DNA的结构
- 格式:ppt
- 大小:3.64 MB
- 文档页数:73
dna分⼦的结构是什么结构的双螺旋
DNA分⼦由两条平⾏的链组成,两条链互相绕成螺旋状,称为双螺旋。
每条链都由称为脱氧核糖的糖分⼦与磷酸在交替连接⽽成。
脱氧核糖核酸(DNA)结构
两条单链以双螺旋结构结成。
单链是指由许多脱氧核苷酸残基按⼀定顺序彼此⽤3’,5’-磷酸⼆酯键相连构成的长链。
作⽤是:原核细胞的染⾊体是⼀个长DNA分⼦。
真核细胞核中有不⽌⼀个染⾊体,每个染⾊体也只含⼀个DNA分⼦。
不过它们⼀般都⽐原核细胞中的DNA分⼦⼤⽽且和蛋⽩质结合在⼀起。
DNA分⼦的功能是贮存决定物种的所有蛋⽩质和RNA结构的全部遗传信息;策划⽣物有次序地合成细胞和组织组分的时间和空间;确定⽣物⽣命周期⾃始⾄终的活性和确定⽣物的个性。
除染⾊体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。
DNA病毒的遗传物质也是DNA。
DNA分⼦结构的特点:
(1)DNA分⼦是由两条链组成的,并按反向平⾏⽅式盘旋成双螺旋结构。
(2)DNA分⼦中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本⾻架;碱基排列内侧。
(3)两条链上的碱基通过氢键连接成碱基对,即:A和T配对,G和C配对。
(碱基互补配对原则)。
dna结构
DNA的一级结构,就是指4种脱氧核苷酸的链接及排列顺序;
DNA的二级结构是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构;
DNA三级结构是DNA分子可以在双螺旋的基础上,进一步绕同一中心轴扭转,造成额外的螺旋。
1、DNA的一级结构,就是指4种脱氧核苷酸的链接及排列顺序,表示了该DNA分子的化学构成。
核苷酸相互连接形成长的多核苷酸链。
两个核苷酸之间的连接通常是通过磷酸二酯键,该键将一个核苷酸的磷酸基团与另一个核苷酸的脱氧核糖连接。
由四种脱氧核苷酸通过磷酸二酯键连接而成的长链高分子多聚体为DNA分子的一级结构。
2、DNA的二级结构是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构。
两条多核苷酸链以相同的旋转绕同一个公共轴形成右手双螺旋,螺旋的直径2.0nm;两条多核苷酸链是反向平行的,一条5’-3方向,另一条3’-5’方向;两条多核苷酸链的糖-磷酸骨架位于双螺旋外侧,碱基平面位于链的内侧;相邻碱基对之间的轴向距离为0.34nm,每个螺旋的轴距为3.4n
3、DNA三级结构是DNA分子可以在双螺旋的基础上,进一步绕同一中心轴扭转,造成额外的螺旋。
环状分子的额外螺旋可以形成超螺旋。
超螺旋可以是右手螺旋(正超螺旋),也可以是左手螺旋(负超螺旋)。
对于环状分子而言,有其拓扑学上特定规律:L=T+W。
DNA的分子结构和特点
一.DNA的分子结构
DNA(Deoxyribonucleic acid)是指一种核酸,它是一种左旋半胱氨
酸二糖,是有机分子中最大的一种,它包含有一个糖基骨架,也称作双螺
旋(double helix)。
DNA的每一个碱基对中含有一个碱基,碱基有P
(腺嘌呤,Adenine)和Q(胞嘧啶,Guanine)、T(胸腺嘧啶,Thymine)和C(胞嘧啶,Cytosine),它们之间形成非共价键关系,以构成DNA分
子的双螺旋结构。
其中,P与Q形成两个氮原子之间的三原子氢键,而T
与C之间则由两组二原子硫键构成双螺旋的一条边。
二.DNA的特点
