中考辅导分类 三角形全等中考专题
- 格式:docx
- 大小:117.85 KB
- 文档页数:11
全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。
类型一、倍长中线模型目的:①构造出一组全等三角形;②构造出一组平行线。
将分散的条件集中到一个三角形中。
1【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连接BE.请根据小明的方法思考:(1)如图2,由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.ASA(2)如图2,AD长的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】(3)如图3,AD是△ABC的中线,BE交AC于点E,交AD于F,且AE=EF.求证:AC=BF.2(培优)已知△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AD,BE,点F为BE中点.AD;(1)如图1,求证:BF=12(2)将△DCE绕C点旋转到如图2所示的位置,连接AE,BD,过C点作CM⊥AD于M点.①探究AE和BD的关系,并说明理由;②连接FC,求证:F,C,M三点共线.1.如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AB=2AE.2.(1)如图1,已知△ABC中,AD是中线,求证:AB+AC>2AD;(2)如图2,在△ABC中,D,E是BC的三等分点,求证:AB+AC>AD+AE;(3)如图3,在△ABC中,D,E在边BC上,且BD=CE.求证:AB+AC>AD+AE.3.(1)阅读理解:如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.可以用如下方法:将△ACD绕着点D逆时针旋转180°得到△EBD,在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C为顶点作一个50°的角,角的两边分别交AB、AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)3如图,在五边形ABCDE中,AB=AE,CA平分∠BCD,∠CAD=12∠BAE.(1)求证:CD=BC+DE;(2)若∠B=75°,求∠E的度数.4(培优)在△ABC中,BE,CD为△ABC的角平分线,BE,CD交于点F.(1)求证:∠BFC=90°+12∠A;(2)已知∠A=60°.①如图1,若BD=4,BC=6.5,求CE的长;②如图2,若BF=AC,求∠AEB的大小.1.如图,△ABC为等边三角形,若∠DBC=∠DAC=α0°<α<60°,则∠BCD=(用含α的式子表示).2.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠BAD.∠EAF=12(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由.(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.3.阅读下面材料:【原题呈现】如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD 的长.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。
考点14 三角形及其全等一、三角形的基础知识1.三角形的概念由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边的一半.二、全等三角形1.三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(4)对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;学科-网(3)全等三角形对应的中线、高线、角平分线、中位线都相等.考向一三角形的三边关系在判断三条线段能否组成一个三角形时,可以根据两条较短线段的长度之和是否大于第三条线段的长度来判断.典例1 小芳有两根长度为6cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为__________的木条.A.2cm B.3cmC.12cm D.15cm【答案】C【解析】设木条的长度为x cm,则9–6<x<9+6,即3<x<15,故她应该选择长度为12cm的木条.故选C.1.以下列各组线段为边,能组成三角形的是A.2cm,5cm,8cm B.3cm,3cm,6cmC.3cm,4cm,5cm D.1cm,2cm,3cm考向二三角形的内角和外角在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角.典例2 如图,下列有四个说法,正确的个数是①∠B >∠ACD ;②∠B +∠ACB =180°–∠A ;③∠A +∠B =∠ACD ;④∠HEC >∠ B .A .1个B .2个C .3个D .4个【解答】解:①∠B <∠ACD ,故①错误; ②∠B +∠ACB =180°–∠A ,故②正确; ③∠A +∠B =∠ACD ,故③正确;④∠HEC =∠AED >∠ACD >∠B ,则∠HEC >∠B ,故④正确. 故选C .2.如图,CE 是△ABC 的外角ACD ∠的平分线,若3560,B ACE ∠=︒∠=︒,则A ∠=__________.3.如图,在△ABC 中,∠ACB =68°,若P 为△ABC 内一点,且∠1=∠2,则∠BPC =__________.考向三 三角形中的重要线段三角形的高、中线、角平分线是三条线段,由三角形的高可得90°的角,由三角形的中线可得线段之间的关系,由三角形的角平分线可得角之间的关系.另外,要注意区分三角形的中线和中位线.中线:连接三角形一个顶点和它对边中点的线段;中位线:连接三角形两条边中点的线段.典例3 在△ABC 中,AB =3,BC =4,AC =2,D ,E ,F 分别为AB ,BC ,AC 中点,连接DF ,FE ,则四边形DBEF 的周长是A .5B .7C .9D .11【答案】B典例4 如图,点G 为△ABC 的重心,则S △ABG ∶S △ACG ∶S △BCG 的值是A .1∶2∶3B .2∶1∶2C .1∶1∶1D .无法确定【答案】C【解析】如图,分别延长AG 、CG 、BG ,交BC 、AB 、AC 于点D 、F 、E ,根据三角形重心的定理得到AD 、BE 、CF 是△ABC 的中线,根据三角形的中线把三角形分为面积相等的两个三角形可得,ABD ACD BDG CDG S S S S ∆∆∆==,即可得ABG ACG S S ∆∆=,同理可得ABG BCG S S ∆∆=,所以=ABG BCG ACG S S S ∆∆∆=,即S △ABG ∶S △ACG ∶S △BCG =1∶1∶1,故选C .4.如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC 交AC 于D 点,AB =4,BD =5,点P 是线段BC 上的一动点,则PD 的最小值是__________.考向四 全等三角形1.从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少有一个元素是边)对应相等,这样就可以利用题目中的已知边(角)准确地确定要补充的边(角),有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路:(1)已知两边SAS HLSSS ⎧⎪⎨⎪⎩找夹角→找直角→找第三边→ (2)已知一边、一角AAS SAS ASA AAS ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩一边为角的对边→找另一角→找夹角的另一边→一边为角的邻边找夹角的另一角→找边的对角→ (3)已知两角ASAAAS ⎧⎨⎩找夹边→找其中一角的对边→ 2.若题中没有全等的三角形,则可根据题中条件合理地添加辅助线,如运用作高法、倍长中线法、截长补短法、分解图形法等来解决运动、拼接、旋转等探究性题目.典例5 如图,已知∠ADB =∠CBD ,下列所给条件不能证明△ABD ≌△CDB 的是A .∠A =∠CB .AD =BC C .∠ABD =∠CDB D .AB =CD【答案】D【解析】A .∵∠A =∠C ,∠ADB =∠CBD ,BD =BD ,∴△ABD ≌△CDB (AAS ),故正确;B .∵AD =BC ,∠ADB =∠CBD ,BD =DB ,∴△ABD ≌△CDB (SAS ),故正确;C .∵∠ABD =∠CDB ,∠ADB =∠CBD ,BD =DB ,∴△ABD ≌△CDB (ASA ),故正确;D .∵AB =CD ,BD =DB ,∠ADB =∠CBD,不符合全等三角形的判定方法,故不正确,故选D.【名师点睛】本题考查了全等三角形的判定方法,①三边对应相等的两个三角形全等,简记为“SSS”;②两边及其夹角对应相等的两个三角形全等,简记为“SAS”;③两角及其夹边对应相等的两个三角形全等,简记为“ASA”;④两角及其中一角的对边对应相等的两个三角形全等,简记为“AAS”;⑤斜边及一直角边对应相等的两个三角形全等,根据这几种判定方法解答即可.5.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC,②△ACE≌△BDE,③点E在∠O的平分线上,其中正确的结论个数是A.0 B.1C.2 D.36.