漫反射边界下各向异性散射介质内的耦合换热
- 格式:pdf
- 大小:1.03 MB
- 文档页数:27
光与介质边界的交互类型反射(Reflection)镜面反射(Specular)
光线在两种介质的交界面上的直接反射即镜面反射
镜面反射的占入射光线的比率可由菲涅尔方程计算得出
镜面反射的集中度由微平面的表面粗糙度决定
微平面粗糙度越大(越不规则),反射光线的分散程度越强,反射越模糊
折射(Refraction)
散射(Scattering)
折射率的快速变化引起散射
分类
次表面散射
【次表面散射】观察像素小于散射距离,散射被视作次表面散射
【透射】入射恍经过折射并穿过物体的出射现象被称为透射。
透射为次表面敞射的特例
漫反射
观察像素大于散射距离的散射现象被称为漫反射
漫反射与镜面反射两者为反射方程最常处理的两项
吸收(Absorption)
光波频率与材质原子中的电子振动的频率相匹配引起吸收
可通过复数折射率的虚部确定光在传播时是否被吸收
光的强度会通过吸收而减少,传播距离越远,吸收量越高
如果吸收对某些特定的可见波长具有选择性,则也会改变光的颜色
材质的外观颜色通常都由吸收的波长相关性引起。
2004年全国优秀博士学位论文名单(按学科排列)学科门类名称一级学科名称论文题目作者姓名导师姓名学位授予单位名称哲学哲学王龙溪与中晚明阳明学的展开彭高翔陈来北京大学哲学对话的新平台--科学语用学的元理论研究殷杰郭贵春山西大学经济学理论经济学企业家的企业理论杨其静杨瑞龙中国人民大学工资、就业的议价对经济效率的影响陆铭袁志刚复旦大学应用经济学我国证券市场交易成本制度研究––关于中国证券市场的SCP分析框架王聪黄德鸿暨南大学法学法学刑法理性论张智辉高铭暄中国人民大学电子商务的国际私法问题何其生黄进武汉大学政治学正义之善--论乌托邦的政治意义陈周旺林尚立复旦大学村治变迁中的权威与秩序––20世纪川东双村的表达吴毅徐勇华中师范大学教育学教育学关怀生命——当代中国学校教育价值的新取向李家成叶澜华东师范大学心理学教师职务绩效––结构及其影响因素研究蔡永红林崇德北京师范大学文学中国语言文学―新诗集‖与新诗的发生研究姜涛温儒敏北京大学神木方言研究邢向东钱曾怡山东大学中国古代戏剧服饰研究宋俊华黄天骥中山大学外国语言文学李德懋文学研究--兼与中国文学相比较徐东日金柄珉延边大学历史学历史学二十世纪古文献新证研究冯胜君吴振武吉林大学抗战前后中英关于西藏问题交涉之研究(1935-1947)陈谦平张宪文南京大学理学数学双稳态系统、单稳态系统、耦合振子系和混沌系统的随机共振现象张雪娟钱敏北京大学单位球面s d-1 上实光滑函数的逼近戴峰王昆扬北京师范大学粗几何上的指标问题的局部化方法王勤陈晓漫复旦大学离散竞争动力系统的一般性质及反应扩散方程解的收敛性王毅蒋继发中国科学技术大学一个统一混沌系统及其研究吕金虎张锁春中国科学院数学与系统科学研究院物理学离散非交换微分几何及其上的场论构造戴柬宋行长北京大学若干低维小体系中的量子特性研究胡辉熊家炯清华大学低强度脉冲裂变中子探测技术研究欧阳晓平霍裕昆复旦大学金属纳米线奇异结构和物理性质的理论研究王保林王广厚南京大学基于光学参量啁啾脉冲放大的台式化超强超短激光的研究与发展杨晓东徐至展中科院上海光学精密机械研究所化学铽配合物光学微腔及双发色团芪唑盐分子的光电功能研究黄岩谊黄春辉北京大学嵌段共聚物导向下新型介孔分子筛材料的合成与表征余承忠赵东元复旦大学分子、团簇和凝聚体系中相互作用的计算研究袁岚峰朱清时中国科学技术大学系列含氮氧配体的功能配(聚)合物的水热合成、结构、性质和机理研究张献明陈小明中山大学叶立德环丙烷化和环氧化反应的立体化学控制叶松戴立信中国科学院上海有机化学研究所新型含氮、硫、氧配体及其超分子化合物的设计合成赵颖隽洪茂椿中国科学院福建物质结构研究所天文学伽玛射线暴及其余辉的研究–环境效应、辐射过程和能源机制王祥玉陆埮南京大学X射线星系团动力学性质及其宇宙学应用薛艳杰武向平中科院国家天文台地理学青藏高原古里雅冰芯中太阳活动记录研究王宁练姚檀栋中科院寒区旱区环境与工程研究所大气科学天气尺度波强迫包络Rossby孤立子理论与阻塞机理罗德海秦曾灏中国海洋大学地质学云南曲靖下泥盆统徐家冲组植物研究王德明郝守刚北京大学流体地球化学:成因、流动与流体–岩石相互作用及塔里木盆地实例分析蔡春芳汪集旸中科院地质与地球物理研究所生物学籼稻基因组工作框架图王俊吴才宏北京大学遗传性乳光牙本质致病基因的鉴定和DSPP基因敲除小鼠的建立张晓海沈岩中国协和医科大学转录组技术平台建立及在树突状细胞和肝癌研究中的应用许相儒陈竺上海第二医科大学两个遗传性白内障致病基因的定位与克隆步磊刘兢中国科学技术大学Cdc42和RhoA可介导细胞外因子对轴突的吸引及排斥作用袁小兵蒲慕明中科院上海生命科学研究院山姜属植物花柱卷曲性异交机制的研究李庆军许再富中科院昆明植物研究所工学力学应变梯度塑性理论断裂和大变形的研究姜汉卿黄克智清华大学高维时滞动力系统的稳定性分析王在华胡海岩南京航空航天大学机械工程电流变机理及应用研究田煜温诗铸清华大学粉末表面涂层陶瓷的硬质合金刀具材料的研制和性能研究陈元春艾兴山东大学转子碰摩非线性行为与故障辨识的研究胡茑庆温熙森国防科技大学光学工程气体激光动力学研究及大功率激光器优化设计程成何赛灵浙江大学材料科学与工程定向生长碳纳米管薄膜的研究曹安源吴德海清华大学复杂晶体化学键介电理论及其在材料科学中的应用高发明李东春燕山大学等离子喷涂生物活性硅灰石涂层研究刘宣勇丁传贤中国科学院上海硅酸盐研究所动力工程及工程热物理镜漫反射下多层吸收散射性介质内的瞬态耦合换热罗剑峰谈和平哈尔滨工业大学炉内高温燃烧两段脱硫的机理研究程军曹欣玉浙江大学分置式斯特林制冷机及脉管制冷机性能改进的理论与实验研究何雅玲陈钟颀西安交通大学电气工程电力系统小扰动稳定域的研究贾宏杰余贻鑫天津大学电子科学与技术新型自对准背栅、双栅MOS晶体管和三维CMOS技术研究张盛东韩汝琦北京大学无束腰的磁浸没电子透镜和微分代数用于电子光学系统像差分析中的研究程敏唐天同西安交通大学低维结构铁电材料光电性能和铁电薄膜红外焦平面列阵器件物理研究于剑汤定元中科院上海技术物理研究所信息与通信工程接入系统中复用技术若干问题的研究秦晓懿曾烈光清华大学分布式检测、跟踪及异类传感器数据关联与引导研究王国宏毛士艺北京航空航天大学控制科学与工程参数化时频信号表示研究邹红星李衍达清华大学2–D离散动力系统混沌控制与同步刘树堂刘永清华南理工大学计算机科学与技术逐步简化的扫描工程图矢量化模型及图形识别方法的研究宋继强蔡士杰南京大学建筑学建筑与城市的地区性––一种人居环境理念的地区建筑学研究单军吴良镛清华大学土木工程人工冻结粘土力学特性研究及冻土地基离心模型实验陈湘生濮家骝清华大学水利工程弱非线性水波和海流在非平整海底上的传播及其混沌动力学黄虎周锡礽天津大学测绘科学与技术基于GPS的电离层监测及延迟改正理论与方法的研究袁运斌欧吉坤中国科学院测量与地球物理研究所化学工程与技术水合物法分离气体混合物相关基础研究孙长宇郭天民石油大学地质资源与地质工程煤中伴生元素的地质地球化学习性与富集模式代世峰任德贻中国矿业大学矿业工程可视化集成采矿CAD系统研究陈建宏古德生中南大学纺织科学与工程多孔丝素膜的制备及结构、性能研究李明忠严灏景东华大学船舶与海洋工程中心制造船模式的研究与应用陈强黄胜哈尔滨工程大学水下复杂目标回声特性研究范军汤渭霖上海交通大学舰船非接触水下爆炸动力学的理论与应用刘建湖吴有生中国舰船研究院航空宇航科学与技术液体火箭发动机燃烧稳定性理论、数值模拟和实验研究黄玉辉王振国国防科技大学兵器科学与技术雷电电磁脉冲场理论计算及对电引信的辐照效应实验陈亚洲刘尚合军械工程学院核科学与技术高比压等离子体中的微观漂移不稳定性高喆刘广均清华大学林业工程新型木材阻燃剂FRW 王清文李坚东北林业大学环境科学与工程膜萃取和流动注射在线样品前处理技术研究刘景富江桂斌中国科学院生态环境研究中心生物医学工程脑电信号的非广度熵分析及其在心脏停搏脑损伤监测中的应用研究童善保朱贻盛上海交通大学农学作物学山羊草物种高分子量麦谷蛋白基因的分子克隆颜泽洪郑有良四川农业大学园艺学苹果果实糖代谢的酶学研究:着重于酸性转化酶和淀粉酶的细胞生理学机制王永章张大鹏中国农业大学植物保护黄杜鹃花杀虫成分、作用机制及构效关系研究钟国华赵善欢华南农业大学医学基础医学同型半胱氨酸促进人单核细胞表达和分泌趋化因子MCP-1和IL-8及其机制曾晓坤王宪北京大学人树突状细胞来源的新分子Siglec–10和人骨髓基质细胞来源的新分子PHDP的克隆与功能研究李楠曹雪涛第二军医大学临床医学转移性人肝癌细胞模型的优化及转移机理探讨李雁汤钊猷复旦大学血栓性疾病及抗栓基因工程抗体的分子生物学研究戴克胜阮长耿苏州大学遗传性耳聋家系的收集、保存及基因定位研究王秋菊杨伟炎军医进修学院公共卫生与预防医学极低频电磁场对基因突变和基因表达的影响丁桂荣郭鹞第四军医大学中医学丹酚酸B预适应的心脏细胞保护作用及机制研究郭利平张伯礼天津中医学院药学预适应对大鼠心脏的保护作用及机制研究彭军李元建中南大学军事学战役学战役谋略研究李麒张兴业国防大学管理学管理科学与工程证券组合投资的风险决策模型及其应用研究刘善存邱菀华北京航空航天大学图书馆、情报与档案管理魂系历史主义——西方档案学两大支柱理论发展研究黄霄羽冯惠玲中国人民大学。
理解光的折射散射与反射大学物理基础知识理解光的折射、散射与反射:大学物理基础知识光是一种电磁波,我们在日常生活中经常会遇到光的各种现象,例如,阳光透过水面时的折射、光在空气中透过尘埃的散射以及镜面上的反射等。