1.DNA的双螺旋结构是其特有的特点,每条DNA分子都是一个由碱基
对组成的双螺旋结构,它们之间形成了一个特殊的结构,这允许DNA在其
双螺旋结构中存储信息、转录和翻译基因密码子。
2.DNA的具有强烈的能量和稳定性。
DNA分子的稳定性比一般有机分
子都要高,并且具有良好的酸碱分析能力,可以有效地吸收环境中存在的
营养物质,在生物体发展中发挥重要作用。
3.DNA具有良好的熔点。
DNA分子的熔点比较高,在此温度下分子就
可以被分解,从而进行DNA的分子克隆、序列分析、基因工程等活性操作,因此,DNA的熔点是其重要特点之一
4.DNA具有优异的遗传性能。
DNA是遗传物质,它可以从一代传到另
一代,从而保证生物体进化的连续性。
DNA的结构与复制DNA(脱氧核糖核酸)是一种重要的生物分子,它负责存储和传递生物遗传信息。
在本文中,我们将探讨DNA的结构及其在细胞中的复制过程。
一、DNA的结构DNA由两条互补的链组成,每条链都由一系列核苷酸单元连接而成。
每个核苷酸单元由一个含有糖分子(脱氧核糖)的核苷酸碱基、一个磷酸基团和一个含有氮碱基的碱基组成。
DNA分子的两条链通过碱基间的氢键互相结合,形成一个双螺旋结构。
DNA的碱基组成包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)。
这些碱基按照一定的规则组合,形成了遗传信息的密码。
二、DNA的复制DNA复制是指在细胞中生成与原有DNA完全相同的新DNA分子的过程。
它是细胞分裂和生物遗传的基础。
1. 需要的材料和酶DNA复制需要一些材料和酶来完成。
首先,需要一个DNA模板,它提供了复制过程中所需的遗传信息。
其次,需要四种核苷酸单元,即腺苷酸(A)、胸苷酸(T)、鸟苷酸(G)和胞苷酸(C),它们将与模板DNA上的互补碱基配对。
最后,还需要DNA聚合酶等酶类来催化反应。
2. 复制的步骤DNA复制可以分为三个步骤:解旋、复制和连接。
(1)解旋:复制开始时,DNA双螺旋结构被酶解开,形成两条单链。
(2)复制:在每条单链上,核苷酸单元与模板DNA上的互补碱基配对。
例如,A与T配对,G与C配对。
DNA聚合酶能够催化这些核苷酸单元的连接,形成新的DNA链。
(3)连接:新合成的DNA链与原有的DNA链连接在一起,形成完整的双螺旋结构。
这一过程由DNA连接酶完成。
三、DNA复制的意义DNA复制是细胞生命周期中一个重要的过程,它具有以下几个重要的意义:1. 遗传信息的传递:通过复制,细胞能够将遗传信息传递给下一代细胞。
这样,生物的遗传特征得以传承和保持。
2. 细胞分裂的基础:DNA复制是细胞分裂过程中的关键步骤。
在细胞分裂时,新生成的细胞需要获得与母细胞完全相同的DNA。
3. 突变和进化的基础:在DNA复制过程中,有时会发生错误。
∙DNA分子的结构:1、DNA的元素组成:C、H、O、N、P2、DNA分子的结构:DNA的双螺旋结构,两条反向平行脱氧核苷酸链,外侧磷酸和脱氧核糖交替连结,内侧碱基对(氢键)碱基互补配对原则。
3、模型图解:4、DNA分子的结构特性(l)稳定性:DNA分子中脱氧核糖和磷酸交替连接的方式不变;两条链间碱基互补配对的方式不变。
(2)多样性:DNA分子中碱基时排列顺序多种多样。
(3)特异性:每种DNA有别于其他DNA的特定的碱基排列顺序。
∙∙知识点拨:碱基互补配对的规律:∙∙知识拓展:1、两条链之间的脱氧核苷酸数目相等→两条链之间的碱基、脱氧核糖和磷酸数目对应相等。
2、碱基配对的关系是:A(或T)一定与T(或A)配对、G(或C)一定与C(或G)配对,这就是碱基互补配对原则。