如图,在△BCE中,AC⊥BE,AB=AC,点A、点F分别在BE、CE上,BF、AC相交于点D,BD=CE.求证:AD=AE.1.如图所示,其中三角形的个数是A.2个B.3个C.4个D.5个2.下列图形不具有稳定性的是A.正方形B.等腰三角形C.直角三角形D.钝角三角形3.直角三角形中两锐角之差为20°,则较大锐角为A.45° B.55°C.65° D.50°4.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC__________的交点.A.角平分线B.高线C.中线D.边的中垂线5.如图所示,AB=DB,BC=BE,欲证△ABE≌△DBC,则需补充的条件是A.∠A=∠D B.∠E=∠CC.∠A=∠C D.∠1=∠26.如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是A .∠DAE =∠CBEB .△DEA 不全等于△CEBC .CE =DED .△EAB 是等腰三角形7.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=__________度.8.如图所示,AB ⊥BE 于点B ,DE ⊥BE 于点E .(1)若∠A =∠D ,AB =DE ,则△ABC 与△DEF 全等的理由是__________; (2)若∠A =∠D ,BC =EF ,则△ABC 与△DEF 全等的理由是__________; (3)若AB =DE ,BC =EF ,则△ABC 与△DEF 全等的理由是__________; (4)若AB =DE ,AC =DF ,则△ABC 与△DEF 全等的理由是__________.学-科网9.如图,在△ABC 中,AB =AC ,∠BAC =90°,BD 是中线,AF ⊥BD ,F 为垂足,过点C 作AB 的平行线交AF 的延长线于点E .求证:(1)∠ABD =∠FAD ;(2)AB =2CE .10.如图,,,于D ,于E ,且.求证:.AB AC =90BAC ∠= BD AE ⊥CE AE ⊥BD CE >BD EC ED =+11.如图,操场上有两根旗杆CA与BD之间相距12m,小强同学从B点沿BA走向A,一定时间后他到达M 点,此时他测得CM和DM的夹角为90°,且CM=DM,已知旗杆AC的高为3m,小强同学行走的速度为0.5m/s,则:(1)请你求出另一旗杆BD的高度;(2)小强从M点到达A点还需要多长时间?1.(2018•柳州)如图,图中直角三角形共有A.1个B.2个C.3个D.4个2.(2018•河北)下列图形具有稳定性的是A.B.C.D.3.(2017•河池)三角形的下列线段中能将三角形的面积分成相等两部分的是A.中线B.角平分线C.高D.中位线4.(2018•百色)顶角为30°的等腰三角形三条中线的交点是该三角形的A.重心B.外心C.内心D.中心5.(2018•毕节市)已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是A.4 B.6C.8 D.106.(2018•贵阳市)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是A.线段DE B.线段BEC.线段EF D.线段FG7.(2018•昆明)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为A.90°B.95°C.100°D.120°8.(2018•青海)小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于A.150°B.180°C.210°D.270°9.(2018•广西)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于A.40°B.45°C.50°D.55°10.(2018•聊城市)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°–α–β11.(2018•黔西南州市)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是A.甲和乙B.乙和丙C.甲和丙D.只有丙12.(2018•安顺市)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACDA.∠B=∠C B.AD=AEC.BD=CE D.BE=CD13.(2018•南京市)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥A D.若CE=a,BF=b,EF=c,则AD的长为A.a+c B.b+cC.a–b+c D.a+b–c14.(2018•辽阳市)如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A,B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC.若OA=5,AB=6,则点B到AC的距离为A.5 B.24 5C.4 D.12 515.(2018•绵阳市)如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于O点,则AB=__________.16.(2018•泰州)已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为__________.17.(2018•陇南市)已知a,b,c是△ABC的三边长,a,b满足|a–7|+(b–1)2=0,c为奇数,则c=__________.18.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△ED C.19.(2018•云南)如图,已知AC平分∠BAD,AB=A D.求证:△ABC≌△ADC.4.【答案】3【解析】由勾股定理知AD3=,BD平分∠ABC交AC于D点,所以PD=AD最小,PD=3,故答案为:3.5.【答案】D【解析】∵OA=OB,∠A=∠B,∠O=∠O,∴△AOD≌△BOC(ASA),故①正确;∴OD=CO,∴BD=AC,∴△ACE≌△BDE(AAS),故②正确;∴AE=BE,连接OE,∴△AOE≌△BOE(SSS),∴∠AOE =∠BOE ,∴点E 在∠O 的平分线上,故③正确, 故选D .6.【解析】∵AC ⊥BE ,∴∠BAD =∠CAE =90°,在Rt △ABD 和Rt △ACE 中,BD CEAB AC =⎧⎨=⎩,∴Rt △ABD ≌Rt △ACE (HL ),∴AD =AE .1.【答案】D【解析】图中的三角形有:△ABC ,△BCD ,△BCE ,△ABE ,△CDE 共5个.故选D . 2.【答案】A【解析】根据三角形具有稳定性可知,只有选项A 不具有稳定性,故选A . 3.【答案】B【解析】设两个锐角分别为x 、y ,由题意得,,解得,所以最大锐角为55°.故选B . 4.【答案】A【解析】∵到角的两边的距离相等的点在角的平分线上, ∴这个点是三角形三条角平分线的交点.故选A . 5.【答案】D【解析】根据全等“SAS”判定可知,要证△ABE ≌△DBC 还需补充条件AB ,BE 与BC ,BD 的夹角相等,即∠ABE =∠CBD 或者∠1=∠2,故选D . 6.【答案】B【解析】∵∠1+∠C +∠ABC =∠2+∠D +∠DAB =180°,且∠1=∠2,∠C =∠D , ∴∠ABC =∠DAB ,∴∠ABC –∠2=∠DAB –∠1,∴∠DAE =∠CBE .故A 正确;∵∠1=∠2,∴AE =BE .在△DEA 和△CEB 中DAE CBE C D AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEA ≌△CEB (AAS ),故B 错误;由△DEA ≌△CEB 可得CE =DE .故C 正确.∵∠1=∠2,∴BE =AE ,∴△EAB 是等腰三角形故D 正确;故选B .=90=20x y x y +︒-︒⎧⎨⎩=55=35x y ︒︒⎧⎨⎩7.【答案】135 【解析】如图所示:由题意可知△ABC ≌△EDC ,∴∠3=∠BAC , 又∵∠1+∠BAC =90°,∴∠1+∠3=90°,∵DF =DC ,∴∠2=45°,∴∠1+∠2+∠3=135度, 故答案是:135.8.【答案】ASA ,AAS ,SAS ,HL【解析】(1)在△ABC 和△DEF 中,因为∠B =∠E =90°, AB =DE ,∠A =∠D ,所以△ABC ≌△DEF (ASA); (2)在△ABC 和△DEF 中,因为∠B =∠E =90°, ∠A =∠D ,BC =EF ,所以△ABC ≌△DEF (AAS); (3)在△ABC 和△DEF 中,因为AB =DE ,∠B =∠E =90°, BC =EF ,所以△ABC ≌△DEF (SAS);(4)在Rt △ABC 和Rt △DEF 中,因为AC =DF ,AB =DE , 所以Rt △ABC ≌Rt △DEF (HL). 故答案为:ASA ;AAS ;SAS ;HL.10.【解析】,,,,,, ,90BAC ∠= CE AE ⊥BD AE ⊥90ABD BAD ∠∠∴+= 90BAD DAC ∠∠+= 90ADB AEC ∠∠== ABD DAC ∠∠∴=在和中,,∴≌(AAS ),,, ,∴BD =EC +ED .11.【解析】(1)如图,∵CM 和DM 的夹角为90°,∴∠1+∠2=90°,∵∠DBA =90°,∴∠2+∠D =90°,∴∠1=∠D ,在△CAM 和△MBD 中,,∴△CAM ≌△MBD (AAS ),∴AM =DB ,AC =MB , ∵AC =3m ,∴MB =3m ,∵AB =12m ,∴AM =9m ,∴DB =9m ; (2)9÷0.5=18(s ).