这些现象都是由光的折射、散射与反射引起的。
在本文中,我们将深入探讨光的这些基本现象,以加深对光学原理的理解。
一、光的折射光的折射是指光线从一种介质传播到另一种介质时改变传播方向的现象。
折射是由于光波在传播介质中的速度改变引起的。
根据斯涅耳定律,光线的入射角和折射角满足一个简单的关系,即入射角的正弦值与折射角的正弦值成正比。
这一关系可以用下式表示:n1sinθ1 = n2sinθ2其中,n1和n2分别为两种介质的折射率,θ1和θ2为光线的入射角和折射角。
折射现象在我们的日常生活中非常常见,比如,当光线从空气射入水中时,就会发生折射现象。
这也解释了为什么在看水中的物体时,物体的位置会看起来比实际的位置更高。
二、光的散射光的散射是指光线在经过介质时与粒子或分子碰撞而改变方向的现象。
散射会导致光线在空气中传播时变得模糊不清。
其中,尘埃颗粒是光线散射的常见原因之一。
当太阳光穿过大气层时,与大气中的尘埃、水滴等颗粒发生散射,从而形成了我们熟悉的蓝天白云。
光的散射还可以解释为什么当你在看远处的物体时,会觉得它们模糊不清,因为光线在传播过程中遇到了更多的散射。
三、光的反射光的反射是指光线遇到一个边界时,一部分光线返回原来的介质中的现象。
光的反射可以分为镜面反射和漫反射两种。
镜面反射发生在光线遇到光滑表面时,光线返回原来的介质,并沿与入射角相等且在同一平面内的角度反射出去。
而漫反射则发生在光线遇到粗糙表面时,光线被表面的不规则形状散射反射出去。
镜子和光滑金属表面是光的镜面反射的常见例子,而纸张和木材等粗糙表面则是光的漫反射的例子。
光的反射在日常生活中扮演着非常重要的角色。
比如,我们使用镜子来进行化妆、照镜子等活动,都是基于光的反射原理。
光的反射、折射和散射
光的反射是光线遇到物体表面后返回原来传播方向的现象;光的折射是光线由一种介质射入到另一种介质后改变传播方向的现象;
反射分为两种:镜面反射和漫反射镜面反射:平行的光线照射到平滑的物体表面后反射的光还是平行的。
漫反射:凹凸不平的表面会把光线向着四面八方反射,这种反射叫做漫反射。
折射:光从一种介质斜射如另一种介质时,传播方向发生改变,这种现象叫做光的折射。
散射(scattering)是指由传播介质的不均匀性引起的光线向四周射去的现象。
如一束光通过稀释后的牛奶后为粉红色,而从侧面和上面看,是浅蓝色。
1.光线通过有尘土的空气或胶质溶液等媒质时,部分光线向多方面改变方向的现象。
叫做光的散射.超短波发射到电离层时也发生散射。
2.两个基本离子相碰撞,运动方向改变的现象。
3.在某些情况下,声波投射到不平的分界面或媒质中的微粒上而不同方向传播的现象,也叫乱反射。
4.按介质不均性的不同,光的散射可分为两大类:介质中含有许多较大的质点,它们的线度在数量级上等于光波的波长,引起的光的散射叫做悬浮质点散射。
十分纯净的液体或气体,由于分子热运动而造成的密度的涨落引起光的散射叫做分子散射。
反射(fanshe)在中枢神经系统参与下,机体对内外环境刺激所作出的规律性反应。
声波、光波或其他电磁波遇到别的媒质分界面而部分仍在原物质中传播的现象。
各向异性介质辐射特性参数联合反演吴志义;李佳玉【摘要】The joint inverse model of radiative characteristic parameters of anisotropic scattering medium was established used BP neural network method combined with the Monte Carlo method and BEER law.Firstly,the scattering and absorption coefficients of the isotropic medium were inversed by the combination of the hemispherical transmittance and reflectance,then the collimated transmittance was added to the measurement pa rameters.The absorption coefficient,scattering coefficient and scattering asymmetry factor of anisotropic medium were inversed by the joint inverse model based on the hemisphericaltransmittance,reflectance and collimated transmittance.The inverse results show that this model,which has practical significance,can inverse three radiative characteristic parameters of anisotropic mediumaccurately.What's more,the measurement error was taken into account.In the case of different degree of measurement error,the results show that the measurement error has a great influence on the inversion of the scattering asymmetry factor.%本文基于BP神经网络方法结合蒙特卡洛和BEER 定律辐射传输模拟方法建立了联合反演各向异性散射介质的辐射特性参数模型.首先采用半球透射率结合半球反射率反演模型反演了各向同性介质的吸收系数和散射系数,在此基础上增加准直透射率,建立了联合反演各向异性介质的吸收系数、散射系数和散射不对称因子三参数联合反演模型.反演结果表明该模型能准确反演出介质辐射特性参数,具有实用意义.此外,为了检验测量误差对模型的反演准确性的影响,分别在不同程度测量误差情况下进行反演,结果显示测量误差对散射不对称因子反演值影响较大.【期刊名称】《光散射学报》【年(卷),期】2017(029)003【总页数】7页(P203-209)【关键词】各向异性介质;辐射特性参数;BP神经网络;反演;蒙特卡洛方法【作者】吴志义;李佳玉【作者单位】南京理工大学能源与动力工程学院,南京210094;南京理工大学能源与动力工程学院,南京210094【正文语种】中文【中图分类】TK124各向异性介质广泛存在于日常生活中,如大气气溶胶、锅炉炉膛烟气、火箭发动机尾焰等。
Combined heat transfer within an anisotropic scattering slabwith diffuse surfacesHong-Liang Yi, He-Ping Tan*School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P.R.China150080, P.R.ChinaAbstractUnder various interface reflecting modes, different transient thermal response will occur in media. Combined radiative-conductive heat transfer is investigated within a participating, anisotropic scattering gray planar slab. The two interfaces of the slab are considered to be diffuse and semitransparent. Using the ray tracing method, an anisotropic scattering radiative transfer model for diffuse reflection at boundaries is set up, and with the help of direct radiative transfer coefficients, corresponding radiative transfer coefficients (RTCs) are deduced. RTCs are used to calculate the radiative source term in energy equation. Transient energy equation is solved by the full implicit control-volume method under the external radiative-convective boundary conditions. The influences of two reflecting modes including both specular reflection and diffuse reflection are examined on transient temperature