其中,A与T之间形成2个氢键,G与C之间形成3个氢键。
3、DNA分子彻底水解时得到的产物是脱氧核苷酸的基本组分,即脱氧核糖、磷酸、含氮碱基。
∙题文生物体内某些重要化合物的元素组成和功能关系如图所示。
其中X、Y代表元素,A、B、C是生物大分子,①、②、③代表中心法则的部分过程。
请据图回答下列问题:(1)紫茉莉细胞中A分子中含有的矿质元素是_______,中学生物学实验鉴定A分子通常用_______试剂,鉴定C分子______(需、不需)要沸水浴加热。
(2)甲型H1N1流感病毒体内含有小分子a_____种,小分子b_____种。
(3)不同种生物经过①合成的各新A生物大分子之间存在着三点差异,这些差异是什么?________,_______ _,________。
(4)在经过①合成的各新A生物大分子中,(C+G):(T+A)的比值与其模板DNA的任一单链________(相同、不相同)。
题型:读图填空题难度:偏难来源:广西自治区模拟题答案(1)N、P 二苯胺不需(2)0 4(3)碱基的数目不同碱基的比例不同碱基排列顺序不同(4)相同题文下图是某种遗传病的家系图(显、隐性基因用A、a表示)。
DNA的结构一、DNA的一级结构——碱基序列DNA的一级结构即是指四种核苷酸(dAMP、dCMP、dGMP、dTMP)按照一定的排列顺序,通过磷酸二酯键连接形成的多核苷酸,由于核苷酸之间的差异仅仅是碱基的不同,故又可称为碱基顺序。
【要点】:1、DNA中的碱基排列顺序构成了DNA的一级结构。
2、核苷酸之间的连接方式是:一个核苷酸的5′位磷酸与下一位核苷酸的3′-OH形成3′,5′磷酸二酯键,构成不分支的线性大分子。
3、DNA分子具有严格的方向性。
5′末端为游离磷酸基,3′末端为游离羟基(-OH)。
二、DNA的二级结构——双螺旋结构1、双螺旋结构模型(1)DNA是反向平行的互补双链结构①两条脱氧核苷酸链反向平行,一股链是5′→3′走向,另一股链是3′→5′走向。
②脱氧核糖和磷酸通过磷酸二酯键交替连接位于双链外侧,形成DNA分子骨架③碱基通过碱基互补配对形成氢键,排列在内侧[氢键]:氢原子与电负性大的原子X以共价键结合,若与电负性大、半径小的原子Y(OF N等)接近,在X与Y之间以氢为媒介,生成X-H…Y形式的一种特殊的分子间或分子内相互作用,称为氢键。
X与Y可以是同一种类分子,如水分子之间的氢键;也可以是不同种类分子。
(2)DNA双链是右手螺旋结构①螺旋直径:2nm②螺距:3.4nm③螺旋一周包含:10对碱基④每对碱基旋转角度:36°⑤每对碱基平面距离:0.34nm⑥两股链之间在空间上形成一条大沟和一条小沟,这是蛋白质识别DNA的碱基序列,与其发生相互作用的基础。
(3)疏水力和氢键维系DNA双螺旋结构的稳定横向靠氢键,纵向靠碱基平面间的疏水堆积水。
从总能量意义上讲,碱基堆积力对于双螺旋结构的稳定性更重要。
总之,DNA的双螺旋结构永远处于动态平衡中。
[为啥我们的DNA是右手螺旋?]已知右旋的B型DNA是通常生理环境下最稳定的构象,在特殊状况下也存在左旋DNA如Z 型,但是这个特殊状况在生物体内很少。
一、DNA的一级结构1.定义DNA是由成千上万个脱氧核糖核苷酸聚合而成的多聚脱氧核糖核酸。
它的一级结构是它的构件的组成及排列顺序,即碱基序列。
2.结构在DNA分子中,相邻核苷酸以3’,5’-磷酸二酯键连接构成长链,前一个核苷酸的3’-羟基与后一个核苷酸的5’-磷酸结合。
链中磷酸与糖交替排列构成脱氧核糖磷酸骨架,链的一端有自由的5’-磷酸基,称为5’端;另一端有自由3’-羟基,称为3’端。