学_科网答:小强从M 点到达A 点还需要18秒.1.【答案】CABD CAE ABD EAC BDA E AB AC ∠=∠∠=∠=⎧⎪⎨⎪⎩ABD CAE BD AE ∴=EC AD =AE AD DE =+ 1A B D CM MD ∠=∠∠=∠=⎧⎪⎨⎪⎩【解析】如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选C.2.【答案】A【解析】三角形具有稳定性.故选A.3.【答案】A【解析】∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.4.【答案】A【解析】三角形三条中线的交点是三角形的重心,故选A.5.【答案】C【解析】设第三边长为x,则8–2<x<2+8,6<x<10,故选C.6.【答案】B【解析】根据三角形中线的定义知线段BE是△ABC的中线,故选B.7.【答案】B【解析】∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选B.8.【答案】C【解析】如图:∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠E+∠COP+∠CPO=∠D+∠E+180°–∠C=30°+90°+180°–90°=210°,故选C . 9.【答案】C【解析】∵∠A =60°,∠B =40°,∴∠ACD =∠A +∠B =100°, ∵CE 平分∠ACD ,∴∠ECD =12∠ACD =50°,故选C . 10.【答案】A【解析】由折叠得:∠A =∠A ',∵∠BDA '=∠A +∠AFD ,∠AFD =∠A '+∠CEA ', ∵∠A =α,∠CEA ′=β,∠BDA '=γ,∴∠BDA '=γ=α+α+β=2α+β,故选.11.【答案】B【解析】乙和△ABC 全等;理由如下:在△ABC 和图乙的三角形中,满足三角形全等的判定方法:SAS ,所以乙和△ABC 全等; 在△ABC 和图丙的三角形中,满足三角形全等的判定方法:AAS ,所以丙和△ABC 全等; 不能判定甲与△ABC 全等;故选B .13.【答案】D【解析】∵AB ⊥CD ,CE ⊥AD ,BF ⊥AD ,∴∠AFB =∠CED =90°,∠A +∠D =90°,∠C +∠D =90°,∴∠A =∠C ,∵AB =CD ,∴△ABF ≌△CDE ,∴AF =CE =a ,BF =DE =b , ∵EF =c ,∴AD =AF +DF =a +(b –c )=a +b –c ,故选D . 14.【答案】B【解析】由题意可得,OC 为∠MON 的平分线, ∵OA =OB ,OC 平分∠AOB ,∴OC ⊥AB , 设OC 与AB 交于点D ,作BE ⊥AC 于点E ,∵AB =6,OA =5,AC =OA ,OC ⊥AB ,∴AC =5,∠ADC =90°,AD =3, ∴CD =4,∵2AB CD ⋅=2AC BE ⋅,∴642⨯=52BE ⨯,解得,BE =245,故选B . 15【解析】∵AD 、BE 为BC ,AC 边上的中线,∴BD =12BC =2,AE =12AC =32,点O 为△ABC 的重心,∴AO =2OD ,OB =2OE , ∵BE ⊥AD ,∴BO 2+OD 2=BD 2=4,OE 2+AO 2=AE 2=94,∴BO 2+14AO 2=4,14BO 2+AO 2=94,∴54BO 2+54AO 2=254,∴BO 2+AO 2=5,∴AB. 16.【答案】5【解析】根据三角形的三边关系,得4<第三边<6. 又第三条边长为整数,则第三边是5.故答案为:5. 17.【答案】7【解析】∵a ,b 满足|a –7|+(b –1)2=0,∴a –7=0,b –1=0,解得a =7,b =1, ∵7–1=6,7+1=8,∴6<c <8,又∵c 为奇数,∴c =7,故答案是:7.18.【解析】∵在△ABC 和△EDC 中,,∴△ABC ≌△EDC (ASA ).19.【解析】∵AC 平分∠BAD ,∴∠BAC =∠DAC ,在△ABC 和△ADC 中,,∴△ABC ≌△ADC .A EAC EC ACB ECD ∠=∠=∠=∠⎧⎪⎨⎪⎩AB AD BAC DAC AC AC =∠=∠=⎧⎪⎨⎪⎩。
中考数学复习《全等三角形》专题训练-附带参考答案一、选择题1.下列选项中表示两个全等的图形的是()A.形状相同的两个图形B.周长相等的两个图形C.面积相等的两个图形D.能够完全重合的两个图形2.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,则不一定能使△ABE≌△ACD的条件是()A.AB=AC B.∠B=∠CC.∠AEB=∠ADC D.CD=BE3.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A.SAS B.ASA C.AAS D.SSS4.如图△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.25°B.30°C.35°D.65°5.如图EF=CF,BF=DF则下列结论不一定正确的是()A.△BEF≌△DCF B.△ABC≌△ADEC.DC=AC D.AB=AD6.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2 B.3 C.4 D.57.如图,CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE、CD相交于点O.∠1=∠2,则图中全等三角形共有()A.2对B.3对C.4对D.5对8.如图,AD 是△ABC中∠BAC的平分线,DE⊥AB于点E,△ABC的面积为12,DE =2,AB = 7,则 AC 的长是()A.3 B.4 C.5 D.6二、填空题9.如图,∠ACD=∠BCE,BC=EC,要使△ABC≌△DEC,则可以添加的一个条件是.10.如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为.11.如图,在Rt△ABC中,∠BAC=90°,分别过点B,C作过点A的直线的垂线BD,若BD=4cm,CE=3cm则DE= cm.12.如图,把两根钢条AB,CD的中点连在一起做成卡钳,已知AC的长度是6cm,则工件内槽的宽BD是cm.13.如图,△ABC为等腰直角三角形AC=BC,若A(−3,0),C(0,2),则点B的坐标为.三、解答题14.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°(1)求证:△ADE≌△CDE.(2)求∠BDC度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A =25°,∠D =15°,求∠ACB 的度数.16.如图,AB =AC ,AD =AE ,∠BAC =∠DAE.(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,在ABC 中90C ∠=︒,BD 是ABC ∠的平分线,DE AB ⊥于点E ,点F 在BC 上,连接DF ,且AD DF =. (1)求证:CF AE =;(2)若3AE =,BF=4,求AB 的长.18.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD =2BF+DE .1.D2.D3.D4.A5.C6.B7.C8.C9.AC =DC (答案不唯一)10.811.712.613.(2,-1)14.(1)证明:∵DE 是线段AC 的垂直平分线 ∴DA=DC ,AE=CE在△ADE 与△CDE 中:DA=DCAE=CEDE=DE∴△ADE ≌△CDE (SSS );(2)解:∵△ADE ≌△CDE .∴∠DCA=∠A=50°∴∠BDC=∠DCA+∠A=100°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:(1)∵90C ∠=︒∴DC BC ⊥又∵BD 是ABC ∠的平分线DE AB ⊥∴DE DC = 90AED ∠=︒在Rt AED △和Rt FCD △中∵AD DFDE DC =⎧⎨=⎩∴()Rt Rt AED FCD HL ≌△△∴CF AE =.(2)解:由(1)可得3CF AE ==∴437BC BF CF =+=+=∵DE AB ⊥∴90DEB ∠=︒∴DEB C ∠=∠∵BD 是ABC ∠的平分线∴ABD CBD ∠=∠在BED 和BCD △中∵DEB C EBD CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED BCD AAS ≌△△ ∴7BE BC ==∴7310AB BE AE =+=+=∴AB 的长为10.18.(1)证明:∵90BAD CAE ∠=∠=︒∴90BAC CAD ∠+∠=︒ 90CAD DAE ∠+∠=︒ ∴BAC DAE ∠=∠在△BAC 和△DAE 中∵AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴()BAC DAE SAS ≌△△;(2)解:∵90CAE ∠=︒,AC=AE∴45E ∠=︒由(1)知BAC DAE ≌△△∴45BCA E ∠=∠=︒∵AF BC ⊥∴90CFA ∠=︒∴45CAF ∠=︒∴4590135FAE FAC CAE ∠=∠+∠=︒+︒=︒;(3)证明:延长BF 到G ,使得FG FB = ∵AF BG ⊥∴90AFG AFB ∠=∠=︒在△AFB 和△AFG 中∴BF GF AFB AFG AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AFB AFG SAS ≌△△∴AB AG = ABF G ∠=∠∵BAC DAE ≌△△∴AB AD = CBA EDA ∠=∠ CB=ED ∴AG AD = ABF CDA ∠=∠∴CGA CDA ∠=∠∵45GCA DCA ∠=∠=︒∴在△CGA 和△CDA 中GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CGA CDA AAS ≌△△∴CG CD =∵22CG CB BF FG CB BF DE BF =++=+=+ ∴2CD BF DE =+.。