fields and steady heat flux. According to numerical results obtained in this paper, it is found that there exits great difference in thermal behavior between slabs with diffuse interfaces and that with speccular interfaces for slabs with big refractive index.Keywords: Combined radiative-conductive heat transfer / ray tracing method / Radiative transfer coefficients / Anisotropic scattering / Diffuse reflection___________________________________*Corresponding author. Tel.: 86-451-86412028, Fax: 86-451-86221048. Email: tanheping77@NomenclatureAbbreviation RTCRadiative Transfer Coefficient,i k T A,,()()kb i b i I T d I T d λλλλλ∞∆∫∫, fractional spectral emissive power of spectral band k λ∆at nodal temperature i TC unit heat capacity of media, 11JKg K −− ()n E xexponential integral function of the th n rank12,h hconvective heat transfer coefficient at surfaces of 1S and 2S , respectively , 21Wm K −− kphonic thermal conductivity, 11Wm K −− L thickness of slab, m NB total number of spectral bands NM total number of control volumes of slab ,k m nspectral refractive index of slab r qheat flux of radiation, 2Wm −r q % dimensionless heat flux of radiation, ()4/4r rfq T σ c qheat flux of conduction, 2Wm −c q % dimensionless heat flux of conduction, ()4/4c rfq T σ t qtotal heat flux, r c q q +t q % dimensionless total heat flux, r c q q +%% ,u v S SS −∞or S +∞()()(),,u v k u j k i j kS S S V V Vradiation transfer coefficients of surface vs surface, surface vs volume, and volume vsvolume in non-scattering media relative to the spectral band k λ∆[],,u v k u j k i j kS S S V V V ⎡⎤⎣⎦⎡⎤⎣⎦ radiation transfer coefficient of surface vs surface, surface vs volume, and volume vs volume in isotropic or anisotropic scattering media relative to the spectral band k λ∆12,S Sboundary surfaces,S S −∞+∞black surfaces representing the surroundings Tabsolute temperature, K12,g g T Tgas temperatures for convection at 0X = and 1, K rf Treference temperature, K 0Tuniform initial temperature, K tphysical time, sX dimensionless coordinate in direction across layer, X x L = ,i j x normal distance of ray transfer between both subscripts, m znormal distance of ray transfer, m t ∆, time intervalx ∆spacing interval between two nodes, mβthe common ratio of the infinite geometric series,()21,in 2,in 12s s ρρ 1,2,, k k εε emissivity of surface 1S , 2S , respectively η 1ω−,,i s r θθθ, incident, scattering, refractive angle between the ray and x -axis k κ spectral extinction coefficient of slab, 1m − ρ density of media, 3kg/m12,ρρreflectivity of surface 1S , 2S , respectivelyσStefan −Boltzmann constant, =8106696.5−×24Wm K −− Φscattering phase functionr i Φradiative heat source of the control-volume io τL κ, optical thickness of slab ω scattering albedo of slabζ control volumes in units of optical thickness, 0NM τ Subscripts, d s diffuse reflection, specular reflection iw ie ,right and left interface of control volume i , in outrefer to inner, outer surface, respectively krelative to the th k region of spectral bandst t −, -o orefer to media with semitransparent , opaque interfaces, respectively 1, 2 refer to the boundary surfaces 1S and 2S , respectively ,−∞+∞refer to the black surfaces S −∞ and ∞+S , respectively Superscripts, d s diffuse reflection, specular reflectiont f b ,, incidence radiation from negative, positive and both direction relative to the x axis, respectivelyq h , backward scattering and forward scattering relative to the incident direction, respectively rrefer to radiation1. IntroductionSemitransparent participating materials such as ceramic, glass, fiber, zirconia, silica gel and so on, have many engineering applications in which radiation transport and coupled radiative-conductive heat transfer play a dominant role to control their transient thermal behavior. These applications include heat insulation and thermal protection [1,2], ignition of semitransparent solid fuels [3,4], measurement of thermophysical properties of translucent materials [5,6], infrared