均数进行计算。
(3)了解平均数在日常生活中的应用,能够用平均数来描述一组数据的整体水平。
2. 过程与方法:(1)通过观察、分析具体实例,让学生自主探究平均数的概念和计算方法。
(2)通过小组合作,让学生共同解决问题,培养合作与交流的能力。
3. 情感态度与价值观:(1)激发学生的学习兴趣,提高学生对数学的认识和热爱。
(2)通过实际问题,让学生感受到数学在生活中的作用,培养应用意识。
三、评价任务1. 概念理解评价:通过课堂提问和小组讨论,评价学生对平均数概念的理解程度。
2. 计算能力评价:通过布置相关练习题,评价学生的平均数计算能力。
3. 应用能力评价:通过让学生解决实际问题,评价学生将平均数应用于实际生活的能力。
四、学习过程1. 导入新课:通过生活中的实例,引导学生思考如何描述一组数据的整体水平,从而引入平均数的概念。
2. 探究新知:通过具体实例,让学生自主探究平均数的概念和计算方法。
教师可以引导学生观察、分析、总结,让学生自主发现平均数的计算方法。
3. 小组合作:让学生分组,共同解决问题,互相交流,培养合作与交流的能力。
教师可以根据学生的实际情况,设计合适的问题,让学生进行小组合作。
4. 归纳总结:让学生总结本课所学知识,巩固记忆。
教师可以进行适当的补充和强调。
五、检测与作业1. 检测:通过布置相关练习题,检测学生对平均数概念和计算方法的掌握情况。
2. 作业:布置相关实际问题,让学生将所学知识应用于实际生活中,培养学生的应用意识。
六、学后反思1. 教师反思:教师应对本课教学进行反思,总结教学经验,找出不足之处,为今后的教学提供借鉴。
20.1 数据的集中趋势20.1.1 平均数第1课时平均数和加权平均数1.知道算术平均数和加权平均数的意义,会求一组数据的算术平均数和加权平均数;(重点)2.理解“权”的差异对平均数的影响,算术平均数与加权平均数的联系与区别,并能利用它们解决实际问题.(难点)一、情境导入在日常生活中,我们经常会与平均数打交道,但有时发现以前计算平均数的方法并不适用.你知道为什么要这样计算吗?例如老师在计算学生每学期的总评成绩时,不是简单地将一个学生的平时成绩与考试成绩相加除以2,作为该学生的总评成绩,而是按照“平时成绩占40%,考试成绩占60%”的比例计算(如图).二、合作探究 探究点一:平均数【类型一】 已知一组数据的平均数,求某一个数据如果一组数据3,7,2,a ,4,6的平均数是5,则a 的值是( )A .8B .5C .4D .3解析:∵数据3,7,2,a ,4,6的平均数是5,∴(3+7+2+a +4+6)÷6=5,解得a =8.故选A.方法总结:关键是根据算术平均数的计算公式和已知条件列出方程求解.【类型二】 已知一组数据的平均数,求新数据的平均数已知一组数据x 1、x 2、x3、x4、x5的平均数是5,则另一组新数据x1+1、x2+2、x3+3、x4+4、x5+5的平均数是( )A.6 B.8 C.10 D.无法计算解析:∵x1、x2、x3、x4、x5的平均数为5,∴x1+x2+x3+x4+x5=5×5,∴x1+1、x2+2、x3+3、x4+4、x5+5的平均数为(x1+1+x2+2+x3+3+x4+4+x5+5)÷5=(5×5+15)÷5=8.故选B.方法总结:解决本题的关键是用一组数据的平均数表示另一组数据的平均数.探究点二:加权平均数【类型一】以频数分布表提供的信息计算加权平均数某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是( )A.6.2小时B.6.4小时C.6.5小时D.7小时解析:根据题意得(5×10+6×15+7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时),故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选B.方法总结:计算加权平均数时,要首先明确各项的权,再将已知数据代入加权平均数公式进行计算.【类型二】以频数分布直方图提供的信息计算加权平均数小明统计本班同学的年龄后,绘制如右频数分布直方图,这个班学生的平均年龄是( ) A.14岁 B.14.3岁C.14.5岁 D.15岁解析:该班同学的年龄和为13×8+14×22+15×15+16×5=717岁.平均年龄是717÷(8+22+15+5)=14.34≈14.3(岁).故选B.方法总结:利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.