中考复习之三角形全等一、选择题:1.图是一个风筝设计图,其主体部分(四边形ABCD ABCD)关于)关于BD 所在的直线对称,所在的直线对称,AC AC 与BD 相交于点O ,且AB≠AD,则下列判断不正确...的是【的是【 】】 A .△ABD≌△CBD .△ABD≌△CBD B B B.△ABC≌△ADC .△ABC≌△ADC .△ABC≌△ADC C C C.△AOB≌△COB .△AOB≌△COB .△AOB≌△COB D D D.△AOD≌△COD .△AOD≌△COD .△AOD≌△COD2.如图,已知AD 是△ABC 的边BC 上的高,下列能使△ABD≌△ACD 的条件是【的条件是【 】】A. AB=ACB. ∠BAC=90°C. BD=AC A. AB=AC B. ∠BAC=90° C. BD=ACD. ∠B=45°D. ∠B=45°D. ∠B=45°3.如图,已知点A 、D 、C 、F 在同一条直线上,在同一条直线上,AB=DE AB=DE AB=DE,,BC=EF BC=EF,要使△ABC≌△DEF,还需要添加一个条件,要使△ABC≌△DEF,还需要添加一个条件是【是【 】】 A A.∠BCA=∠F .∠BCA=∠F .∠BCA=∠F B B B.∠B=∠E .∠B=∠E .∠B=∠EC .BC∥EF .BC∥EFD .∠A=∠EDF .∠A=∠EDF4.如图,AB∥CD,如图,AB∥CD,E E ,F 分别为AC AC,,BD 的中点,若AB=5AB=5,,CD=3CD=3,则,则EF 的长是【的长是【 】】A .4B .3C .2D .15.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是【等的是【 】】 (A) (A)两条边长分别为两条边长分别为4,5,它们的夹角为β (B) (B)两个角是两个角是β,它们的夹边为4(C) (C)三条边长分别是三条边长分别是4,5,5 (D)5 (D)两条边长是两条边长是5,一个角是β6.如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO≌△NMO,则只需测出其长度的线段是【的线段是【 】】 A A..PO B .PQ C PQ C..MO D .MQ7.如图,在菱形ABCD 中,对角线AC AC,,BD 相交于点O ,且AC≠BD,则图中全等三角形有【AC≠BD,则图中全等三角形有【 】】A.4对B. 6对.C.8对D.10对二、填空题:1.在Rt△ABC 中,∠ACB=90°,中,∠ACB=90°,BC=2cm BC=2cm BC=2cm,CD⊥AB,在,CD⊥AB,在AC 上取一点E ,使EC=BC EC=BC,过点,过点E 作EF⊥AC 交CD 的延长线于点F ,若EF=5cm EF=5cm,则,则AE= cm AE= cm..2.如图所示,如图所示,AB=DB AB=DB AB=DB,∠ABD=∠CBE,请你添加一个适当的条件,∠ABD=∠CBE,请你添加一个适当的条件,∠ABD=∠CBE,请你添加一个适当的条件 ,, 使使ΔABC≌ΔDBE DBE.. ( (只需添只需添加一个即可加一个即可) )3.如图所示,已知点A 、D 、B 、F 在一条直线上,在一条直线上,AC=EF AC=EF AC=EF,,AD=FB AD=FB,要使△ABC≌△FDE,还需添加一个条件,,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是这个条件可以是 ..(只需填一个即可)(只需填一个即可)4.如图,点D ,E 分别在线段AB AB,,AC 上,上,BE BE BE,,CD 相交于点O ,AE=AD AE=AD,要使△ABE≌△ACD,需添加一个条,要使△ABE≌△ACD,需添加一个条件是件是 (只需一个即可,图中不能再添加其他点或线)(只需一个即可,图中不能再添加其他点或线).5.如图.点D 、E 在△ABC 的边BC 上,AB=AC AB=AC,,AD=AE AD=AE..请写出图中的全等三角形请写出图中的全等三角形 ( ( (写出一对即可写出一对即可写出一对即可)).6.如图,己知AC=BD AC=BD,要使△ABC≌△DCB,则只需添加一个适当的条件是,要使△ABC≌△DCB,则只需添加一个适当的条件是,要使△ABC≌△DCB,则只需添加一个适当的条件是 ( ( (填一个即可填一个即可填一个即可) )三、解答题:1.已知:如图,AB AE =,1=2ÐÐ,=B E ÐÐ,求证:BC ED =2.如图,已知AB=DC AB=DC,,DB=AC(1)求证:∠ABD=∠DCA,注:证明过程要求给出每一步结论成立的依据.)求证:∠ABD=∠DCA,注:证明过程要求给出每一步结论成立的依据.(2)在()在(11)的证明过程中,需要作辅助线,它的意图是什么?)的证明过程中,需要作辅助线,它的意图是什么?3.如图,点D 在AB 上,点E 在AC 上,上,AB=AC AB=AC AB=AC,∠B=∠C.求证:,∠B=∠C.求证:,∠B=∠C.求证:BE=CD BE=CD BE=CD..4.如图,AB∥CD,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB AB,,AC 于E ,F 两点,再分别以E ,F为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP AP,交,交CD 于点M 。
2024年中考数学一轮复习考点精析与真题精讲—全等、相似三角形→➊考点精析←一、全等三角形1.三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(4)对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;(3)全等三角形对应的中线、高线、角平分线、中位线都相等.二、相似三角形的判定及性质1.定义对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比叫做相似比.2.性质(1)相似三角形的对应角相等;(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;(3)相似三角形的周长比等于相似比,面积比等于相似比的平方.3.判定(1)有两角对应相等,两三角形相似;(2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)两直角三角形的斜边和一条直角边对应成比例,两直角三角形相似.【方法技巧】判定三角形相似的几条思路:(1)条件中若有平行线,可采用相似三角形的判定(1);(2)条件中若有一对等角,可再找一对等角[用判定(1)]或再找夹边成比例[用判定(2)];(3)条件中若有两边对应成比例,可找夹角相等;(4)条件中若有一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例;(5)条件中若有等腰条件,可找顶角相等,或找一个底角相等,也可找底和腰对应成比例.→➋真题精讲←题型一全等三角形1.(2023·云南·统考中考真题)如图,A B 、两点被池塘隔开,、、A B C 三点不共线.设AC BC 、的中点分别为M N 、.若3MN =米,则AB =()A .4米B .6米C .8米D .10米【答案】B 【分析】根据三角形中位线定理计算即可.【详解】解∶∵AC BC 、的中点分别为M N 、,∴MN 是ABC 的中位线,∴26(AB MN ==米),故选:B .【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.2.(2023·浙江台州·统考中考真题)如图,锐角三角形ABC 中,AB AC =,点D ,E 分别在边AB ,AC 上,连接BE ,CD .下列命题中,假命题...是().A .若CD BE =,则DCB EBC∠=∠B .若DCB EBC ∠=∠,则CD BE =C .若BD CE =,则DCB EBC∠=∠D .若DCB EBC ∠=∠,则BD CE=【答案】A 【分析】由AB AC =,可得A ABC CB =∠∠,再由CD BE BC CB ==,,由SSA 无法证明BCD 与CBE 全等,从而无法得到DCB EBC ∠=∠;证明ABE ACD @V V 可得CD BE =;证明ABE ACD @V V ,可得ACD ABE ∠=∠,即可证明;证明()DBC ECB ASA ≅ ,即可得出结论.