2018-2019贺州市中考必备数学考前押题密卷模拟试卷6-10(共4套)附详细试题答案
- 格式:pdf
- 大小:1.13 MB
- 文档页数:46
中考干货大提醒考前提前20分钟到场,稳定一下情绪!考试一定一定一定要放松,大考前深呼吸,做五组深呼吸,真的超级有用!可以让紧张感变淡好多!不用在意别人的想法,你只需要自己学好、把自己变得更优秀!!!不要太过于关注排名,它只能反映你目前的情况,不会决定你下一场考试的结果。
一定要有错题本!!一定!!!!注意知识点总结和归纳,形成网状知识结构!考前一个月每天每科一份卷子保持手感!2019年广西贺州市中考数学试卷一、选择题:(本大题共12小题,每小题3分,共36分;给出的四个选项中,只有一项是符合题目要求的,在试卷上作答无效.)1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.D.﹣2.(3分)如图,已知直线a∥b,∠1=60°,则∠2的度数是()A.45°B.55°C.60°D.120°3.(3分)一组数据2,3,4,x,6的平均数是4,则x是()A.2 B.3 C.4 D.54.(3分)如图是某几何体的三视图,则该几何体是()A.长方体B.正方体C.三棱柱D.圆柱5.(3分)某图书馆有图书约985000册,数据985000用科学记数法可表示为()A.985×103B.98.5×104C.9.85×105D.0.985×106 6.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.平行四边形C.正五边形D.圆7.(3分)如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=2,AB=3,DE=4,则BC等于()A.5 B.6 C.7 D.88.(3分)把多项式4a2﹣1分解因式,结果正确的是()A.(4a+1)(4a﹣1)B.(2a+1)(2a﹣1)C.(2a﹣1)2D.(2a+1)29.(3分)已知方程组,则2x+6y的值是()A.﹣2 B.2 C.﹣4 D.410.(3分)已知ab<0,一次函数y=ax﹣b与反比例函数y=在同一直角坐标系中的图象可能()A.B.C.D.11.(3分)如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2 C.3D.412.(3分)计算++++…+的结果是()A.B.C.D.二、填空题:(本大题共6小题,每小题3分,共18分;请把答案填在答题卡对应的位置上,在试卷上作答无效.)13.(3分)要使分式有意义,则x的取值范围是.14.(3分)计算a3•a的结果是.15.(3分)调查我市一批药品的质量是否符合国家标准.采用方式更合适.(填“全面调查”或“抽样调查”)16.(3分)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.17.(3分)已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①abc<0;②a﹣b+c<0;③3a+c=0;④当﹣1<x<3时,y>0,正确的是(填写序号).18.(3分)如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE绕点A顺时针旋转90°得△ABG,则CF的长为.三、解答题:(本大题共8题,满分66分.解答应写出文宇说明、证明过程或演算步骤.在试卷上作答无效)19.(6分)计算:(﹣1)2019+(π﹣3.14)0﹣+2sin30°.20.(6分)解不等式组:21.(8分)箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.22.(8分)如图,在A处的正东方向有一港口B.某巡逻艇从A处沿着北偏东60°方向巡逻,到达C处时接到命令,立刻在C处沿东南方向以20海里/小时的速度行驶3小时到达港口B.求A,B间的距离.(≈1.73,≈1.4,结果保留一位小数).23.(8分)2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?24.(8分)如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.25.(10分)如图,BD是⊙O的直径,弦BC与OA相交于点E,AF与⊙O相切于点A,交DB 的延长线于点F,∠F=30°,∠BAC=120°,BC=8.(1)求∠ADB的度数;(2)求AC的长度.26.(12分)如图,在平面直角坐标系中,已知点B的坐标为(﹣1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.2019年广西贺州市中考数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题3分,共36分;给出的四个选项中,只有一项是符合题目要求的,在试卷上作答无效.)1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.D.﹣【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2,故选:B.【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是本题的关键.2.(3分)如图,已知直线a∥b,∠1=60°,则∠2的度数是()A.45°B.55°C.60°D.120°【分析】直接利用平行线的性质得出∠2的度数.【解答】解:∵直线a∥b,∠1=60°,∴∠2=60°.故选:C.【点评】此题主要考查了平行线的性质,正确把握平行线的性质是解题关键.3.(3分)一组数据2,3,4,x,6的平均数是4,则x是()A.2 B.3 C.4 D.5【分析】利用平均数的定义,列出方程=4即可求解.【解答】解:∵数据2,3,4,x,6的平均数是4,∴=4,解得:x=5,【点评】本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.4.(3分)如图是某几何体的三视图,则该几何体是()A.长方体B.正方体C.三棱柱D.圆柱【分析】由已知三视图得到几何体是正方体.【解答】解:由已知三视图得到几何体是以正方体;故选:B.【点评】本题考查了几何体的三视图;熟记常见几何体的三视图是解答的关键.5.(3分)某图书馆有图书约985000册,数据985000用科学记数法可表示为()A.985×103B.98.5×104C.9.85×105D.0.985×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于985000有6位,所以可以确定n=6﹣1=5.【解答】解:985000=9.85×105,故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.平行四边形C.正五边形D.圆【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A.正三角形是轴对称图形,但不是中心对称图形;B.平行四边形是中心对称图形,但不是轴对称图形;C.正五边形是轴对称图形,但不是中心对称图形;D.圆既是轴对称图形,又是中心对称图形;故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部7.(3分)如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=2,AB=3,DE=4,则BC等于()A.5 B.6 C.7 D.8【分析】由平行线得出△ADE∽△ABC,得出对应边成比例=,即可得出结果.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,即=,解得:BC=6,故选:B.【点评】本题考查了相似三角形的判定与性质;证明三角形相似得出对应边成比例是解题的关键.8.(3分)把多项式4a2﹣1分解因式,结果正确的是()A.(4a+1)(4a﹣1)B.(2a+1)(2a﹣1)C.(2a﹣1)2D.(2a+1)2【分析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:a2﹣b2=(a+b)(a﹣b);完全平方公式:a2±2ab+b2=(a±b)2;【解答】解:4a2﹣1=(2a+1)(2a﹣1),故选:B.【点评】本题考查了分解因式,熟练运用平方差公式是解题的关键9.(3分)已知方程组,则2x+6y的值是()A.﹣2 B.2 C.﹣4 D.4【分析】两式相减,得x+3y=﹣2,所以2(x+3y)=﹣4,即2x+6y=﹣4.【解答】解:两式相减,得x+3y=﹣2,∴2(x+3y)=﹣4,即2x+6y=﹣4,故选:C.【点评】本题考查了二元一次方程组,对原方程组进行变形是解题的关键.10.(3分)已知ab<0,一次函数y=ax﹣b与反比例函数y=在同一直角坐标系中的图象可能()A.B.C.D.【分析】根据反比例函数图象确定b的符号,结合已知条件求得a的符号,由a、b的符号确定一次函数图象所经过的象限.【解答】解:若反比例函数y=经过第一、三象限,则a>0.所以b<0.则一次函数y=ax﹣b的图象应该经过第一、二、三象限;若反比例函数y=经过第二、四象限,则a<0.所以b>0.则一次函数y=ax﹣b的图象应该经过第二、三、四象限.故选项A正确;故选:A.【点评】本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.11.(3分)如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2 C.3D.4【分析】由切线的性质得出AC⊥OD,求出∠A=30°,证出∠ODB=∠CBD,得出OD∥BC,得出∠C=∠ADO=90°,由直角三角形的性质得出∠ABC=60°,BC=AB=6,AC=BC =6,得出∠CBD=30°,再由直角三角形的性质即可得出结果.【解答】解:∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=OD,∴tan A==,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠CBD,∴OD∥BC,∴∠C=∠ADO=90°,∴∠ABC=60°,BC=AB=6,AC=BC=6,∴∠CBD=30°,∴CD=BC=×6=2;故选:A.【点评】本题考查的是切线的性质、直角三角形的性质、等腰三角形的性质、平行线的判定与性质、锐角三角函数的定义等知识,熟练掌握圆的切线和直角三角形的性质,证出OD∥BC是解题的关键.12.(3分)计算++++…+的结果是()A.B.C.D.【分析】把每个分数写成两个分数之差的一半,然后再进行简便运算.【解答】解:原式===.故选:B.【点评】本题是一个规律计算题,主要考查了有理数的混合运算,关键是把分数乘法转化成分数减法来计算.二、填空题:(本大题共6小题,每小题3分,共18分;请把答案填在答题卡对应的位置上,在试卷上作答无效.)13.