heating and infrared drying, design of furnaces, prediction of the effect of dust, CO 2 and other participating gases on the global environment, and so forth.In the past semicentury, much work has been done on the radiative transfer and coupled radiative-conductive heat transfer within participating media. Relative to isotropic scattering, much less literatures on thermal radiation involving in anisotropic scattering have been found. Using discrete ordinates method, Krishnaprakas et al. [7] examined conduction-radiation heat transfer through a gray planar nonlinearly anisotropic scattering medium with two plane-parallel surfaces reflecting both diffusely and specularly. M. Lazard et al. [8] developed a semi-analytical model based on the exponential-kernel method for the transient combined conduction-radiation heat transfer for an anisotropically scattering participating slab excited by heat pulse stimulation on the front face. Prabal Talukdar et al. [9] solved combined conduction-radiation problem using the collapsed dimension method for gray planar absorbing, emitting and anisotropically scattering medium. Zekeriya Altaç [10] proposed the Synthetic Kernel approximation to solve radiative transfer problems in linearly anisotropically scattering homogeneous and inhomogeneous participating plane-parallel medium.There are generally two reflecting modes at interfaces: specular reflection and diffuse reflection. If the interface is optically smooth, it can be assumed specular; if the interface is optically rough, it can be assumed diffuse. As discussed by Siegel [11], the diffuse reflectivity of semitransparent interface can be obtained from the F resnel interface relations by integrating the reflected energy over all incident directions if assuming that each bit of roughness acts as a smooth facet. For the semitransparent specular interface, the reflectivity can be determined byFresnel’s reflective law and Snell’s refractive law [12]. In the present investigation, we adopt the methods proposed in Refs [11, 12] for the treatment of specular and diffuse interface conditions.In the last five years, He-Ping Tan, Ping-Yang Wang and Jian-F eng Luo et al. have solved transient coupled radiative-conductive problem by ray tracing method through a participating media with one-layer [13], two-layer [14], three-layer [15] and multi-layer [16], respectively. In their studies, anisotropic scattering was not considered. While for some materials, such as ceramics and zirconia, which are porous semitransparent media with highly anisotropic scattering [17], the assumption of isotropic scattering can cause big error. In this paper, based on the radiative transfer model developed for anisotropic scattering media with specular and semitransparent boundaries in Ref. [18] and using ray-tracing method, we set up an anisotropic scattering radiative transfer model for diffuse reflection at interfaces and with the help of direct radiative transfer coefficients, corresponding radiative transfer coefficients (RTCs) are deduced in combination with nodal analysis based on the zone method. A gray slab with two semitransparent surfaces is considered here. The radiative heat source term is calculated by the RTCs and is linearized using the method present in Ref. [19]. The transient energy equation is solved by the control-volume method under the external radiative-convective boundary conditions. The influences of two reflecting modes on the transient temperature fields and steady heat flux are investigated under the various values of refractive indexes, albedo, and extinction coefficients.2. Governing equationsAsemitransparent slab with thickness of L is considered as shown in Fig.1 and is confined within two black surfacesT +∞S +∞2S 2ρ22g T hS −∞T −∞ 11g T h 1112i i j j S S S S S S ++Fig.1 Discrete model of space zoneS −∞ and S +∞, denoting the environment of temperatures ∞−T and ∞+T , respectively. Both of boundary surfaces aresemitransparent and diffuse. The