【详解】解:∵AB AC =,∴A ABC CB =∠∠,∵若CD BE =,又BC CB =,∴BCD 与CBE 满足“SSA ”的关系,无法证明全等,因此无法得出DCB EBC ∠=∠,故A 是假命题,∵若DCB EBC ∠=∠,∴ACD ABE ∠=∠,在ABE 和ACD 中,ACD ABE AB AC A A ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABE ACD ASA ≅ ,∴CD BE =,故B 是真命题;若BD CE =,则AD AE =,在ABE 和ACD 中,AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩,∴()ABE ACD SAS ≅ ,∴ACD ABE ∠=∠,∵A ABC CB =∠∠,∴DCB EBC ∠=∠,故C 是真命题;若DCB EBC ∠=∠,则在DBC △和ECB 中,ABC ACB BC BC DCB EBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()DBC ECB ASA ≅ ,∴BD CE =,故D 是真命题;故选:A .【点睛】本题考查等腰三角形的判定和性质,全等三角形的判定和性质,命题的真假判断,正确的命题叫真命题,错误的命题叫假命题,判断命题的真假关键是掌握相关性质定理.3.(2023·河北·统考中考真题)在ABC 和A B C ''' 中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=()A .30︒B .n ︒C .n ︒或180n ︒-︒D .30︒或150︒【答案】C 【分析】过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,求得3AD A D ''==,分两种情况讨论,利用全等三角形的判定和性质即可求解.【详解】解:过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,∵306B B AB A B '''∠=∠=︒==,,∴3AD A D ''==,当B C 、在点D 的两侧,B C ''、在点D ¢的两侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴C C n '∠=∠=︒;当B C 、在点D 的两侧,B C ''、在点D ¢的同侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴'''A C D C n ∠=∠=︒,即'''180'''180A C B A C D n ∠=︒-∠=︒-︒;综上,C '∠的值为n ︒或180n ︒-︒.故选:C .【点睛】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.4.(2023·湖北随州·统考中考真题)如图,在Rt ABC △中,9086C AC BC ∠=︒==,,,D 为AC 上一点,若BD 是ABC ∠的角平分线,则AD =___________.【答案】3【分析】首先证明CD DP =,6BC BP ==,设CD PD x ==,在Rt ADP 中,利用勾股定理构建方程即可解决问题.【详解】解:如图,过点D 作AB 的垂线,垂足为P ,在Rt ABC △中,∵86AC BC ==,,∴10AB ===,∵BD 是ABC ∠的角平分线,∴CBD PBD ∠=∠,∵90C BPD BD BD ∠=∠=︒=,,∴()AAS BDC BDP ≌,∴6BC BP ==,CD PD =,设CD PD x ==,在Rt ADP 中,∵4PA AB BP =-=,8AD x =-,∴2224(8)x x +=-,∴3x =,∴3AD =.故答案为:3.【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(2023·广东深圳·统考中考真题)如图,在ABC 中,AB AC =,3tan 4B =,点D 为BC 上一动点,连接AD ,将ABD △沿AD 翻折得到ADE V ,DE 交AC 于点G ,GE DG <,且:3:1AG CG =,则AGE ADGS S =三角形三角形______.【答案】4975【分析】AM BD ⊥于点M ,AN DE ⊥于点N ,则AM AN =,过点G 作GP BC ⊥于点P ,设12AM a =,根据3tan 4AM B BM ==得出16BM a =,继而求得20AB a ==,5CG a =,15AG a =,再利用3tan tan 4GP C B CP ===,求得3,4GP a CP a ==,利用勾股定理求得9GN a ==,16EN a =,故7EG EN GN a =-=,【详解】由折叠的性质可知,DA 是BDE ∠的角平分线,AB AE =,用HL 证明ADM ADN △≌△,从而得到DM DN =,设DM DN x ==,则9DG x a =+,12DP a x =-,利用勾股定理得到222DP GP DG +=即()()()2221239a x a x a -+=+,化简得127x a =,从而得出757DG a =,利用三角形的面积公式得到:174921757527AGEADG EG AN EG a DG DG AN S aS ⋅====⋅三角形三角形.作AM BD ⊥于点M ,AN DE ⊥于点N ,则AM AN =,过点G 作GP BC ⊥于点P,∵AM BD ⊥于点M ,∴3tan 4AM B BM ==,设12AM a =,则16BM a =,20AB a =,又∵AB AC =,AM BD ⊥,∴12CM AM a ==,20AB AC a ==,B C ∠=∠,∵:3:1AG CG =,即14CG AC =,∴5CG a =,15AG a =,在Rt PCG △中,5CG a =,3tan tan 4GP C B CP ===,设3GP m =,则4,5CP m CG m==∴m a=∴3,4GP a CP a ==,∵15AG a =,12AM AN a ==,AN DE ⊥,∴9GN a ==,∵20AB AE a ==,12AN a =,AN DE⊥∴16EN a =,∴7EG EN GN a =-=,∵AD AD =,AM AN =,AM BD ⊥,AN DE ⊥,∴()HL ADM ADN △≌△,∴DM DN =,设DM DN x ==,则9DG DN GN x a =+=+,16412DP CM CP DM a a x a x =--=--=-,在Rt PDG △中,222DP GP DG +=,即()()()2221239a x a x a -+=+,化简得:127x a =,∴7597DG x a a =+=,∴174921757527AGEADG EG AN EG a DG DG AN S a S ⋅===⋅三角形三角形故答案是:4975.【点睛】本题考查解直角三角形,折叠的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等知识,正确作出辅助线并利用勾股定理列出方程是解题的关键.6.(2023·云南·统考中考真题)如图,C 是BD 的中点,,AB ED AC EC ==.求证:ABC EDC △≌△.【答案】见解析【分析】根据C 是BD 的中点,得到BC CD =,再利用SSS 证明两个三角形全等.【详解】证明: C 是BD 的中点,BC CD ∴=,在ABC 和EDC △中,BC CD AB ED AC EC =⎧⎪=⎨⎪=⎩,()ABC EDC SSS ∴ ≌【点睛】本题考查了线段中点,三角形全等的判定,其中对三角形判定条件的确定是解决本题的关键.7.(2023·四川宜宾·统考中考真题)已知:如图,AB DE ∥,AB DE =,AF DC =.求证:B E ∠=∠.【答案】见解析【分析】根据平行线的性质得出A D ∠=∠,然后证明AC DF =,证明()SAS ABC DEF ≌△△,根据全等三角形的性质即可得证.【详解】证明:∵AB DE ∥,∴A D ∠=∠,∵AF DC =,∴AF CF DC CF+=+即AC DF=在ABC 与DEF 中AC DF A D AB DE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC DEF ≌△△,∴B E ∠=∠.【点睛】本题考查了全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.8.(2023·全国·统考中考真题)如图,点C 在线段BD 上,在ABC 和DEC 中,A D AB DE B E ∠=∠=∠=∠,,.求证:AC DC =.【答案】证明见解析【分析】直接利用ASA 证明ABC DEC ≌△△,再根据全等三角形的性质即可证明.【详解】解:在ABC 和DEC 中,A D AB DE B E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ABC DEC ≌ ∴AC DC =.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.9.(2023·山东临沂·统考中考真题)如图,90,,,A AB AC BD AB BC AB BD ∠=︒=⊥=+.(1)写出AB 与BD 的数量关系(2)延长BC 到E ,使CE BC =,延长DC 到F ,使CF DC =,连接EF .求证:EF AB ⊥.(3)在(2)的条件下,作ACE ∠的平分线,交AF 于点H ,求证:AH FH =.【答案】(1))21AB BD -=(2)见解析(3)见解析【分析】(1)勾股定理求得2BC =,结合已知条件即可求解;(2)根据题意画出图形,证明CBD CEF ≌,得出=45E DBC ∠=∠︒,则EF BD ∥,即可得证;(3)延长,BA EF 交于点M ,延长CH 交ME 于点G ,根据角平分线以及平行线的性质证明EG EC =,进而证明()AAS AHC FHG ≌,即可得证.