(3分)要使分式有意义,则x的取值范围是x≠﹣1 .【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式有意义,∴x+1≠0,即x≠﹣﹣1故答案为:x≠﹣1.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.14.(3分)计算a3•a的结果是a4.【分析】同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加【解答】解:a3•a=a4,故答案为a4.【点评】本题考查了幂的运算,熟练掌握同底数幂乘法的运算是解题的关键.15.(3分)调查我市一批药品的质量是否符合国家标准.采用抽样调查方式更合适.(填“全面调查”或“抽样调查”)【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:调查我市一批药品的质量是否符合国家标准.采用抽样调查方式更合适,故答案为:抽样调查.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.16.(3分)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是90 度.【分析】先根据勾股定理求出圆锥的母线为4,进而求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:设圆锥的母线为a,根据勾股定理得,a=4,设圆锥的侧面展开图的圆心角度数为n°,根据题意得2π•1=,解得n=90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.(3分)已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①abc<0;②a﹣b+c<0;③3a+c=0;④当﹣1<x<3时,y>0,正确的是①③④(填写序号).【分析】首先根据二次函数图象开口方向可得a<0,根据图象与y轴交点可得c>0,再根据二次函数的对称轴x=﹣=1,结合a的取值可判定出b>0,根据a、b、c的正负即可判断出①的正误;把x=﹣1代入函数关系式y=ax2+bx+c中得y=a﹣b+c,再根据对称性判断出②的正误;把b=﹣2a代入a﹣b+c中即可判断出③的正误;利用图象可以直接看出④的正误.【解答】解:根据图象可得:a<0,c>0,对称轴:x=﹣=1,∴b=﹣2a,∵a<0,∴b>0,∴abc<0,故①正确;把x=﹣1代入函数关系式y=ax2+bx+c中得:y=a﹣b+c,由抛物线的对称轴是直线x=1,且过点(3,0),可得当x=﹣1时,y=0,∴a﹣b+c=0,故②错误;∵b=﹣2a,∴a﹣(﹣2a)+c=0,即:3a+c=0,故③正确;由图形可以直接看出④正确.故答案为:①③④.【点评】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧.(简称:左同右异);③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).18.(3分)如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE绕点A顺时针旋转90°得△ABG,则CF的长为6﹣2.【分析】作FM⊥AD于M,FN⊥AG于N,如图,易得四边形CFMD为矩形,则FM=4,利用勾股定理计算出AE═2,再根据旋转的性质得到AG=AE=2,BG=DE=2,∠3=∠4,∠GAE=90°,∠ABG=∠D=90°,于是可判断点G在CB的延长线上,接着证明FA 平分∠GAD得到FN=FM=4,然后利用面积法计算出GF,从而计算CG﹣GF就可得到CF 的长.【解答】解:作FM⊥AD于M,FN⊥AG于N,如图,易得四边形CFMD为矩形,则FM=4,∵正方形ABCD的边长为4,点E是CD的中点,∴DE=2,∴AE==2,∵△ADE绕点A顺时针旋转90°得△ABG,∴AG=AE=2,BG=DE=2,∠3=∠4,∠GAE=90°,∠ABG=∠D=90°,而∠ABC=90°,∴点G在CB的延长线上,∵AF平分∠BAE交BC于点F,∴∠1=∠2,∴∠2+∠4=∠1+∠3,即FA平分∠GAD,∴FN=FM=4,∵AB•GF=FN•AG,∴GF==2,∴CF=CG﹣GF=4+2﹣2=6﹣2.故答案为6﹣2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.三、解答题:(本大题共8题,满分66分.解答应写出文宇说明、证明过程或演算步骤.在试卷上作答无效)19.(6分)计算:(﹣1)2019+(π﹣3.14)0﹣+2sin30°.【分析】先分别计算幂、三角函数值、二次根式,然后算加减法.【解答】解:原式=﹣1+1﹣4+2×=﹣4+1=﹣3.【点评】本题考查了实数的运算,熟练掌握三角函数值、零指数幂的运算是解题的关键.20.(6分)解不等式组:【分析】分别解两个不等式得到x>2和x>﹣3,然后根据大小小大中间找确定不等式组的解集.【解答】解:解①得x>2,解②得x>﹣3,所以不等式组的解集为﹣3<x<2.【点评】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(8分)箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.【分析】(1)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图可得所有等可能结果;(2)从所有等可能结果中找到抽出的2瓶牛奶中恰好抽到过期牛奶的结果数,再根据概率公式计算可得.【解答】解:(1)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图如图所示,由图可知,共有12种等可能结果;(2)由树状图知,所抽取的12种等可能结果中,抽出的2瓶牛奶中恰好抽到过期牛奶的有6种结果,所以抽出的2瓶牛奶中恰好抽到过期牛奶的概率为=.【点评】此题考查了列表法与树状图法,以及概率公式,用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)如图,在A处的正东方向有一港口B.某巡逻艇从A处沿着北偏东60°方向巡逻,到达C处时接到命令,立刻在C处沿东南方向以20海里/小时的速度行驶3小时到达港口B.求A,B间的距离.(≈1.73,≈1.4,结果保留一位小数).【分析】过点C作CD⊥AB,垂足为点D,则∠ACD=60°,∠BCD=45°,通过解直角三角形可求出BD,AD的长,将其相加即可求出AB的长.【解答】解:过点C作CD⊥AB,垂足为点D,则∠ACD=60°,∠BCD=45°,如图所示.在Rt△BCD中,sin∠BCD=,cos∠BCD=,∴BD=BC•sin∠BCD=20×3×≈42,CD=BC•cos∠BCD=20×3×≈42;在Rt△ACD中,tan∠ACD=,∴AD=CD•tan∠ACD=42×≈72.2.∴AB=AD+BD=72.2+42=114.2.∴A,B间的距离约为114.2海里.【点评】本题考查了解直角三角形的应用﹣方向角问题,通过解直角三角形,求出BD,AD的长是解题的关键.23.(8分)2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?【分析】(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x,根据该该贫困户2016年及2018年家庭年人均纯收入,即可得出关于x的一元二次方程,解之取其中正值即可得出结论;(2)根据2019年该贫困户的家庭年人均纯收入=2018年该贫困户的家庭年人均纯收入×(1+增长率),可求出2019年该贫困户的家庭年人均纯收入,再与4200比较后即可得出结论.【解答】解:(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x,依题意,得:2500(1+x)2=3600,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20%.(2)3600×(1+20%)=4320(元),4320>4200.答:2019年该贫困户的家庭年人均纯收入能达到4200元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.24.(8分)如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.【分析】(1)由矩形的性质得出∠B=∠D=90°,AB=CD,AD=BC,AD∥BC,由HL证明Rt△ABE≌Rt△CDF即可;(2)由全等三角形的性质得出BE=DF,得出CE=AF,由CE∥AF,证出四边形AECF是平行四边形,再由AC⊥EF,即可得出四边形AECF是菱形.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD=BC,AD∥BC,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL);(2)解:当AC⊥EF时,四边形AECF是菱形,理由如下:∵△ABE≌△CDF,∴BE=DF,∵BC=AD,∴CE=AF,∵CE∥AF,∴四边形AECF是平行四边形,又∵AC⊥EF,∴四边形AECF是菱形.【点评】本题考查了矩形的性质、全等三角形的判定与性质、菱形的判定、平行四边形的判定;熟练掌握矩形的性质和菱形的判定,证明三角形全等是解题的关键.25.(10分)如图,BD是⊙O的直径,弦BC与OA相交于点E,AF与⊙O相切于点A,交DB 的延长线于点F,∠F=30°,∠BAC=120°,BC=8.(1)求∠ADB的度数;(2)求AC的长度.【分析】(1)由切线的性质得出AF⊥OA,由圆周角定理好已知条件得出∠F=∠DBC,证出AF∥BC,得出OA⊥BC,求出∠BOA=90°﹣30°=60°,由圆周角定理即可得出结果;(2)由垂径定理得出BE=CE=BC=4,得出AB=AC,证明△AOB是等边三角形,得出AB=OB,由直角三角形的性质得出OE=OB,BE=OE=4,求出OE=,即可得出AC=AB=OB=2OE=.【解答】解:(1)∵AF与⊙O相切于点A,∴AF⊥OA,∵BD是⊙O的直径,∴∠BAD=90°,∵∠BAC=120°,∴∠DAC=30°,∴∠DBC=∠DAC=30°,∵∠F=30°,∴∠F=∠DBC,∴AF∥BC,∴OA⊥BC,∴∠BOA=90°﹣30°=60°,∴∠ADB=∠AOB=30°;(2)∵OA⊥BC,∴BE=CE=BC=4,∴AB=AC,∵∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴AB=OB,∵∠OBE=30°,∴OE=OB,BE=OE=4,∴OE=,∴AC=AB=OB=2OE=.