【类型三】以百分数的形式给出各数据的“权”某招聘考试分笔试和面试两种,其中笔试按40%、面试按60%计算加权平均数作为总成绩,小华笔试成绩为90分,面试成绩为85分,那么小华的总成绩是( ) A.87分B.87.5分C.88分D.89分解析:∵笔试按40%、面试按60%,∴总成绩为90×40%+85×60%=87(分).故选A.方法总结:笔试和面试所占的百分比即为“权”,然后利用加权平均数的公式计算.【类型四】以比的形式给出各数据的“权”小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A.255分B.84分C.84.5分D.86分解析:根据题意得85×22+3+5+80×32+3+5+90×52+3+5=17+24+45=86(分).故选D.方法总结:“权”的表现形式,一种是比的形式,如5∶3∶2;另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%.“权”的大小直接影响结果.【类型五】加权平均数的实际应用学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.解析:(1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;(2)先用加权平均数公式,计算甲、乙的平均数,然后比较计算结果,结果大的胜出.解:(1)x乙=(73+80+82+83)÷4=79.5,∵80.25>79.5.∴应选派甲;(2)x甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,x乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4.∴应选派乙.方法总结:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,“权”的差异对结果会产生直接的影响.三、板书设计1.平均数与算术平均数2.加权平均数“权”的表现形式这节课,大多数学生在课堂上表现积极,并且会有自己的思考,有的同学还能把不同意见发表出来,师生在课堂上的交流活跃,学生的学习兴趣较高.在这种前提下,简便算法的推出就水到渠成了.教学设计也努力体现新课改的新理念,如培养学生数学的思维能力,教会学生从生活中学习数学,课内外结合等等.。
人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案一. 教材分析平均数和加权平均数是初中数学八年级下册的教学内容,主要让学生了解平均数的定义和性质,掌握加权平均数的计算方法。
本节课通过引入实际问题,引导学生探讨平均数的求法,进而引出加权平均数的概念,并通过例题讲解和练习,使学生熟练掌握加权平均数的计算方法。
二. 学情分析学生在七年级已经学习了算术平均数的概念,对本节课的内容有一定的认知基础。
但部分学生对概念的理解不够深入,对实际问题的分析能力有待提高。
此外,学生在运算能力方面也存在差异,部分学生对复杂运算的计算过程不够熟练。
三. 教学目标1.理解平均数的定义和性质,掌握加权平均数的计算方法。
2.能运用加权平均数解决实际问题,提高分析问题和解决问题的能力。
3.培养学生的运算能力和合作精神,提高学生的数学素养。
四. 教学重难点1.重点:加权平均数的计算方法。
2.难点:对实际问题中权重的理解和运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究平均数的定义和性质。
2.通过实例分析,让学生了解加权平均数的应用,培养学生的实际问题解决能力。
3.利用小组合作学习,让学生在讨论中巩固知识,提高合作意识。
4.采用讲练结合的方法,对学生进行有针对性的辅导,提高学生的运算能力。
六. 教学准备1.准备相关的实际问题,用于引导学生探讨平均数的概念。
2.准备PPT课件,展示平均数和加权平均数的定义和性质。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如成绩统计、商品销售等,引导学生思考如何求解这些问题的平均值。
通过讨论,让学生回顾算术平均数的概念,为新课的学习做好铺垫。
2.呈现(15分钟)讲解平均数的定义和性质,引导学生理解平均数的概念。
通过PPT课件展示加权平均数的定义,让学生了解加权平均数与算术平均数的关系。
同时,讲解加权平均数的计算方法,让学生掌握计算加权平均数的基本步骤。