【详解】(1)解:∵90,A AB AC∠=︒=∴2BC ,∵BC AB BD=+2AB BD=+即)21AB BD =;(2)证明:如图所示,∴90,A AB AC∠=︒=∴=45ABC ∠︒,∵BD AB ⊥,∴45DBC ∠=︒∵CE BC =,12∠=∠,CF DC=∴CBD CEF≌∴=45E DBC ∠=∠︒∴EF BD∥∴AB EF⊥(3)证明:如图所示,延长,BA EF 交于点M ,延长CH 交ME 于点G ,∵EF AB ⊥,AC AB ⊥,∴ME AC ∥,∴CGE ACG∠=∠∵CH 是ACE ∠的角平分线,∴ACG ECG ∠=∠,∴CGE ECG∠=∠∴EG EC=∵CBD CEF ≌,∴EF BD =,CE CB =,∴EG CB =,又∵BC AB BD =+,∴EG AB BD AC EF =+=+,即FG EF AC EF +=+,∴AC EG =,又AC FG ∥,则HAG HFG ∠=∠,在,AHC FHG 中,HAG HFG AHG FHG AC FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AHC FHG ≌,∴AH HF=【点睛】本题考查了全等三角形的与判定,等腰三角形的性质与判定,勾股定理,平行线的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.10.(2023·山东聊城·统考中考真题)如图,在四边形ABCD 中,点E 是边BC 上一点,且BE CD =,B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠;(2)若60C ∠=︒,4DE =时,求AED △的面积.【答案】(1)见解析(2)【分析】(1)由B AED ∠=∠求出BAE CED ∠=∠,然后利用AAS 证明BAE CED ≅ ,可得EA ED =,再由等边对等角得出结论;(2)过点E 作EF AD ⊥于F ,根据等腰三角形的性质和含30︒直角三角形的性质求出DF 和AD ,然后利用勾股定理求出EF ,再根据三角形面积公式计算即可.【详解】(1)证明:∵B AED ∠=∠,∴180180B AED ︒-∠=︒-∠,即BEA BAE BEA CED ∠+∠=∠+∠,∴BAE CED ∠=∠,在BAE 和CED △中,B C BAE CED BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS BAE CED ≅ ,∴EA ED =,∴EAD EDA ∠=∠;(2)解:过点E 作EF AD ⊥于F ,由(1)知EA ED =,∵60C AED ︒∠=∠=,∴30AEF DEF ∠=∠=︒,∵4DE =,∴122DF DE ==,∴24AD DF ==,EF ===∴11422AED S AD EF =⋅=⨯⨯=【点睛】本题考查了三角形内角和定理,全等三角形的判定和性质,等腰三角形的性质,含30︒直角三角形的性质以及勾股定理等知识,正确寻找证明三角形全等的条件是解题的关键.题型二相似三角形11.(2023·重庆·统考中考真题)如图,已知ABC EDC ∽,:2:3AC EC =,若AB 的长度为6,则DE 的长度为()A .4B .9C .12D .13.5【答案】B 【分析】根据相似三角形的性质即可求出.【详解】解:∵ABC EDC ∽,∴::AC EC AB DE =,∵:2:3AC EC =,6AB =,∴2:36:DE =,∴9DE =,故选:B.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键.12.(2023·浙江嘉兴·统考中考真题)如图,在直角坐标系中,ABC 的三个顶点分别为()()()1,2,2,1,3,2A B C ,现以原点O 为位似中心,在第一象限内作与ABC 的位似比为2的位似图形A B C ''' ,则顶点C '的坐标是()A .()2,4B .()4,2C .()6,4D .()5,4【答案】C 【分析】直接根据位似图形的性质即可得.【详解】解:∵ABC 的位似比为2的位似图形是A B C ''' ,且()3,2C ,()23,22C '∴⨯⨯,即()6,4C ',故选:C .【点睛】本题考查了坐标与位似图形,熟练掌握位似图形的性质是解题关键.13.(2023·安徽·统考中考真题)如图,点E 在正方形ABCD 的对角线AC 上,EF AB ⊥于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若2AF =,1FB =,则MG =()A .B .2C 1+D 【答案】B 【分析】根据平行线分线段成比例得出2DE AF EM FB==,根据ADE CME ∽△△,得出2AD DE CM EM==,则1322CM AD ==,进而可得32MB =,根据BC AD ∥,得出GMB GDA ∽,根据相似三角形的性质得出3BG =,进而在Rt BGM △中,勾股定理即可求解.【详解】解:∵四边形ABCD 是正方形,2AF =,1FB =,∴213AD BC AB AF FG ===+=+=,AD CB ∥,,AD AB CB AB ⊥⊥,∵EF AB ⊥,∴AD EF BC∥∥∴2DE AF EM FB ==,ADE CME ∽△△,∴2AD DE CM EM==,则1322CM AD ==,∴332MB CM =-=,∵BC AD ∥,∴GMB GDA ∽,∴31232BG MB AG DA ===∴3BG AB ==,在Rt BGM △中,MG =故选:B .【点睛】本题考查了正方形的性质,平行线分线段成比例,相似三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.14.(2023·四川内江·统考中考真题)如图,在ABC 中,点D 、E 为边AB 的三等分点,点F 、G 在边BC 上,AC DG EF ∥∥,点H 为AF 与DG 的交点.若12AC =,则DH 的长为()A .1B .32C .2D .3【答案】C 【分析】由三等分点的定义与平行线的性质得出BE DE AD ==,BF GF CG ==,AH HF =,DH 是AEF △的中位线,易证BEF BAC ∽△△,得EF BE AC AB =,解得4EF =,则122DH EF ==.【详解】解:D 、E 为边AB 的三等分点,EF DG AC ∥∥,BE DE AD ∴==,BF GF CG ==,AH HF =,3AB BE ∴=,DH 是AEF △的中位线,12DH EF ∴=,EF AC ∥,,,BEF BAC BFE BCA ∴∠=∠∠=∠BEF BAC ∴∽△△,∴EF BE AC AB=,即123EF BE BE =,解得:4EF =,114222DH EF ∴==⨯=,故选:C .【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.15.(2023·内蒙古赤峰·统考中考真题)如图,把一个边长为5的菱形ABCD 沿着直线DE 折叠,使点C 与AB 延长线上的点Q 重合.DE 交BC 于点F ,交AB 延长线于点E .DQ 交BC 于点P ,DM AB ⊥于点M ,4AM =,则下列结论,①DQ EQ =,②3BQ =,③158BP =,④BD FQ ∥.正确的是()A .①②③B .②④C .①③④D .①②③④【答案】A 【分析】由折叠性质和平行线的性质可得QDF CDF QEF ∠=∠=∠,根据等角对等边即可判断①正确;根据等腰三角形三线合一的性质求出4MQ AM ==,再求出BQ 即可判断②正确;由CDP BQP △∽△得53CP CD BP BQ ==,求出BP 即可判断③正确;根据EF QE DE BE ≠即可判断④错误.【详解】由折叠性质可知:,5CDF QDF CD DQ ∠=∠==,∵CD AB ∥,∴CDF QEF ∠=∠.∴QDF QEF ∠=∠.∴5DQ EQ ==.∵5DQ CD AD ===,DM AB ⊥,∴4MQ AM ==.∵541MB AB AM =-=-=,∴413BQ MQ MB =-=-=.故②正确;∵CD AB ∥,∴CDP BQP △∽△.∴53CP CD BP BQ ==.∵5CP BP BC +==,∴31588BP BC ==.故③正确;∵CD AB ∥,∴CDF BEF ∽△△.∴55358DF CD CD EF BE BQ QE ====++.∴813EF DE =.∵58QE BE =,∴EF QE DE BE≠.∴EFQ △与EDB △不相似.∴EQF EBD ∠≠∠.∴BD 与FQ 不平行.故④错误;【点睛】本题主要考查了折叠的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,菱形的性质等知识,属于选择压轴题,有一定难度,熟练掌握相关性质是解题的关键.16.(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,ABC 与111A B C △位似,原点O 是位似中心,且113AB A B =.若()9,3A ,则1A 点的坐标是___________.【答案】()3,1【分析】直接利用位似图形的性质得出相似比进而得出对应线段的长.【详解】解∶设()1,A m n ∵ABC 与111A B C △位似,原点O 是位似中心,且113AB A B =.若()9,3A ,∴位似比为31,∴933311m n ==,,解得3m =,1n =,∴()13,1A 故答案为:()3,1.【点睛】此题主要考查了位似变换,正确得出相似比是解题关键.17.(2023·四川乐山·统考中考真题)如图,在平行四边形ABCD 中,E 是线段AB 上一点,连结AC DE 、交于点F .若23AE EB =,则ADF AEF S S =△△__________.