【点评】本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、垂径定理、直角三角形的性质等知识;熟练掌握切线的性质和圆周角定理,证出OA⊥BC是解题的关键.26.(12分)如图,在平面直角坐标系中,已知点B的坐标为(﹣1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.【分析】(1)OA=OC=4OB=4,即可求解;(2)抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即可求解;(3)PD=HP sin∠PFD=(x﹣4﹣x2+3x+4,即可求解.【解答】解:(1)OA=OC=4OB=4,故点A、C的坐标分别为(4,0)、(0,﹣4);(2)抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=﹣4,解得:a=1,故抛物线的表达式为:y=x2﹣3x﹣4;(3)直线CA过点C,设其函数表达式为:y=kx﹣4,将点A坐标代入上式并解得:k=1,故直线CA的表达式为:y=x﹣4,过点P作y轴的平行线交AC于点H,∵OA=OC=4,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHD=∠OCA=45°,设点P(x,x2﹣3x﹣4),则点H(x,x﹣4),PD=HP sin∠PFD=(x﹣4﹣x2+3x+4)=﹣x2+2x,∵<0,∴PD有最大值,当x=2时,其最大值为2,此时点P(2,﹣6).【点评】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、图象的面积计算等,其中(3),用函数关系表示PD,是本题解题的关键.。
【真题】广西贺州市中考2018年数学试卷含答案解析(Word版)2018年广西贺州市中考数学试卷一、选择题:(本大题共12小题,每小题3分,共36分:给出的四个迭项中,只有一项是符合题目要求的。
)1.(3.00分)在﹣1、1、、2这四个数中,最小的数是()A.﹣1 B.1 C.D.22.(3.00分)如图,下列各组角中,互为对顶角的是()A.∠1和∠2 B.∠1和∠3 C.∠2和∠4 D.∠2和∠53.(3.00分)4的平方根是()A.2 B.﹣2 C.±2 D.164.(3.00分)下列图形中,属于中心对称图形的是()A.B.C.D.5.(3.00分)若一组数据:1、2、x、4、5的众数为5,则这组数据的中位数是()A.1 B.2 C.4 D.56.(3.00分)下列运算正确的是()A.a2?a2=2a2B.a2+a2=a4 C.(a3)2=a6D.a8÷a2=a47.(3.00分)下列各式分解因式正确的是()A.x2+6xy+9y2=(x+3y)2B.2x2﹣4xy+9y2=(2x﹣3y)2 C.2x2﹣8y2=2(x+4y)(x﹣4y)D.x(x﹣y)+y(y﹣x)=(x﹣y)(x+y)8.(3.00分)如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()A.9πB.10πC.11πD.12π9.(3.00分)如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2 10.(3.00分)如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,E是边BC 的中点,AD=ED=3,则BC的长为()A.3 B.3 C.6 D.611.(3.00分)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB=,BD=5,则AH的长为()A.B.C.D.12.(3.00分)如图,正方形ABCD的边长为1,以对角线AC 为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,依此下去,第n个正方形的面积为()A.()n﹣1B.2n﹣1 C.()n D.2n二、填空题(本大题共6小题,每小题3分,共18分;请把答案填在答題卡对应的位置上,在试卷上作答无效。
中考模拟试卷数学卷一、仔细选一选。
(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.下列四个运算中,结果最小的是( ). A 、2017的相反数 B 、2017的绝对值 C 、2017的0次幂 D 、2017的立方根 2.已知∠α=23°45′,则∠α的余角=( ).A .66°55′B .156°15′C .66°15′D .156°55′3.若代数式x 2+bx 可以分解因式,则常数b 不可以是( ). A .﹣1B .0C .1D .24.在代数式x ﹣y, 4a, y+,,yz, ,中有( ).A .5个整式B .3个单项式,4个多项式C .6个整式,4个单项式D .单项式与多项式的个数相同5.下图是小方送给她外婆的生日蛋糕,则下面关于三种视图判断正确的( ).A.主视图、俯视图、左视图都正确B.主视图、俯视图、左视图都错误C.主视图、左视图正确、俯视图错误D. 左视图、俯视图正确、主视图错误 6.已知⎩⎨⎧>≤-,,a xb x 则的值( ).A.大于0B.小于0C.大于或等于0D.小于或等于07.某超市举办促销活动,促销方式是将原价x 元的衣服以(45x -10) 元出售,则下列说法中,能正确表达该超市促销方式的是( ).A. 原价减去10元后再打8折B. 原价打8折后再减去10元C. 原价减去10元后再打2折D. 原价打2折后再减去10元8.如图为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( ).(第8题图) A .△ACD 的外心 B .△ABC 的外心C .△ACD 的内心 D .△ABC 的内心9.在同一直角坐标系中,对于以下四个函数①y=-x-1;②y=x+1;③y=-x+1; ④y=-2(x+1)的图像。
广西省贺州市名校2024年中考数学押题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()①∠CDE=∠DFB;②BD>CE;③BC=2CD;④△DCE与△BDF的周长相等.A.1个B.2个C.3个D.4个2.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE3.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、404.方程x2﹣kx+1=0有两个相等的实数根,则k的值是()A.2 B.﹣2 C.±2 D.05.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.32πB.43πC.4 D.2+32π6.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4 B.3 C.2 D.17.下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a28.下列四个图案中,不是轴对称图案的是()A.B.C.D.9.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是()A. B.C.D.10.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是()A .40°B .50°C .60°D .140°二、填空题(本大题共6个小题,每小题3分,共18分) 11.已知关于x 的方程有解,则k 的取值范围是_____.12.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,且DE ∥BC ,已知AD =2,DB =4,DE =1,则BC =_____.13.对于实数p q ,,我们用符号min{}p q ,表示p q ,两数中较小的数,如min{1,2}1=.因此,{}min 2,3--= ________;若{}22min (1)1x x -=,,则x =________.14.如图,数轴上点A 所表示的实数是________________.15.分解因式:x 2﹣4=_____.16.如图,点A 、B 、C 在圆O 上,弦AC 与半径OB 互相平分,那么∠AOC 度数为_____度.三、解答题(共8题,共72分) 17.(8分)解方程:3x 2﹣2x ﹣2=1.18.(8分)如图,已知抛物线y =ax 2+bx+1经过A (﹣1,0),B (1,1)两点. (1)求该抛物线的解析式; (2)阅读理解:在同一平面直角坐标系中,直线l 1:y =k 1x+b 1(k 1,b 1为常数,且k 1≠0),直线l 2:y =k 2x+b 2(k 2,b 2为常数,且k 2≠0),若l 1⊥l 2,则k 1•k 2=﹣1. 解决问题:①若直线y =2x ﹣1与直线y =mx+2互相垂直,则m 的值是____;②抛物线上是否存在点P ,使得△PAB 是以AB 为直角边的直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)M 是抛物线上一动点,且在直线AB 的上方(不与A ,B 重合),求点M 到直线AB 的距离的最大值.19.(8分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:时间(分钟)里程数(公里)车费(元)小明8 8 12小刚12 10 16(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?20.(8分)解不等式组2102323xx x+>⎧⎪-+⎨≥⎪⎩并在数轴上表示解集.21.(8分)如图,抛物线232 2y ax x=--(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.22.(10分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度.若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名? 23.(12分)观察下列各式: ①()()2111x x x -+=-②()()23111x x x x -++=-③()()324111x x x x x -+++=-由此归纳出一般规律()()111nn x x xx --++⋅⋅⋅++=__________.24.已知:a +b =4(1)求代数式(a +1)(b +1)﹣ab 值;(2)若代数式a 2﹣2ab +b 2+2a +2b 的值等于17,求a ﹣b 的值.参考答案一、选择题(共10小题,每小题3分,共30分) 1、D 【解题分析】等腰直角三角形纸片ABC 中,∠C=90°, ∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°, ∴∠CDE=∠DFB ,故①正确;由折叠可得,DE=AE=3,∴=∴BD=BC﹣DC=4﹣1,∴BD>CE,故②正确;∵BC=4,CD=4,∴CD,故③正确;∵AC=BC=4,∠C=90°,∴,∵△DCE的周长,由折叠可得,DF=AF,∴△BDF的周长+(4﹣),∴△DCE与△BDF的周长相等,故④正确;故选D.