在DNA中,每个脱氧核糖连接着碱基,碱基的特定序列携带着遗传信息。
3.书写书写DNA时,按从5’向3’方向从左向右进行,并在链端注明5’和3’,如5’pApGpCpTOH3’。
也可省略中间的磷酸,写成pAGCT。
这是文字式缩写。
还有线条式缩写,用竖线表示戊糖,1'在上,5'在下。
二、DNA的二级结构(一)双螺旋结构的建立DNA双螺旋结构的阐明,是本世纪最重大的自然科学成果之一。
在40年代,人们已经发现脱水DNA的密度很高,X射线衍射表明DNA中有0.34nm和3.4nm 的周期性结构。
1950年,Chargaff通过对碱基的分析发现了互补配对规律:在任何DNA中,A=T,G=C,所以有A+G=T+C。
1953年Watson和Crick根据Wilkins的DNAX-射线衍射数据和碱基组成规律,建立了DNA的双螺旋结构模型,从而揭开了现代分子生物学的序幕。
当年Watson只有24岁,在剑桥Cavendish实验室进修,他在美国时就认识到核酸的重要性,所以在大家都在研究蛋白质时致力于核酸研究,从而得到了划时代的成果。
Watson和Crick阐明的是B-DNA结晶的结构模型,与细胞内存在的DNA大体一致。
近年来又发现,局部DNA还可以其他双螺旋或三螺旋的形式存在。
(二)B-DNA双螺旋结构的要点1.基本结构DNA双螺旋是由两条反向、平行、互补的DNA链构成的右手双螺旋。
两条链的脱氧核糖磷酸骨架反向、平行地按右手螺旋走向,绕一个共同的轴盘旋在双螺旋的外侧,两条链的碱基一一对应互补配对,集中地平行排列在双螺旋的中央,碱基平面与轴垂直。
DNA结构和特点DNA(脱氧核糖核酸)是构成生物体遗传信息的分子,它在细胞中起着储存、复制和传递遗传信息的重要作用。
DNA具有独特的结构和特点,下面将对其进行详细介绍。
结构特点:1.DNA是双螺旋结构:DNA分子由两条互补链组成,这两条链绕成一个螺旋形,并以螺旋轴为中心对称。
这种结构被称为双螺旋结构。
每一条链是由核苷酸单元(包括脱氧核糖、磷酸基团和碱基)连接而成的。
2.DNA呈右旋构象:DNA的双螺旋结构呈右旋构象,即从一个螺旋上看,螺旋链沿顺时针方向旋转。
3. DNA链的方向性:DNA的两条链之间存在着互补的碱基配对。
其中一条链以5'-3'方向进行扩展,称为正链(sense strand);而另一条链以3'-5'方向进行扩展,称为反链(antisense strand)。
4.DNA的碱基组成:DNA由4种碱基组成,分别是腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。
这些碱基以互补配对的方式存在,即A与T之间形成两个氢键,G与C之间形成三个氢键。
这种互补配对保证了DNA的复制的准确性。
5.DNA的磷酸骨架:DNA中的磷酸基团连接着脱氧核糖,形成脱氧核糖核酸链。
这些磷酸基团赋予了DNA分子带负电的性质。
6.DNA的超螺旋结构:在细胞内,DNA存在于高度缠绕的状态,形成了超级螺旋结构。
这种超级螺旋结构对DNA的复制和转录具有重要的影响。
功能特点:1.DNA储存遗传信息:DNA是生物体内遗传信息的存储库。
通过互补配对规则,DNA能够编码蛋白质合成所需的氨基酸序列,从而确定生物体的性状和功能。
2.DNA复制:DNA能够通过复制来产生一模一样的DNA分子,从而实现遗传信息的传递。
在细胞分裂过程中,DNA双链会分开,并由DNA聚合酶进行新链的合成。
3.DNA转录:DNA的转录是指将DNA的信息转变成RNA的过程。
在细胞中,DNA通过转录酶将其中一段特定的DNA序列转录成RNA,这些RNA 可以进一步翻译成蛋白质。