【答案】52【分析】四边形ABCD 是平行四边形,则,AB CD AB CD = ,可证明EAF DCF ∽,得到DF CD AB EF AE AE==,由23AE EB =进一步即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴,AB CD AB CD = ,∴,AEF CDF EAF DCF ∠=∠∠=∠,∴EAF DCF ∽,∴DF CD AB EF AE AE ==,∵23AE EB =,∴52AB AE =,∴52ADF AEF S DF AB S EF AE ===△△.故答案为:52【点睛】此题考查了平行四边形的性质、相似三角形的判定和性质等知识,证明EAF DCF ∽是解题的关键.18.(2023·内蒙古·统考中考真题)如图,在Rt ABC △中,90,3,1ACB AC BC ∠=︒==,将ABC绕点A 逆时针方向旋转90︒,得到AB C ''△.连接BB ',交AC 于点D ,则AD DC的值为________.【答案】5【分析】过点D 作DF AB ⊥于点F ,利用勾股定理求得AB =ABB ' 、DFB △是等腰直角三角形,可得DF BF =,再由1122ADB S BC AD DF AB =⨯⨯=⨯⨯ ,得=AD ,证明AFD ACB ,可得DF AF BC AC =,即3AF DF =,再由=AF DF ,求得=4DF ,从而求得52AD =,12CD =,即可求解.【详解】解:过点D 作DF AB ⊥于点F ,∵90ACB ∠=︒,3AC =,1BC =,∴AB ==∵将ABC 绕点A 逆时针方向旋转90︒得到AB C ''△,∴==AB AB ',90BAB '∠=︒,∴ABB ' 是等腰直角三角形,∴45ABB '∠=︒,又∵DF AB ⊥,∴45FDB ∠=︒,∴DFB △是等腰直角三角形,∴DF BF =,∵1122ADB S BC AD DF AB =⨯⨯=⨯⨯ ,即=AD ,∵90C AFD ∠=∠=︒,CAB FAD ∠=∠,∴AFD ACB ,∴DF AF BC AC=,即3AF DF =,又∵=AF DF -,∴=DF∴5=2AD,51=3=22CD-,∴52==512ADCD,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.19.(2023·四川泸州·统考中考真题)如图,E,F是正方形ABCD的边AB的三等分点,P 是对角线AC上的动点,当PE PF+取得最小值时,APPC的值是___________.【答案】27【分析】作点F关于AC的对称点F',连接EF'交AC于点P',此时PE PF+取得最小值,过点F'作AD的垂线段,交AC于点K,根据题意可知点F'落在AD上,设正方形的边长为a,求得AK的边长,证明AEP KF P'''△∽△,可得2KPAP'=',即可解答.【详解】解:作点F关于AC的对称点F',连接EF'交AC于点P',过点F'作AD的垂线段,交AC于点K,由题意得:此时F '落在AD 上,且根据对称的性质,当P 点与P '重合时PE PF +取得最小值,设正方形ABCD 的边长为a ,则23AF AF a '==, 四边形ABCD 是正方形,45F AK '∴∠=︒,45P AE '∠=︒,2AC a=F K AF ''⊥ ,45F AK F KA ''∴∠=∠=︒,223AK a ∴=,F P K EP A '''∠=∠ ,E KP EAP '''∴△∽△,2F K KP AE AP''∴==',12239AP AK a '∴==,729CP AC AP a ''∴=-=,27AP CP '∴=',∴当PE PF +取得最小值时,AP PC 的值是为27,故答案为:27.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键.20.(2023·湖南·统考中考真题)在Rt ABC △中,90BAC AD ∠=︒,是斜边BC 上的高.(1)证明:C ABD BA ∽△△;(2)若610AB BC ==,,求BD 的长.【答案】(1)见解析(2)185BD =【分析】(1)根据三角形高的定义得出90ADB ∠=︒,根据等角的余角相等,得出BAD C ∠=∠,结合公共角B B ∠=∠,即可得证;(2)根据(1)的结论,利用相似三角形的性质即可求解.【详解】(1)证明:∵90BAC AD ∠=︒,是斜边BC 上的高.∴90ADB ∠=︒,90B C ∠+∠=︒∴90B BAD ∠+∠=︒,∴BAD C∠=∠又∵B B∠=∠∴C ABD BA ∽△△,(2)∵C ABD BA∽△△∴AB BD CB AB=,又610AB BC ==,∴23618105AB BD CB ===.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.21.(2023·四川眉山·统考中考真题)如图,ABCD Y 中,点E 是AD 的中点,连接CE 并延长交BA 的延长线于点F .(1)求证:AF AB =;(2)点G 是线段AF 上一点,满足FCG FCD ∠=∠,CG 交AD 于点H ,若2,6AG FG ==,求GH 的长.【答案】(1)见解析(2)65【分析】(1)根据平行四边形的性质可得AB CD ∥,AB CD =,证明()ASA AEF DEC ≅V V ,推出AF CD =,即可解答;(2)通过平行四边形的性质证明6GC GF ==,再通过(1)中的结论得到8DC AB AF ===,最后证明AGH DCH △∽△,利用对应线段比相等,列方程即可解答.【详解】(1)证明: 四边形ABCD 是平行四边形,AB CD ∴∥,AB CD =,EAF D ∴∠=∠,E 是AD 的中点,AE DE ∴=,AEF CED ∠=∠ ,()ASA AEF DEC ∴≅ ,∴AF CD =,AF AB ∴=;(2)解: 四边形ABCD 是平行四边形,8DC AB AF FG GA ∴===+=,DC FA ∥,DCF F ∴∠=∠,DCG CGB ∠=∠,FCG FCD ∠=∠ ,F FCG ∴∠=∠,6GC GF ∴==,DHC AHG ∠=∠ ,AGH DCH ∴△∽△,GH AG CH DC ∴=,设HG x =,则6CH CG GH x =-=-,可得方程268x x =-,解得65x =,即GH 的长为65.【点睛】本题考查了平行四边形的性质,等腰三角形的判定和性质,相似三角形的判定和性质,熟练运用上述性质证明三角形相似是解题的关键.22.(2023·上海·统考中考真题)如图,在梯形ABCD 中AD BC ∥,点F ,E 分别在线段BC ,AC 上,且=FAC ADE ∠∠,AC AD=(1)求证:DE AF=(2)若ABC CDE ∠=∠,求证:2AF BF CE=⋅【答案】见解析【分析】(1)先根据平行线的性质可得DAE ACF ∠=∠,再根据三角形的全等的判定可得DAE ACF ≅ ,然后根据全等的三角形的性质即可得证;(2)先根据全等三角形的性质可得AFC DEA ∠=∠,从而可得AFB CED ∠=∠,再根据相似三角形的判定可得ABF CDE ,然后根据相似三角形的性质即可得证.【详解】(1)证明:AD BC ,DAE ACF ∴∠=∠,在DAE 和ACF △中,DAE ACF AD CA ADE CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA DAE ACF ∴≅ ,DE AF ∴=.(2)证明:DAE ACF ≅ ,AFC DEA ∴∠=∠,180180AFC DEA ∴︒-∠=︒-∠,即AFB CED ∠=∠,在ABF △和CDE 中,AFB CED ABF CDE∠=∠⎧⎨∠=∠⎩,ABF CDE ∴ ,AF BF CE DE∴=,由(1)已证:DE AF =,AF BF CE AF∴=,2AF BF CE =∴⋅.【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.。
三角形全等【知识要点】1.两个能够重合的三角形叫做全等三角形,全等三角形的对应边相等,对应角相等.2.全等三角形的判定方法有(1)SAS;(2)ASA;(3)AAS;(4)SSS.(5)HL.3.两个三角形的两边和一角对应相等,或两个三角形的三个角对应相等,这两个三角形不一定全等.【复习指导】1.应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角;(2)对应顶点所对应的边是对应边;(3)公共边(角)是对应边(角);(4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角).全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若△ABC≌△DEF,说明A与D,B与E,C与F是对应点,则∠ABC与∠DEF是对应角,边AC与边DF 是对应边.2.判定两个三角形全等的解题思路:找夹角——SAS已知两边找另一边——SSS边为角的对边——找任一角——AAS找夹角的另一边——SASCEOD B A已知一边一角边为角的邻边 找夹边的另一角——ASA找边的对角——AAS找夹边——ASA已知两角找任一边——AAS3.运用三角形全等可以证明两线段或两角相等,在直接找不到两个全等三角形时,可考虑添加辅助线构造全等三角形.【思想方法】1.转化思想:应用全等三角形的知识解决测河宽、测池塘宽、测工件内径等实际问题就是转化思想的运用.2.运动变化思想:在研究三角形全等时,经常会出现三角形按照某种特定的规律变化,需要运用运动变化的思想进行解决.3.构造图形法:在直接找不到两个全等三角形时,常常通过平移、对称、旋转等图形变换的方法构造全等三角形.4.