点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2、B【解题分析】先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答.【题目详解】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误,故选B.【题目点拨】本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键.3、D【解题分析】【分析】根据众数和中位数的定义分别进行求解即可得.【题目详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【题目点拨】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.4、C【解题分析】根据已知得出△=(﹣k)2﹣4×1×1=0,解关于k的方程即可得.【题目详解】∵方程x2﹣kx+1=0有两个相等的实数根,∴△=(﹣k)2﹣4×1×1=0,解得:k=±2,故选C.【题目点拨】本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无实数根.5、B【解题分析】根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.【题目详解】如图:BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×12014=1803ππ⨯.故选B.6、C【解题分析】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.7、D【解题分析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【题目详解】A、原式=a9,故A选项错误,不符合题意;B、原式=27a6,故B选项错误,不符合题意;C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;D、原式=6a2,故D选项正确,符合题意,故选D.【题目点拨】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.8、B【解题分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【题目详解】A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【题目点拨】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.【解题分析】根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=-1ax2+x,对照四个选项即可得出.【题目详解】∵△ABC为等边三角形,∴∠B=∠C=60°,BC=AB=a,PC=a-x.∵∠APD=60°,∠B=60°,∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,∴∠BAP=∠CPD,∴△ABP∽△PCD,∴CD PCBP AB=,即y a xx a-=,∴y=- 1ax2+x.故选C.【题目点拨】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-1ax2+x是解题的关键.10、A【解题分析】试题分析:根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答.解:∵DB⊥BC,∠2=50°,∴∠3=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠3=40°.故选A.二、填空题(本大题共6个小题,每小题3分,共18分)【解题分析】试题分析:因为,所以1-x+2(x-2)=-k,所以1-x+2x-4=-k,所以x=3-k,所以,因为原方程有解,所以,解得.考点:分式方程.12、1【解题分析】先由DE∥BC,可证得△ADE∽△ABC,进而可根据相似三角形得到的比例线段求得BC的长.【题目详解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案为:1.【题目点拨】考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.13、32或-1.【解题分析】2>3,∴min{23}=3②∵min{(x−1)2,x2}=1,∴当x>0.5时,(x−1)2=1,∴x−1=±1,∴x−1=1,x−1=−1,解得:x1=2,x2=0(不合题意,舍去),当x⩽0.5时,x2=1,解得:x1=1(不合题意,舍去),x2=−1,141【解题分析】A点到-1的距离等于直角三角形斜边的长度,应用勾股定理求解出直角三角形斜边长度即可.【题目详解】=A点到-1则A点所表示的数为:﹣【题目点拨】本题考查了利用勾股定理求解数轴上点所表示的数.15、(x+2)(x﹣2)【解题分析】【分析】直接利用平方差公式进行因式分解即可.【题目详解】x2﹣4=x2-22=(x+2)(x﹣2),故答案为:(x+2)(x﹣2).【题目点拨】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.16、1.【解题分析】首先根据垂径定理得到OA=AB,结合等边三角形的性质即可求出∠AOC的度数.【题目详解】解:∵弦AC与半径OB互相平分,∴OA=AB,∵OA=OC,∴△OAB是等边三角形,∴∠AOB=60°,∴∠AOC=1°,故答案为1.【题目点拨】本题主要考查了垂径定理的知识,解题的关键是证明△OAB 是等边三角形,此题难度不大.三、解答题(共8题,共72分)17、12x x == 【解题分析】先找出a ,b ,c ,再求出b 2-4ac=28,根据公式即可求出答案.【题目详解】解:x即1211x x 33+==∴原方程的解为1211x x 33+==. 【题目点拨】本题考查对解一元二次方程-提公因式法、公式法,因式分解法等知识点的理解和掌握,能熟练地运用公式法解一元二次方程是解此题的关键.18、(1)y =﹣12x 2+12x+1;(2)①-12;②点P 的坐标(6,﹣14)(4,﹣5);(3. 【解题分析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系,可得PA ,PB 的解析式,根据解方程组,可得P 点坐标;(3)根据垂直于x 的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【题目详解】解:(1)将A ,B 点坐标代入,得 10(1)11(2)a b a b -+=⎧⎨++=⎩, 解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩,抛物线的解析式为y =211x x 122-++;(2)①由直线y =2x ﹣1与直线y =mx+2互相垂直,得2m =﹣1,即m =﹣12;故答案为﹣12;②AB 的解析式为1122y x =+当PA ⊥AB 时,PA 的解析式为y =﹣2x ﹣2,联立PA 与抛物线,得21112222y x x y x ⎧=++⎪⎨⎪=--⎩,解得10x y =-⎧⎨=⎩(舍),614x y =⎧⎨=-⎩,即P (6,﹣14);当PB ⊥AB 时,PB 的解析式为y =﹣2x+3,联立PB 与抛物线,得21112223y x x y x ⎧=++⎪⎨⎪=-+⎩,解得11x y =⎧⎨=⎩(舍)45x y =⎧⎨=-⎩,即P (4,﹣5),综上所述:△PAB 是以AB 为直角边的直角三角形,点P 的坐标(6,﹣14)(4,﹣5);(3)如图:,∵M(t,﹣12t2+12t+1),Q(t,12t+12),∴MQ=﹣12t2+12S△MAB=12MQ|x B﹣x A|=12(﹣12t2+12)×2=﹣12t2+12,当t=0时,S取最大值12,即M(0,1).由勾股定理,得AB设M到AB的距离为h,由三角形的面积,得h.点M到直线AB.【题目点拨】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键19、(1)x=1,y=12;(2)小华的打车总费用为18元.【解题分析】试题分析:(1)根据表格内容列出关于x、y的方程组,并解方程组.(2)根据里程数和时间来计算总费用.试题解析:(1)由题意得8812 101216 x yx y+=⎧⎨+=⎩,解得112xy=⎧⎪⎨=⎪⎩;(2)小华的里程数是11km ,时间为14min .则总费用是:11x+14y=11+7=18(元).答:总费用是18元.20、﹣12<x≤0,不等式组的解集表示在数轴上见解析. 【解题分析】先求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【题目详解】解不等式2x+1>0,得:x >﹣12, 解不等式2323x x -+≥,得:x≤0, 则不等式组的解集为﹣12<x≤0, 将不等式组的解集表示在数轴上如下:【题目点拨】本题考查了解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”.21、(1)213222y x x =--;(2)(32,0);(3)1,M (2,﹣3). 【解题分析】试题分析:方法一:(1)该函数解析式只有一个待定系数,只需将B 点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定A 点坐标,然后通过证明△ABC 是直角三角形来推导出直径AB 和圆心的位置,由此确定圆心坐标.(3)△MBC 的面积可由S △MBC =12BC ×h 表示,若要它的面积最大,需要使h 取最大值,即点M 到直线BC 的距离最大,若设一条平行于BC 的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M .方法二:(1)该函数解析式只有一个待定系数,只需将B 点坐标代入解析式中即可.(2)通过求出A ,B ,C 三点坐标,利用勾股定理或利用斜率垂直公式可求出AC ⊥BC ,从而求出圆心坐标. (3)利用三角形面积公式,过M 点作x 轴垂线,水平底与铅垂高乘积的一半,得出△MBC 的面积函数,从而求出M点.试题解析:解:方法一:(1)将B(1,0)代入抛物线的解析式中,得:0=16a﹣32×1﹣2,即:a=12,∴抛物线的解析式为:213222y x x=--.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=1,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(32,0).