slab is divided into 2+NM nodes along its thickness and denoted by i . Here, 1=i and 2i NM =+ represent surfaces 1S and 2S , respectively.Between the time interval t and t t +∆, the fully implicit discrete energy equation of control volume i for the transient coupled radiation and conduction is obtained as()()()111111111,1m mm m m m m m ii iei i iw i ir m iT T k TT k T T C xtx++++++++−+−−+−∆=+Φ∆∆ (1) where ie k , iw k are harmonic mean media thermal conductivities at the interfaces ‘ie ’ and ‘iw ’, respectively. The spectral parameters, such as extinction coefficient k κ, emissivity k ε, and refractive index ,k m n etc., vary with the wavelength, and they can be approximately expressed in a series of rectangular spectral bands. The radiative source term at the control volume i can be expressed as()()()1244,,,,,12244,,,,,424,,,,,j i S i S iNBNM d dri k m j i k T j i j k T i k t t k t t k j ddS k m i k T i k T i k t t k t t d dS i k T k m i k T ik t t k t t n V V A T V V A T n S V A T V S A T S V A T n V S A T σ+∞+∞−∞−∞+−−==+∞+∞−−−−∞−∞−−⎧⎪⎡⎤⎡⎤Φ=−⎨⎣⎦⎣⎦⎪⎩+−⎡⎤⎡⎤⎣⎦⎣⎦⎫⎪ +⎡⎤⎡⎤⎬⎣⎦⎣⎦⎪⎭∑∑21i NM ≤≤+ (2)where, symbol NB indicates the total spectral band number and k the th k region of spectral bands. Discrete boundary conditions at 1S and 2S are now given as follows: ()()1112212S S g k T T x h T T −∆=− (3a)()()2221122NM NM S S g k T T x h T T ++−∆=− (3b)In the Eq. (2), for the local radiative heat source term, besides temperatures at all nodes, the symbols, such as,d i j k t t V V −⎡⎤⎣⎦, ,dk t t S S −∞+∞−⎡⎤⎣⎦ and ,dj k t t S V −∞−⎡⎤⎣⎦, where the superscript d denotes diffuse reflection and the subscriptt t −denotes two semitransparent interfaces, etc., defined as radiative transfer coefficients (RTCs), are unknowns tobe calculated. Therefore, the radiative transfer coefficients must be firstly evaluated before solving the local radiative heat source. In the next section, RTCs are deduced for anisotropic scattering media with diffuse boundaries3. Deduction of RTCsDefine RTC of element (surface or control-volume) i to element j as the quotient of the radiative energy that is received by element j in the transfer of the radiative energy emitted by element i . The radiation transfer process in scattering medium can be divided into two sub-processes [13]: emitting-attenuating-reflecting sub-process andmultiple absorbing-multiple scattering sub-process. Take ,d i j k t tV V −⎡⎤⎣⎦as an example to illustrate the deduction ofRTCs. F or convenience, we omit superscript ‘d ’ and subscript ‘k ’ in the following text. According to twosub-processes of the radiative transfer, the deduction of i j t tV V −⎡⎤⎣⎦can be accomplished by two steps: the first step iswithout considering scattering and the second step is with considering scattering. For scattering media, i j t tV V −⎡⎤⎣⎦includes two parts. One part is the radiative energy emitted by control-volume i V that directly reaches j V and is absorbed partly without being scattered by any other control-volumes; the other part is the radiative energy emitted by i V that reaches j V and is absorbed partly after being scattered many times by other control-volumes.3.1. RTCs without scattering consideredIn the emitting-attenuating-reflecting sub-process, scattering is not considered, and the deduction ofi j t t V V −⎡⎤⎣⎦begins with the first step. Figs.2 shows four paths through which the radiant energy emitted from i V gets toj V for the first time. According to Figs.2, several direct radiative transfer coefficients are defined as follows:()()()1122102exp /t t t ts s s s kL d µµµ−−==−∫ (4a)()()()()1111,02exp /1exp /i i i t t t t s v v s kx k x d µµµµ−−==−−−∆⎡⎤⎣⎦∫ (4b)()()()()1222,102exp /1exp /i i i t t t ts v v s kx k x d µµµµ+−−==−−−∆⎡⎤⎣⎦∫ (4c)()()()()121,02exp /1exp / i j i j t t v v kx k x d i j µµµµ+−=−−−∆≠⎡⎤⎣⎦∫ (4d)()()34212i i t t v v k x E k x −=∆−−∆⎡⎤⎣⎦ (4e)As shown in Figs.2, the radiant energy emitted by i V reaches j V in two directions: positive direction and negative direction relative x -axis. Using the direct radiative transfer coefficients presented above, we can obtain such expressions of the radiative transfer coefficients without considering scattering as follows:1S 2S iV j V(a)1S 2S jV iV(b)1S 2SiV(c)Figs. 2 Transfer paths from control-volume i to control-volume j :(a)i j <, (b)>i j , and (c)i j =.