分析综合法:从已知条件出发探索解题途径的方法叫综合法;从结论出发不断寻找使结论成立的条件与已知条件关系的方法叫分析法;两头凑的方法就是综合运用分析综合法去寻找证题的一种方法.【证明三角形全等】(1)条件充足时直接应用在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个21C ED BA 三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.例1 已知:如图1,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠BAC .那么图中全等的三角形有___对.(2)条件不足,会增加条件用判别方法此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分, 需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案.例2 如图2,已知AB=AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是(只需填一个)_____.(3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用 全等三角形的判别方法证明两个三角形全等.例3 已知:如图3,AB=AC ,∠1=∠2.求证:AO 平分∠BAC .(4)条件中没有现成的全等三角形时,会通过构造全等三角形用判别方法有些几何问题中,往往不能直接证明一对三角形全等,一般需要作辅助线来构造全等三角形.例4 已知:如图4,在Rt△ABC中,∠ACB=90o,AC=BC,D为BC的中点,CE⊥AD于E,交AB于F,连接DF.求证:∠ADC=∠BDF.说明:常见的构造三角形全等的方法有如下三种:①涉及三角形的中线问题时,常采用延长中线一倍的方法,构造出一对全等三角形;②涉及角平分线问题时,经过角平分线上一点向两边作垂线,可以得到一对全等三角形;③证明两条线段的和等于第三条线段时,用“截长补短”法可以构造一对全等三角形.(5)会在实际问题中用全等三角形的判别方法新课标强调了数学的应用价值,注意培养同学们应用数学的意识,形成解决简单实际问题的能力﹒在近年中考出现的与全等三角形有关的实际问题,体现了这一数学理念,应当引起同学们的重视.例5 要在湖的两岸A、B间建一座观赏桥,由于条件限制,无法直接度量A,B两点间的距离﹒请你用学过的数学知识按以下要求设计一测量方案﹒(1)画出测量图案﹒(2)写出测量步骤(测量数据用字母表示)﹒图5(3)计算A、B的距离(写出求解或推理过程,结果用字母表示)﹒【三角形全等的应用】(1)证明线段(或角)相等例1:如图,已知AD=AE,AB=AC.求证:BF=FC(2)证明线段平行例2:已知:如图,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,AF=CE.求证:AB∥CD(3)证明线段的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段相等例3:如图,在△ ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE. 求证:CD=2CE(4)证明线段相互垂直例4:已知:如图,A、D、B三点在同一条直线上,ΔADC、ΔBDO为等腰三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论。
【全等三角形辅助线的做法】常见辅助线的作法有以下几种:1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.D C B AE D FCB A E D CB A D CB A P QC B A 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、倍长中线(线段)造全等例1、已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. 例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小. 例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE. 二、截长补短 1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC2、如图,AC ∥BD ,EA,EB 分别平分∠CAB,∠DBA ,,求证;AB=AC+BD3、如图,已知在ABC V 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。
求证:BQ+AQ=AB+BP4、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠,求证: 0180=∠+∠C A三、平移变换 例1 AD 为△ABC 的角平分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P .例2 如图,在△ABC 的边上取两点D 、E ,且BD=CE ,求证:AB+AC>AD+AE.四、借助角平分线造全等C B F ED CB A 1、如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD2、如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC BC ,DE ⊥AB 于E ,DF ⊥AC 于F. (1)说明BE=CF 的理由;(2)如果AB=a ,AC=b ,求AE 、BE 的长.五、旋转例1 正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF ,求∠EAF 的度数.例2 D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN分别交BC,CA 于点E,F 。
(1) 当MDN ∠绕点D 转动时,求证DE=DF 。
(2) 若AB=2,求四边形DECF 的面积。
【基础练习】判断题1. 两边和其中一边所对的角对应相等的两个三角形不一定是全等三角形( )2. 有三个角对应相等的两个三角形全等 ( )单选题1. 已知:如图 , ∠BAC=∠EDF , ∠C=∠F , 要使△ABC ≌△DEF , 所缺条件是 [ ]A.∠B=∠EB.∠1=∠2C.AC=DFD.∠C=∠F2. 已知:如图 , AC=CD , ∠B=∠E=90° , AC ⊥CD , 则不正确的结论是 [ ]A.∠A 与∠D 互为余角B.∠A=∠2C.△ABC ≌△CEDD.∠1=∠23. 下列条件:①已知两腰;②已知底边和顶角;③已知顶角与底角;④已知底边和底边上的高 , 能确定一个等腰三角形的是 [ ]A.①和②B.③和④C.②和④D.①和④填空题4. 如图, 已知:∠1=∠2 , ∠3=∠4 , 要证BD=CD , 需先证△AEB ≌△A EC , 根据是_________再证△BDE ≌△______ , 根据是__________.5. 已知:如图 , AC?BC 于C , DE?AC 于E , AD?AB 于A , BC=AE .若AB=5 , 则AD=___________. 证明题6. 已知:如图 , 四边形ABCD 中 , AB ∥CD , AD ∥BC .求证:△ABD ≌△CDB7. 如图,已知:AD ∥BC,AD=BC .求证:AB ∥CD .8. 如图,已知:AC=DF,AC ∥FD,AE=DB,求证:△ABC ≌△DEF【综合测试】一、 选择题 1、如图,△ABC ≌△BAD ,点A 点B ,点C 和点D 是对应点。
如果AB=6厘米,BD=5厘米,AD=4厘米,那么BC 的长是( )。
(A)4 厘米 (B)5厘米 (C) 6 厘米 (D)无法确定2、如图,△ABN ≌△ACM ,AB=AC ,BN=CM ,∠B=50°,∠ANC=120°,则∠MAC 的度数等于( )A .120° B.70° C.60° D.50°.3.使两个直角三角形全等的条件是( )A.一锐角对应相等 B.两锐角对应相等 C.一条边对应相等 D.两条边对应相等4.在△ABC 和△A ˊB ′C ′中,已知∠A=∠A ′,AB=A ′B ′,在下面判断中错误的是( )D CA BG F H A DCEB A. 若添加条件AC=A ˊC ˊ,则△ABC ≌△A ′B ′C ′B. 若添加条件BC=B ′C ′,则△ABC ≌△A ′B ′C ′C. 若添加条件∠B=∠B ′,则△ABC ≌△A ′B ′C ′D. 若添加条件 ∠C=∠C ′,则△ABC ≌△A ′B ′C ′ 5. 某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是( )A .带①去B .带②去C .带③去D .①②③都带去6.将一张长方形纸片按如图所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( )A .60°B .75°C .90°D .95°7. 下列说法中不正确的是( )A.全等三角形一定能重合B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等8.(2004·山东潍坊市)如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )A .甲和乙 B.乙和丙 C.只有乙 D.只有丙A . 9.9.根据图中所给条件 , 判定____这两个三角形全等. ( )A.①和②B.②和④C.①和④D.②和③10.如右图所示,已知△ABC 和△BDE 都是等边三角形。