(3)已求得:B(1,0)、C(0,﹣2),可得直线BC的解析式为:y=12x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=12x+b,当直线l与抛物线只有一个交点时,可列方程:1 2x+b=213222x x--,即:212202x x b---=,且△=0;∴1﹣1×12(﹣2﹣b)=0,即b=﹣1;∴直线l:y=12x﹣1.所以点M即直线l和抛物线的唯一交点,有:213222142y x xy x⎧=--⎪⎪⎨⎪=-⎪⎩,解得:23xy=⎧⎨=-⎩即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=12×2×(2+3)+12×2×3﹣12×2×1=1.方法二:(1)将B(1,0)代入抛物线的解析式中,得:0=16a﹣32×1﹣2,即:a=12,∴抛物线的解析式为:213222y x x=--.(2)∵y=12(x﹣1)(x+1),∴A(﹣1,0),B(1,0).C(0,﹣2),∴K AC=0210+--=﹣2,K BC=0240+-=12,∴K AC×K BC=﹣1,∴AC⊥BC,∴△ABC是以AB为斜边的直角三角形,△ABC的外接圆的圆心是AB的中点,△ABC的外接圆的圆心坐标为(32,0).(3)过点M作x轴的垂线交BC′于H,∵B(1,0),C(0,﹣2),∴l BC:y=12x﹣2,设H(t,12t﹣2),M(t,213222t t--),∴S△MBC=12×(H Y﹣M Y)(B X﹣C X)=12×(12t﹣2﹣213222t t++)(1﹣0)=﹣t2+1t,∴当t=2时,S有最大值1,∴M(2,﹣3).点睛:考查了二次函数综合题,该题的难度不算太大,但用到的琐碎知识点较多,综合性很强.熟练掌握直角三角形的相关性质以及三角形的面积公式是理出思路的关键.22、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解题分析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D 方式支付的有:200×20%=40(人),A 方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A 种支付方式所对应的圆心角为:360°×60200=108°, (3)1600×60+56200=928(名), 答:使用A 和B 两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23、x n+1-1【解题分析】试题分析:观察其右边的结果:第一个是2x ﹣1;第二个是3x ﹣1;…依此类推,则第n 个的结果即可求得. 试题解析:(x ﹣1)(n x +1n x -+…x+1)=11n x +-.故答案为11n x +-.考点:平方差公式.24、(1)5;(2)1或﹣1.【解题分析】(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a-b )2+2(a+b )可得(a-b )2+2×4=17,据此进一步计算可得. 【题目详解】(1)原式=ab+a+b+1﹣ab=a+b+1,当a+b=4时,原式=4+1=5;(2)∵a 2﹣2ab+b 2+2a+2b=(a ﹣b )2+2(a+b ),∴(a ﹣b )2+2×4=17,∴(a ﹣b )2=9,则a ﹣b=1或﹣1.【题目点拨】本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则及整体思想的运用.。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:的相反数是()A.﹣B.C.﹣2 D.2试题2:如图,已知∠1=60°,如果CD∥BE,那么∠B的度数为()A.70° B.100° C.110° D.120°试题3:下列实数中,属于有理数的是()A.B.C.π D.试题4:一个几何体的三视图如图所示,则这个几何体是()评卷人得分A.三棱锥 B.三棱柱 C.圆柱 D.长方体试题5:从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是()A.B.C.D.试题6:下列运算正确的是()A.(a5)2=a10B.x16÷x4=x4C.2a2+3a2=5a4D.b3•b3=2b3试题7:一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20试题8:若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4试题9:如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(2,5) B.(5,2) C.(2,﹣5) D.(5,﹣2)抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A.B.C.D.试题11:已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为()A.2 B.4 C.6 D.8试题12:n是整数,式子[1﹣(﹣1)n](n2﹣1)计算的结果()A.是0 B.总是奇数C.总是偶数 D.可能是奇数也可能是偶数试题13:要使代数式有意义,则x的取值范围是.试题14:.有一组数据:2,a,4,6,7,它们的平均数是5,则这组数据的中位数是.据教育部统计,参加2016年全国统一高考的考生有940万人,940万人用科学记数法表示为人.试题16:如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为.试题17:将m3(x﹣2)+m(2﹣x)分解因式的结果是.试题18:在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)试题19:计算:﹣(π﹣2016)0+|﹣2|+2sin60°.试题20:解方程:.试题21:为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“国际象棋”、“音乐舞蹈”和“书法”等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了本校部分学生选择社团的意向.并将调查结果绘制成如下统计图表(不完整):选择意向文学鉴赏国际象棋音乐舞蹈书法其他所占百分比 a 20% b 10% 5%根据统计图表的信息,解答下列问题:(1)求本次抽样调查的学生总人数及a、b的值;(2)将条形统计图补充完整;(3)若该校共有1300名学生,试估计全校选择“音乐舞蹈”社团的学生人数.试题22:如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:=1.414,=1.732)试题23:如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)试题24:某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.(参考数据:=1.1,=1.2,=1.3,=1.4)试题25:如图,在△ABC中,E是AC边上的一点,且AE=A B,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.(1)求证:BC是⊙O的切线;(2)若AB=8,BC=6,求DE的长.试题26:如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.试题1答案:A【考点】相反数.【专题】常规题型.【分析】根据只有符号不同的两个数互为相反数解答.【解答】解:的相反数是﹣.故选A.【点评】本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.试题2答案:D【考点】平行线的性质.【分析】先根据补角的定义求出∠2的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=60°,∴∠2=180°﹣60°=120°.∵CD∥BE,∴∠2=∠B=120°.故选D.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.试题3答案:D【考点】实数.【分析】根据有理数是有限小数或无限循环小数,可得答案.【解答】解:A、﹣是无理数,故A错误;B、是无理数,故B错误;C、π是无理数,故C错误;D、是有理数,故D正确;故选:D.【点评】本题考查了实数,有限小数或无限循环小数是有理数,无限不循环小数是无理数.试题4答案:B【考点】由三视图判断几何体.【分析】根据三视图的知识,正视图为两个矩形,左视图为一个矩形,俯视图为一个三角形,故这个几何体为直三棱柱【解答】解:根据图中三视图的形状,符合条件的只有直三棱柱,因此这个几何体的名称是直三棱柱.故选:B.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.试题5答案:D【考点】概率公式;绝对值.【分析】由标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,直接利用概率公式求解即可求得答案.【解答】解:∵标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,∴随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是:.故选D.【点评】此题考查了概率公式的应用.注意找到绝对值不小于2的个数是关键.试题6答案:A【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,合并同类项系数相加字母及指数不变,同底数幂的乘法底数不变指数相加,可得答案.【解答】解:A、幂的乘方底数不变指数相乘,故A正确;B、同底数幂的除法底数不变指数相减,故B错误;C、合并同类项系数相加字母及指数不变,故C错误;D、同底数幂的乘法底数不变指数相加,故D错误;故选:A.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.试题7答案:C【考点】等腰三角形的性质;三角形三边关系.【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.【点评】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.试题8答案:C【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为0求出a的范围即可.【解答】解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由题意得:≥0且≠2,解得:a≥1且a≠4,故选:C.【点评】此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.