(1) i j < (see Fig.2a)()()()()()11,in 11fi ji j i j t t t t t t t tV V v v v s s v ρβ=−−−−+− (5a)()()()()()()()22,in 211,in 122,in 21bi ji j i j t t t t t t t t t t t t V V v s s v v s s s s v ρρρβ=−−−−−−⎡⎤+−⎢⎥⎣⎦(5b)(2) i j = (see Fig.2b) ()()()()()()()()0.511,in 122,in 211,in 11f i i i i i i i i t t t t t t t t t t t t t t V V v v v s s v v s s s s v ρρρβ=−−−−−−−⎡⎤++−⎢⎥⎣⎦(5c)()()()()()()()()0.522,in 211,in 122,in 21b i i i i i i i i t t t t t t t t t t t t t t V V v v v s s v v s s s s v ρρρβ=−−−−−−−⎡⎤++−⎢⎥⎣⎦(5d) (3) i j > (see Fig.2c)()()()()()()()11,in 122,in 211,in 11fi ji j i j t t t t t t t t t t t t V V v s s v v s s s s v ρρρβ=−−−−−−⎡⎤+−⎢⎥⎣⎦(5e)()()()()()22,in 21bi j i j i j t t t t t t t tV V v v v s s v ρβ=−−−−+− (5f)And the ()i j t tV V −, denoting i j t tV V −⎡⎤⎣⎦when scattering is not considered, equals the sum of ()fi jt tV V −and ()bi jt t V V −:()()()fbi j i j i j t t t t t t V V V V V V =+−−− (6)In above equations, the superscript ‘f ’denotes positive incidence on j V , the superscript ‘b ’denotes negative incidence on j V , the subscript ‘in ’ denotes interior surface, and βis the common ratio, equal to ()21,in 2,in 12s s ρρ, of the infinite geometric series.3.2. RTCs with anisotropic scattering consideredWhen the effect of scattering is considered in the multiple absorbing-multiple scattering sub-process, the quotient of radiant energy represented by RTC ()i jt t V V − will be redistributed. F or anisotropic media, the radiant energyscattered by media is relevant to the scattering direction and is the function of scattering phase function. Scattering directions are relative to incident directions. For one-dimensional problem, if the scattering direction is the same as the incident one, the scattering can be defined as forward scattering; if the scattering direction is the opposite to the incident one, the scattering can be defined as backward scattering. In the multiple absorbing-multiple scattering sub-process, the radiant energy emitted from i V firstly gets to 1l V in two directions (positively incident direction and negatively incident direction), after being scattered, it reaches 2l V in two directions, after being scattered again, it reaches 3l V in two directions …, after being scattered again and again, it finally arrives at j V in two directions. According to above analyse, we must firstly derive such radiative transfer coefficients ()mnff l lt tV V −, ()mnfb l lt tV V −,()mnbf l lt tV V − and ()mnbb l lt tV V −, with anisotropic scattering considered, where ‘f ’ denotes positively incident direction,‘b ’ denotes negatively incident direction, and the first superscript denotes the direction of radiation incidence on ml V ,the second superscript denotes the direction of radiation incidence on nl V .S−∞S S S+∞S S S S+∞(a) (b)S−∞S S S+∞S−∞S S S+∞(c) (d)S S S S+∞S−∞S S S+∞(e) (f)F igs. 3 Sketch of transfer directions fromm lV scattered ton lV: (a)m nl l<, positive incidence,(b)m nl l<, negative incidence, (c)m nl l=, positive incidence, (d)m nl l=, negative incidence,(e)m nl l>, positive incidence, and (f)m nl l>, negative incidence.Figs.3 give four transfer directions fromm lV scattered ton lV. In Figs.3, thick lines with big arrowhead indicatedirection of radiative incidence onm lV, symbol ‘q’ denotes forward scattering and symbol ‘h’ denotes backward scattering relative to incident direction. According to Figs.3, several direct radiative transfer coefficients caused by anisotropic scattering are present as bellows:( vi s1 )tq−tπ 2=2∫0exp ( − kx1,i / cos θ i ) ⎡1 − exp ( − k ∆x / cosθ i ) ⎤ cos θ i sin θ i ⎣ ⎦1π 20π 21∫ Φ (θ s ,θi ) dθ s dθ iΦ (θ s ,θ i ) dθ s dθ i(7a)( vi s1 )th−t( vi s2 )tq−tπ 