试题9答案:B【考点】坐标与图形变化-旋转.【分析】由线段AB绕点O顺时针旋转90°得到线段A′B′可以得出△ABO≌△A′B′O′,∠AOA′=90°,作AC⊥y轴于C,A′C′⊥x轴于C′,就可以得出△ACO≌△A′C′O,就可以得出AC=A′C′,CO=C′O,由A的坐标就可以求出结论.【解答】解:∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故选:B.【点评】本题考查了旋转的性质的运用,全等三角形的判定及性质的运用,等式的性质的运用,点的坐标的运用,解答时证明三角形全等是关键.试题10答案:B【考点】二次函数的图象;一次函数的图象;反比例函数的图象.【专题】压轴题.【分析】根据二次函数图象与系数的关系确定a>0,b<0,c<0,根据一次函数和反比例函数的性质确定答案.【解答】解:由抛物线可知,a>0,b<0,c<0,∴一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限,故选:B.【点评】本题考查的是二次函数、一次函数和反比例函数的图象与系数的关系,掌握二次函数、一次函数和反比例函数的性质是解题的关键.试题11答案:D【考点】圆锥的计算.【分析】根据圆锥侧面展开图的圆心角与半径(即圆锥的母线的长度)求得的弧长,就是圆锥的底面的周长,然后根据圆的周长公式l=2πr解出r的值即可.【解答】解:设圆锥的底面半径为r.圆锥的侧面展开扇形的半径为12,∵它的侧面展开图的圆心角是120°,∴弧长==8π,即圆锥底面的周长是8π,∴8π=2πr,解得,r=4,∴底面圆的直径为8.故选D.【点评】本题考查了圆锥的计算.正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.试题12答案:C【考点】因式分解的应用.【专题】探究型.【分析】根据题意,可以利用分类讨论的数学思想探索式子[1﹣(﹣1)n](n2﹣1)计算的结果等于什么,从而可以得到哪个选项是正确的.【解答】解:当n是偶数时,[1﹣(﹣1)n](n2﹣1)=[1﹣1](n2﹣1)=0,当n是奇数时,[1﹣(﹣1)n](n2﹣1)=×(1+1)(n+1)(n﹣1)=,设n=2k﹣1(k为整数),则==k(k﹣1),∵0或k(k﹣1)(k为整数)都是偶数,故选C.【点评】本题考查因式分解的应用,解题的关键是明确题意,利用分类讨论的数学思想解答问题.x≥﹣1且x≠0 .【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解.【解答】解:根据题意,得,解得x≥﹣1且x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.试题14答案:6 .【考点】中位数;算术平均数.【分析】根据平均数为5,求出a的值,然后根据中位数的概念,求解即可.【解答】解:∵该组数据的平均数为5,∴,∴a=6,将这组数据按照从小到大的顺序排列为:2,4,6,6,7,可得中位数为:6,故答案为:6.【点评】本题考查了中位数和算术平均数的知识,解答本题的关键是排好顺序,然后根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.9.4×106人.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:940万人用科学记数法表示为 9.4×106人,故答案为:9.4×106.【点评】本题考查了科学记数法表示大数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.试题16答案:120°.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】先证明∴△DCB≌△ACE,再利用“8字型”证明∠AOH=∠DCH=60°即可解决问题.【解答】解:如图:AC与BD交于点H.∵△ACD,△BCE都是等边三角形,∴CD=CA,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE,∴∠CAE=∠CDB,∵∠DCH+∠CHD+∠BDC=180°,∠AOH+∠AHO+∠CAE=180°,∠DHC=∠OHA,∴∠AOH=∠DCH=60°,∴∠AOB=180°﹣∠AOH=120°.故答案为120°【点评】本题考查全等三角形的判定和性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形,学会利用“8字型”证明角相等,属于中考常考题型.试题17答案:m(x﹣2)(m﹣1)(m+1).【考点】提公因式法与公式法的综合运用.【分析】先提公因式,再利用平方差公式进行因式分解即可.【解答】解:原式=m(x﹣2)(m2﹣1)=m(x﹣2)(m﹣1)(m+1).故答案为:m(x﹣2)(m﹣1)(m+1).【点评】本题考查的是多项式的因式分解,掌握提公因式法和平方差公式是解题的关键.试题18答案:.(结果保留根号)【考点】矩形的性质;等腰三角形的判定;相似三角形的判定与性质.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【解答】解:延长EF和BC,交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴设CG=x,DE=2x,则AD=9+2x=BC∵BG=BC+CG∴=9+2x+x解得x=∴BC=9+2(﹣3)=故答案为:【点评】本题主要考查了矩形、相似三角形以及等腰三角形,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.解题时注意:有两个角对应相等的两个三角形相似.试题19答案:【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质分别化简求出答案.【解答】解:原式=2﹣1+2﹣+2×=3﹣+=3.【点评】此题主要考查了绝对值的性质以及特殊角的三角函数值和零指数幂的性质等知识,正确化简各数是解题关键.试题20答案:【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣3(30﹣x)=60,去括号得:2x﹣90+3x=60,移项合并得:5x=150,解得:x=30.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.试题21答案:【考点】条形统计图;用样本估计总体.【分析】(1)用书法的人数除以其所占的百分比即可求出抽样调查的学生总人数,用文学鉴赏、音乐舞蹈的人数除以总人数即可求出a、b的值;(2)用总人数乘以国际象棋的人数所占的百分比求出国际象棋的人数,再把条形统计图补充即可;(3)用该校总人数乘以全校选择“音乐舞蹈”社团的学生所占的百分比即可.【解答】解:(1)本次抽样调查的学生总人数是:20÷10%=200,a=×100%=30%,b=×100%=35%,(2)国际象棋的人数是:200×20%=40,条形统计图补充如下:(3)若该校共有1300名学生,则全校选择“音乐舞蹈”社团的学生人数是1300×35%=455(人),答:全校选择“音乐舞蹈”社团的学生人数是1300×35%=455人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.试题22答案:【考点】解直角三角形的应用-坡度坡角问题.【分析】根据正切的定义分别求出AB、DB的长,结合图形求出DH,比较即可.【解答】解:由题意得,AH=10米,BC=10米,在Rt△ABC中,∠CAB=45°,∴AB=BC=10,在Rt△DBC中,∠CDB=30°,∴DB==10,∴DH=AH﹣AD=AH﹣(DB﹣AB)=10﹣10+10=20﹣10≈2.7(米),∵2.7米<3米,∴该建筑物需要拆除.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握锐角三角函数的定义、熟记特殊角的三角函数值是解题的关键.试题23答案:【考点】矩形的性质;菱形的判定.【分析】(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD 是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.【解答】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2.【点评】此题考查了矩形的性质、菱形的判定与性质以及三角函数等知识.注意证得△AOF≌△COE是关键.试题24答案:【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)一般用增长后的量=增长前的量×(1+增长率),2015年要投入教育经费是2900(1+x)万元,在2015年的基础上再增长x,就是2016年的教育经费数额,即可列出方程求解.(2)利用(1)中求得的增长率来求2018年该地区将投入教育经费.【解答】解:(1)设增长率为x,根据题意2015年为2900(1+x)万元,2016年为2900(1+x)2万元.则2900(1+x)2=3509,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)2018年该地区投入的教育经费是3509×(1+10%)2=4245.89(万元).4245.89<4250,答:按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费不能达到4250万元.【点评】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.试题25答案:【考点】切线的判定.【分析】(1)由AE=AB,可得∠ABE=90°﹣∠BAC,又由∠BAC=2∠CBE,可求得∠ABC=∠ABE+∠CBE=90°,继而证得结论;(2)首先连接BD,易证得△ABD∽△ACB,然后由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵AE=AB,∴△ABE是等腰三角形,∴∠ABE=(180°﹣∠BAC=)=90°﹣∠BAC,∵∠BAC=2∠CBE,∴∠CBE=∠BAC,∴∠ABC=∠ABE+∠CBE=(90°﹣∠BAC)+∠BAC=90°,即AB⊥BC,∴BC是⊙O的切线;(2)解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABC=90°,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABD∽△ACB,∴=,∵在Rt△ABC中,AB=8,BC=6,∴AC==10,∴,解得:AD=6.4,∵AE=AB=8,∴DE=AE﹣AD=8﹣6.4=1.6.【点评】此题考查了切线的判定与性质、相似三角形的判定与性质、等腰三角形的性质以及勾股定理.注意准确作出辅助线,证得△ABD∽△ACB是解此题的关键.试题26答案:【考点】二次函数综合题.【分析】(1)利用矩形的性质和B点的坐标可求出A点的坐标,再利用待定系数法可求得抛物线的解析式;(2)设AD=x,利用折叠的性质可知DE=AD,在Rt△BDE中,利用勾股定理可得到关于x的方程,可求得AD的长;(3)由于O、A两点关于对称轴对称,所以连接OD,与对称轴的交点即为满足条件的点P,利用待定系数法可求得直线OD的解析式,再由抛物线解析式可求得对称轴方程,从而可求得P点坐标.【解答】解:(1)∵四边形ABCD是矩形,B(10,8),∴A(10,0),又抛物线经过A、E、O三点,把点的坐标代入抛物线解析式可得,解得,∴抛物线的解析式为y=﹣x2+x;(2)由题意可知:AD=DE,BE=10﹣6=4,AB=8,设AD=x,则ED=x,BD=AB﹣AD=8﹣x,在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8﹣x)2,解得x=5,∴AD=5;(3)∵y=﹣x2+x,∴其对称轴为x=5,∵A、O两点关于对称轴对称,∴PA=PO,当P、O、D三点在一条直线上时,PA+PD=PO+PD=OD,此时△PAD的周长最小,如图,连接OD交对称轴于点P,则该点即为满足条件的点P,由(2)可知D点的坐标为(10,5),设直线OD解析式为y=kx,把D点坐标代入可得5=10k,解得k=,∴直线OD解析式为y=x,令x=5,可得y=,∴P点坐标为(5,).【点评】本题主要考查二次函数的综合应用,涉及知识点有待定系数法、矩形的性质、勾股定理、轴对称的性质及方程思想.在(2)中注意方程思想的应用,在(3)中确定出满足条件的P点的位置是解题的关键.本题考查知识点虽然较多,但题目属于基础性的题目,难度不大.。
2018年广西贺州市中考数学试卷(时限:120分钟满分:120分)能取得好成绩!一、选择题:(本大题共12小题,每小题3分,共36分:给出的四个迭项中,只有一项是符合题目要求的。
)1.(3.00分)在﹣1、1、、2这四个数中,最小的数是()A.﹣1 B.1 C.D.22.(3.00分)如图,下列各组角中,互为对顶角的是()A.∠1和∠2 B.∠1和∠3 C.∠2和∠4 D.∠2和∠53.(3.00分)4的平方根是()A.2 B.﹣2 C.±2 D.164.(3.00分)下列图形中,属于中心对称图形的是()A.B.C.D.5.(3.00分)若一组数据:1、2、x、4、5的众数为5,则这组数据的中位数是()A.1 B.2 C.4 D.56.(3.00分)下列运算正确的是()A.a2•a2=2a2B.a2+a2=a4 C.(a3)2=a6D.a8÷a2=a47.(3.00分)下列各式分解因式正确的是()A.x2+6xy+9y2=(x+3y)2B.2x2﹣4xy+9y2=(2x﹣3y)2C.2x2﹣8y2=2(x+4y)(x﹣4y)D.x(x﹣y)+y(y﹣x)=(x﹣y)(x+y)8.(3.00分)如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()A.9πB.10π C.11π D.12π9.(3.00分)如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2 10.(3.00分)如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,E是边BC的中点,AD=ED=3,则BC的长为()A.3B.3C.6 D.611.(3.00分)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB=,BD=5,则AH的长为()A.B.C.D.12.(3.00分)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,依此下去,第n个正方形的面积为()A.()n﹣1B.2n﹣1 C.()n D.2n二、填空题(本大题共6小题,每小题3分,共18分;请把答案填在答題卡对应的位置上,在试卷上作答无效。
2019年广西贺州市中考数学试卷以及逐题解析一、选择题:(本大题共12小题,每小题3分,共36分;给出的四个选项中,只有一项是符合题目要求的,在试卷上作答无效.)1.(3分)2-的绝对值是( )A .2-B .2C .12D .12- 2.(3分)如图,已知直线//a b ,160∠=︒,则2∠的度数是( )A .45︒B .55︒C .60︒D .120︒3.(3分)一组数据2,3,4,x ,6的平均数是4,则x 是( )A .2B .3C .4D .54.(3分)如图是某几何体的三视图,则该几何体是( )A .长方体B .正方体C .三棱柱D .圆柱5.(3分)某图书馆有图书约985000册,数据985000用科学记数法可表示为( )A .398510⨯B .498.510⨯C .59.8510⨯D .60.98510⨯6.(3分)下列图形中,既是轴对称图形又是中心对称图形的是( )A .正三角形B .平行四边形C .正五边形D .圆7.(3分)如图,在ABC ∆中,D ,E 分别是AB ,AC 边上的点,//DE BC ,若2AD =,3AB =,4DE =,则BC 等于( )A .5B .6C .7D .88.(3分)把多项式241a -分解因式,结果正确的是( )A .(41)(41)a a +-B .(21)(21)a a +-C .2(21)a -D .2(21)a +9.(3分)已知方程组2325x y x y +=⎧⎨-=⎩,则26x y +的值是( ) A .2- B .2 C .4- D .410.(3分)已知0ab <,一次函数y ax b =-与反比例函数a y x =在同一直角坐标系中的图象可能( )A .B .C .D .11.(3分)如图,在ABC ∆中,O 是AB 边上的点,以O 为圆心,OB 为半径的O 与AC 相切于点D ,BD 平分ABC ∠,AD =,12AB =,CD 的长是( )A .B .2C .D .12.(3分)计算11111133557793739++++⋯+⨯⨯⨯⨯⨯的结果是( ) A .1937 B .1939 C .3739 D .3839二、填空题:(本大题共6小题,每小题3分,共18分;请把答案填在答题卡对应的位置上,在试卷上作答无效.)13.(3分)若分式11x +有意义,则x 的取值范围是 . 14.(3分)计算3a a 的结果是 .15.(3分)调查我市一批药品的质量是否符合国家标准.采用 方式更合适.(填“全面调查”或“抽样调查” )16.(3分)已知圆锥的底面半径是1,则该圆锥的侧面展开图的圆心角是 度.17.(3分)已知抛物线2(0)y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x -<<时,0y >,正确的是 (填写序号).18.(3分)如图,正方形ABCD 的边长为4,点E 是CD 的中点,AF 平分BAE ∠交BC 于点F ,将ADE ∆绕点A 顺时针旋转90︒得ABG ∆,则CF 的长为 .三、解答题:(本大题共8题,满分66分.解答应写出文宇说明、证明过程或演算步骤.在试卷上作答无效)19.(6分)计算:20190(1)( 3.14)2sin 30π-+-︒.20.(6分)解不等式组:564,841x x x ->⎧⎨-<+⋅⎩①② 21.(8分)箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.22.(8分)如图,在A处的正东方向有一港口B.某巡逻艇从A处沿着北偏东60︒方向巡逻,到达C处时接到命令,立刻在C处沿东南方向以20海里/小时的速度行驶3小时到达港口B.求A,B间的距离. 1.73 1.4,结果保留一位小数).23.(8分)2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?24.(8分)如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE CF=.(1)求证:ABE CDF∆≅∆;(2)当AC EF⊥时,四边形AECF是菱形吗?请说明理由.25.(10分)如图,BD是O的直径,弦BC与OA相交于点E,AF与O相切于点A,交DB的延长线于点F,30BC=.∠=︒,8F∠=︒,120BAC(1)求ADB∠的度数;(2)求AC的长度.26.(12分)如图,在平面直角坐标系中,已知点B 的坐标为(1,0)-,且4OA OC OB ==,抛物线2(0)y ax bx c a =++≠图象经过A ,B ,C 三点.(1)求A ,C 两点的坐标;(2)求抛物线的解析式;(3)若点P 是直线AC 下方的抛物线上的一个动点,作PD AC ⊥于点D ,当PD 的值最大时,求此时点P 的坐标及PD 的最大值.2019年广西贺州市中考数学试卷答案与解析一、选择题:(本大题共12小题,每小题3分,共36分;给出的四个选项中,只有一项是符合题目要求的,在试卷上作答无效.)1.(3分)2-的绝对值是()A.2-B.2C.12D.12-【分析】根据绝对值的定义,可直接得出2-的绝对值.【解答】解:|2|2-=,故选:B.【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是本题的关键.2.(3分)如图,已知直线//a b,160∠=︒,则2∠的度数是()A.45︒B.55︒C.60︒D.120︒【分析】直接利用平行线的性质得出2∠的度数.【解答】解:直线//a b,160∠=︒,260∴∠=︒.故选:C.【点评】此题主要考查了平行线的性质,正确把握平行线的性质是解题关键.3.(3分)一组数据2,3,4,x,6的平均数是4,则x是()A.2B.3C.4D.5【分析】利用平均数的定义,列出方程234645x++++=即可求解.【解答】解:数据2,3,4,x,6的平均数是4,∴234645x++++=,解得:5x=,故选:D.【点评】本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.4.(3分)如图是某几何体的三视图,则该几何体是( )A .长方体B .正方体C .三棱柱D .圆柱【分析】由已知三视图得到几何体是正方体.【解答】解:由已知三视图得到几何体是以正方体;故选:B .【点评】本题考查了几何体的三视图;熟记常见几何体的三视图是解答的关键.5.(3分)某图书馆有图书约985000册,数据985000用科学记数法可表示为( )A .398510⨯B .498.510⨯C .59.8510⨯D .60.98510⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值是易错点,由于985000有6位,所以可以确定615n =-=.【解答】解:59850009.8510=⨯,故选:C .【点评】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.6.(3分)下列图形中,既是轴对称图形又是中心对称图形的是( )A .正三角形B .平行四边形C .