2=2∫0exp ( − kx1,i / cos θ i ) ⎡1 − exp ( − k ∆x / cosθ i ) ⎤ cos θ i sin θ i ⎣ ⎦π 2 π∫21π(7b)π 2=2∫0exp ( −kx2,i +1 / cos θ i ) ⎡1 − exp ( − k ∆x / cos θ i ) ⎤ cosθ i sin θ i ⎣ ⎦π 20π 21∫ Φ (θ s ,θi ) dθ s dθ iΦ (θ s ,θ i ) dθ s dθ i(7c)( vi s2 )th−tπ 2=2∫0exp ( −kx2,i +1 / cos θ i ) ⎡1 − exp ( − k ∆x / cos θ i ) ⎤ cosθ i sin θ i ⎣ ⎦π 2 π∫2π 20π(7d)q ( vi v j )t −t = 2 ∫ exp ( −kxi +1, j / cosθi ) ⎡1 − exp ( −k ∆x / cosθi )⎤ 2 cosθi sin θi π12 ∫ Φ (θ s ,θi ) dθ s dθi (i ≠ j ) ⎣ ⎦π 20(7e)h ( vi v j )t −t = 2 ∫ exp ( −kxi +1, j / cosθi ) ⎡1 − exp ( −k ∆x / cosθi )⎤ 2 cosθi sin θi π12 ∫ Φ (θ s ,θi ) dθ s dθi (i ≠ j ) ⎣ ⎦π 20π(7f)π 2where, Φ (θ s ,θ i ) is scattering phase function, θ i denotes incident angle and θ s denotes scattering angle; superscript ‘ q ’ denotes forward scattering and superscript ‘ h ’ denotes backward scattering relative to incident direction. Using Eqs. (7a)~ (7f) and Eqs. (4a)~ (4e), RTCs caused by anisotropic scattering can be derived as follows: (1) lm < ln , for the positive incidence on Vlm (see Fig.3a),(V(Vlm Vlnlm Vln)ff t −t=(v v )lm lnq t −t+ vl s1m())h t −tρ1,in s1vln()t −t(1 − β )(8a))fb t −t=⎡ ⎢ vlm s2 ⎣()q t −tρ 2,in s2 vln()t −t+ vl s1m(h t −tρ1,in ( s1s2 )t −t ρ 2,in s2 vln()t −t ⎥ ⎦⎤(1 − β )(8b)for the negative incidence on Vlm (see Fig.3b),(V(Vlm Vlnlm Vln)bf t −t=(v v )lm lnh t −t+ vl s1m())q t −tρ1,in s1vln()t −t(1 − β )(8c))bb t −t=⎡ ⎢ vlm s2 ⎣()h t −tρ 2,in s2 vln()t −t+ vl s1m(q t −tρ1,in ( s1s2 )t −t ρ 2,in s2 vln()t −t ⎥ ⎦⎤(1 − β )(8d)(2) lm = ln , for the positive incidence on Vlm (see Fig.3c),(V (Vlm Vlm) )ff t −t= 0.5(vlm vlm) )t −t⎡ + ⎢ vl s1 ⎣ m ⎡ + ⎢ vl s2 ⎣ m() )h t −tρ1,in s1vl(m t −t)+ vl s2m()q t −tρ 2,in ( s2 s1 ) ρ1,in s1vl(m t −t)⎤ ⎥ ⎦ ⎤ ⎥ ⎦(1 − β ) (1 − β )(8e)fb t −tlm Vlm= 0.5(vlm vlmt −t(qt −tρ 2,in s2 vl(m)t −t+ vl s1m()h t −tρ1,in ( s1s2 ) ρ 2,in s2 vl(m t −t)(8f)− 11 −for the negative incidence on Vlm (see Fig.3d),(V (Vlm Vlm) )bf t −t= 0.5(vlm vlm) )t −t⎡ + ⎢ vl s1 ⎣ m ⎡ + ⎢ vl s2 ⎣ m() )q t −tρ1,in s1vl(m t −t)+ vl s2m()h t −tρ 2,in ( s2 s1 ) ρ1,in s1vl(m t −t)⎤ ⎥ ⎦ ⎤ ⎥ ⎦(1 − β ) (1 − β )(8g)bb t −tlm Vlm= 0.5(vlm vlmt −t(ht −tρ 2,in s2 vl(m)t −t+ vl s1m()q t −tρ1,in ( s1s2 ) ρ 2,in s2 vl(m t −t)(8h)(3) lm > ln , for the positive incidence on Vlm (see Fig.3e),(Vlm Vln)ff t −t=⎡ ⎢ vlm s1 ⎣()ht −tρ1,in s1vln()t −t+ vl s2m()qt −tρ 2,in ( s2 s1 )t −t ρ1,in s1vln()t −t ⎥ ⎦⎤(1 − β )(8i)(V(V ) (lm Vln)fb t −t=(v v ) + (v s )h lm ln t −t lm 2q t −tρ 2,in s2 vln()t −t(1 − β )(8j)for the negative incidence on Vlm (see Fig.3f),bf t −t lm Vln =⎡ ⎢ vlm s1 ⎣)qt −tρ1,in s1vl(n)t −t+ vl s2m()ht −tρ 2,in ( s2 s1 )t −t ρ1,in s1vl(n)t −t ⎥ ⎦⎤(1 − β )(8k)(Vlm Vln)bb t −t=(v v )lm lnq t −t+ vl s2m()h t −tρ 2,in s2 vln()t −t(1 − β )(8l)For the forwardly incident on Vl , the total quotient, absorbed by Vl , of the radiative energy scattered out by Vl , ism n m(Vmlm Vln)ft t −t=(Vlm Vln) (Vff t −t +lm Vln)fb t −t(9a)For the backwardly incident on Vl , the total quotient, absorbed by Vl , of the radiative energy scattered out by Vl ,n mis(Vlm Vln)bt t −t=(Vlm Vln) (Vbf t −t +lm Vln)bb t −t(9b)And then, with the help of RTCs derived above, considering the redistribution of radiant energy, ⎡ViV j ⎤ can be ⎣ ⎦ t −t educed. For simplicity, when n ≥ 3 , four functions are defined as follows:ft H (Vln +1Vln ) a ,t −t = NM +1 ln = 2 NM +1 ln = 2 NM +1 ln = 2∑ ∑ft ⎡ (Vl Vl )tff t ω H (Vl Vl ) a ,t −t + (Vl Vl )tfbt ω H (Vl Vl )bt,t −t ⎤ n n −1 n +1 n − n n −1 a ⎣ n +1 n − ⎦(9a)H (Vln +1Vln )bt,t −t = aft ⎡ (Vl Vl )bf t ω H (Vl Vl ) a ,t −t + (Vl Vl )bbt ω H (Vl Vl )bt,t −t ⎤ n n −1 n +1 n t − n n −1 a ⎣ n +1 n t − ⎦(9b)H (Vln +1Vln ) sftt −t = ,∑⎡(Vl Vl )tff t ω H (Vl Vl ) sftt −t + (Vl Vl )tfbt ω H (Vl Vl )btt −t ⎤ n n −1 , n +1 n − n n −1 s , ⎣ n +1 n − ⎦(9c)− 12 −H (Vln +1Vln )btt −t = s,NM +1 ln = 2∑⎡ (Vl Vl )bf t ω H (Vl Vl ) sftt −t + (Vl Vl )bbo ω H (Vl Vl )btt −t ⎤ n n −1 , n +1 n t − n n −1 s , ⎣ n +1 n t − ⎦(9d)The subscript ‘ a ’ is for absorption and ‘ s ’ for scattering. If n = 2 , thenH Vl3 Vl2( ()a,t −t = ∑ ⎡(Vl Vl )t −t ω (Vl V j )t −t η + (Vl Vl )t −t ω (Vl V j )t −t η ⎤ ⎢ ⎥ ⎦ l =2 ⎣ft ff ft fb bt3 2 2 3 2 2 2NM +1(10a)H Vl3 Vl2)a,t −t = ∑ ⎡(Vl Vl )t −t ω (Vl V j )t −t η + (Vl Vl )t −t ω (Vl V j )t −t η ⎤ ⎢ ⎥ ⎦ l =2 ⎣bt bf ft bb bt3 2 2 3 2 2 2NM +1(10b)H Vl3Vl2( ()s,t −t = ∑ ⎡(Vl Vl )t −t ω (Vl V j )t −t ω + (Vl Vl )t −t ω (Vl V j )t −t ω ⎤ ⎢ ⎥ ⎦ l =2 ⎣ft ff ft fb bt3 2 2 3 2 2 2NM +1(10c)H Vl3Vl2)s,t −t = ∑ ⎡(Vl Vl )t −t ω (Vl V j )t −t ω + (Vl Vl )t −t ω (Vl V j )t −t ω ⎤ ⎢ ⎥ ⎦ l =2 ⎣bt bf ft bb bt3 2 2 3 2 2 2NM +1(10d)(1) After the first scattering,⎡ViV j ⎤ ⎣ ⎦ a ,t −t = ViV j1st()t − t η⎡ViV j ⎤ ⎣ ⎦ s ,t −t = ViV j1st()t −t ω(2) After the second scattering,⎡ViV j ⎤ ⎣ ⎦ a ,t −t = ⎡ViV j ⎤ a ,t −t + ⎣ ⎦2 nd 1st NM +1 l2 = 2∑⎡ ⎢ ViVl2 ⎣()t −t ω (Vl V j )t −t η + (ViVl )t −t ω (Vl V j )t −t ηf ft b bt2 2 2⎤ ⎥ ⎦⎡ViV j ⎤ ⎣ ⎦ s ,t − t =2 ndNM +1 l2 = 2∑⎡ ⎢ ViVl2 ⎣()t −t ω (Vl V j )t −t ω + (ViVl )t −t ω (Vl V j )t −t ωf ft b bt2 2 2⎤ ⎥ ⎦(3) After the third scattering,⎡ViV j ⎤ ⎣ ⎦ a ,t −t = ⎡ViV j ⎤ a ,t −t ⎣ ⎦ +NM +1 l3 = 2 3rd 2 nd∑⎧ ⎪ ⎨ ViVl3 ⎪ ⎩()t − t ω ∑ l =2f2NM +1⎧ ⎨ Vl3 Vl2 ⎩()t −t ω (Vl V j )t −t η + (Vl Vl )t −t ω (Vl V j )t −t ηff ft fb bt2 3 2 2⎫ ⎬ ⎭+ ViVl3()t − t ω ∑ l =2b2NM +1⎧ ⎨ Vl3 Vl2 ⎩()t −t ω (Vl V j )t −t η + (Vl Vl )t −t ω (Vl V j )t −t ηbf ft bb bt2 3 2 2⎫ ⎬ ⎭⎫ ⎪ ⎬ ⎪ ⎭ ⎫ ⎪ ⎬ ⎪ ⎭= ⎡ViV j ⎤ ⎣ ⎦2 nd a ,t − t+NM +1 l3 = 2∑⎧ ⎨ ViVl3 ⎩()t −t ω H (Vl Vl )a,t −t + (ViVl )t −t ω H (Vl Vl )a,t −tf ft b bt3 2 3 3 2⎡ViV j ⎤ ⎣ ⎦ s ,t − t =3rdNM +1 l3 = 2∑⎧ ⎨ ViVl3 ⎩()t −t ω H (Vl Vl )s,t −t + (ViVl )t −t ω H (Vl Vl )s,t −tf ft b bt3 2 3 3 2⎫ ⎪ ⎬ ⎪ ⎭(4) The rest are deduced by analogy and after the (n + 1)th scattering, − 13 −⎡ ⎤ ⎣ViV j ⎦ a ,t −t( n +1)th⎡ ⎤ = ⎣ViV j ⎦( n +1) thnth a ,t − t+⎧ ⎫ f ft b bt ⎨ (ViVln +1 )t −t ω H (Vln +1Vln ) a ,t −t + (ViVln +1 )t −t ω H (Vln +1Vln ) a ,t −t ⎬ ⎭ ln +1 = 2 ⎩NM +1∑(11a)⎡ViV j ⎤ ⎣ ⎦ s ,t − t=⎧ ⎫ f ft b bt ⎨ (ViVln +1 )t −t ω H (Vln +1Vln ) s ,t −t + (ViVln +1 )t −t ω H (Vln +1Vln ) s ,t −t ⎬ ⎭ ln +1 = 2 ⎩NM +1∑(11b)If ⎡ViV j ⎤ ⎣ ⎦ s ,t − t( n +1)this less than the value of 10−10 , the process of redistribution of radiant energy can be supposed to befinished and ⎡ViV j ⎤ can be obtained as follows: ⎣ ⎦ t −t⎡ ⎤ ⎡ ⎤ ⎣ViV j ⎦ t −t = η ⎣ViV j ⎦ a , t −td d d( n +1)th(12)dOther RTCs for instance ⎡ S+∞Vi ⎤ k ,t −t , ⎡ S−∞Vi ⎤ k ,t −t , ⎡Vi S−∞ ⎤ k ,t −t and ⎡Vi S+∞ ⎤ k ,t −t can be also educed by the same ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ method as that adopted for the deduction of ⎡ViV j ⎤ ⎣ ⎦ k , t −t .d3.3. Determination of diffuse reflectivityIf assuming that each bit of roughness of diffuse surface acts as a smooth facet, as discussed by Siegel [11], the diffuse reflectivity of semitransparent interface can be obtained from the Fresnel interface relations by integrating the reflected energy over all incident directions. If radiant energy projecting into a medium with a refractive index bigger than one from surroundings with refractive index of 1.0 , the diffuse reflectivity of outer surface is [20]ρ1,out = ρ 2,out =π 2⎧∫0⎪ ⎡ tan (θ i − θ r ) ⎤ ⎡ sin (θ i − θ r ) ⎤ ⎥ +⎢ ⎥ ⎨⎢ ⎪ ⎢ tan (θ i + θ r ) ⎥ ⎢ sin (θ i + θ r ) ⎥ ⎦ ⎣ ⎦ ⎩⎣22⎫⎪ ⎬ sin (θ i ) cos (θ i ) dθ i ⎪ ⎭(13)where, θ r is an angle of refraction, equal to arcsin (θ i nm ) . When going in the reverse direction from the medium to the surroundings, the diffuse reflectivity of inner surface is [11]ρ1,in = ρ 2,in =ρ1,out2 nm⎛ 1 ⎞ + ⎜1 − 2 ⎟ ⎜ n ⎟ m ⎠ ⎝(14)It is worth noting that the effect of total reflection occurring at the inner surface under the condition of the incident angle being equal to or bigger than the critical angle, arcsin(1/ nm ) , is considered in Eq. (14).4. Results and Analyses4.1. Dimensionless heat fluxes comparison with Ref. [21]There is no published data for the study of radiative transfer within an anisotropic scattering media with diffuse and semitransparent surfaces to be compared with the results of this paper. We can but compare dimensionless heat − 14 −。