正五边形D .圆【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A .正三角形是轴对称图形,但不是中心对称图形;B .平行四边形是中心对称图形,但不是轴对称图形;C .正五边形是轴对称图形,但不是中心对称图形;D .圆既是轴对称图形,又是中心对称图形;故选:D .【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(3分)如图,在ABC ∆中,D ,E 分别是AB ,AC 边上的点,//DE BC ,若2AD =,3AB =,4DE =,则BC 等于( )A .5B .6C .7D .8【分析】由平行线得出ADE ABC ∆∆∽,得出对应边成比例AD DE AB BC =,即可得出结果. 【解答】解://DE BC ,ADE ABC ∴∆∆∽, ∴AD DE AB BC=, 即243BC =, 解得:6BC =,故选:B .【点评】本题考查了相似三角形的判定与性质;证明三角形相似得出对应边成比例是解题的关键.8.(3分)把多项式241a -分解因式,结果正确的是( )A .(41)(41)a a +-B .(21)(21)a a +-C .2(21)a -D .2(21)a +【分析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:22()()a b a b a b -=+-;完全平方公式:2222()a ab b a b ±+=±;【解答】解:241(21)(21)a a a -=+-,故选:B .【点评】本题考查了分解因式,熟练运用平方差公式是解题的关键9.(3分)已知方程组2325x y x y +=⎧⎨-=⎩,则26x y +的值是( ) A .2- B .2 C .4- D .4【分析】两式相减,得32x y +=-,所以2(3)4x y +=-,即264x y +=-.【解答】解:两式相减,得32x y +=-,2(3)4x y ∴+=-,即264x y +=-,故选:C .【点评】本题考查了二元一次方程组,对原方程组进行变形是解题的关键.10.(3分)已知0ab <,一次函数y ax b =-与反比例函数a y x=在同一直角坐标系中的图象可能( ) A . B .C .D .【分析】根据反比例函数图象确定b 的符号,结合已知条件求得a 的符号,由a 、b 的符号确定一次函数图象所经过的象限.【解答】解:若反比例函数a y x=经过第一、三象限,则0a >.所以0b <.则一次函数y ax b =-的图象应该经过第一、二、三象限; 若反比例函数a y x=经过第二、四象限,则0a <.所以0b >.则一次函数y ax b =-的图象应该经过第二、三、四象限.故选项A 正确;故选:A .【点评】本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.11.(3分)如图,在ABC ∆中,O 是AB 边上的点,以O 为圆心,OB 为半径的O 与AC 相切于点D ,BD 平分ABC ∠,AD =,12AB =,CD 的长是( )A .B .2C .D .【分析】由切线的性质得出AC OD ⊥,求出30A ∠=︒,证出ODB CBD ∠=∠,得出//OD BC ,得出90C ADO ∠=∠=︒,由直角三角形的性质得出60ABC ∠=︒,162BC AB ==,AC ==30CBD ∠=︒,再由直角三角形的性质即可得出结果.【解答】解:O 与AC 相切于点D ,AC OD ∴⊥,90ADO ∴∠=︒, 3AD OD =,tan OD A AD ∴==, 30A ∴∠=︒,BD 平分ABC ∠,OBD CBD ∴∠=∠,OB OD =,OBD ODB ∴∠=∠,ODB CBD ∴∠=∠,//OD BC ∴,90C ADO ∴∠=∠=︒,60ABC ∴∠=︒,162BC AB ==,AC = 30CBD ∴∠=︒,6CD ∴=== 故选:A .【点评】本题考查的是切线的性质、直角三角形的性质、等腰三角形的性质、平行线的判定与性质、锐角三角函数的定义等知识,熟练掌握圆的切线和直角三角形的性质,证出//OD BC是解题的关键.12.(3分)计算11111133557793739++++⋯+⨯⨯⨯⨯⨯的结果是()A.1937B.1939C.3739D.3839【分析】把每个分数写成两个分数之差的一半,然后再进行简便运算.【解答】解:原式111111111111(1) 22233557793739 =⨯-+-+-+-+-+⋯-11(1)239=⨯-1939=.故选:B.【点评】本题是一个规律计算题,主要考查了有理数的混合运算,关键是把分数乘法转化成分数减法来计算.二、填空题:(本大题共6小题,每小题3分,共18分;请把答案填在答题卡对应的位置上,在试卷上作答无效.)13.(3分)若分式11x+有意义,则x的取值范围是1x≠-.【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:分式11x+有意义,10x∴+≠,即1x≠--故答案为:1x≠-.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.14.(3分)计算3a a的结果是4a.【分析】同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加【解答】解:34a a a=,故答案为4a.【点评】本题考查了幂的运算,熟练掌握同底数幂乘法的运算是解题的关键.15.(3分)调查我市一批药品的质量是否符合国家标准.采用抽样调查方式更合适.(填“全面调查”或“抽样调查”)【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:调查我市一批药品的质量是否符合国家标准.采用抽样调查方式更合适, 故答案为:抽样调查.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.16.(3分)已知圆锥的底面半径是1,则该圆锥的侧面展开图的圆心角是 90 度.【分析】先根据勾股定理求出圆锥的母线为4,进而求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:设圆锥的母线为a ,根据勾股定理得,4a =,设圆锥的侧面展开图的圆心角度数为n ︒, 根据题意得421180n ππ⨯=,解得90n =, 即圆锥的侧面展开图的圆心角度数为90︒.故答案为:90.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.(3分)已知抛物线2(0)y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x -<<时,0y >,正确的是 ①③④ (填写序号).【分析】首先根据二次函数图象开口方向可得0a <,根据图象与y 轴交点可得0c >,再根据二次函数的对称轴12b x a=-=,结合a 的取值可判定出0b >,根据a 、b 、c 的正负即可判断出①的正误;把1x =-代入函数关系式2y ax bx c =++中得y a b c =-+,再根据对称性判断出②的正误;把2b a =-代入a b c -+中即可判断出③的正误;利用图象可以直接看出④的正误.【解答】解:根据图象可得:0a <,0c >, 对称轴:12b x a=-=, 2b a ∴=-,0a <,0b ∴>,0abc ∴<,故①正确; 把1x =-代入函数关系式2y ax bx c =++中得:y a b c =-+,由抛物线的对称轴是直线1x =,且过点(3,0),可得当1x =-时,0y =,0a b c ∴-+=,故②错误;2b a =-,(2)0a a c ∴--+=,即:30a c +=,故③正确;由图形可以直接看出④正确.故答案为:①③④.【点评】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当0a >时,抛物线向上开口;当0a <时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即0)ab >,对称轴在y 轴左侧; 当a 与b 异号时(即0)ab <,对称轴在y 轴右侧.(简称:左同右异);③常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(0,)c .18.(3分)如图,正方形ABCD 的边长为4,点E 是CD 的中点,AF 平分BAE ∠交BC 于点F ,将ADE ∆绕点A 顺时针旋转90︒得ABG ∆,则CF 的长为 6-【分析】作FM AD ⊥于M ,FN AG ⊥于N ,如图,易得四边形CFMD 为矩形,则4FM =,利用勾股定理计算出AE ==AG AE ==,2BG DE ==,34∠=∠,90GAE ∠=︒,90ABG D ∠=∠=︒,于是可判断点G 在CB 的延长线上,接着证明FA 平分GAD ∠得到4FN FM ==,然后利用面积法计算出GF ,从而计算CG GF -就可得到CF 的长.【解答】解:作FM AD ⊥于M ,FN AG ⊥于N ,如图,易得四边形CFMD 为矩形,则4FM =, 正方形ABCD 的边长为4,点E 是CD 的中点,2DE ∴=,AE ∴=ADE ∆绕点A 顺时针旋转90︒得ABG ∆,AG AE ∴==,2BG DE ==,34∠=∠,90GAE ∠=︒,90ABG D ∠=∠=︒, 而90ABC ∠=︒,∴点G 在CB 的延长线上, AF 平分BAE ∠交BC 于点F ,12∴∠=∠,2413∴∠+∠=∠+∠,即FA 平分GAD ∠,4FN FM ∴==,1122AB GF FN AG =,GF ∴=426CF CG GF ∴=-=+--故答案为6-【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.三、解答题:(本大题共8题,满分66分.解答应写出文宇说明、证明过程或演算步骤.在试卷上作答无效)19.(6分)计算:20190(1)( 3.14)2sin 30π-+-︒.【分析】先分别计算幂、三角函数值、二次根式,然后算加减法.【解答】解:原式111422=-+-+⨯ 41=-+3=-.【点评】本题考查了实数的运算,熟练掌握三角函数值、零指数幂的运算是解题的关键.20.(6分)解不等式组:564,841x x x ->⎧⎨-<+⋅⎩①② 【分析】分别解两个不等式得到2x >和3x >-,然后根据大小小大中间找确定不等式组的解集.【解答】解:解①得2x >,解②得3x >-,所以不等式组的解集为32x -<<.【点评】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(8分)箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.【分析】(1)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图可得所有等可能结果;(2)从所有等可能结果中找到抽出的2瓶牛奶中恰好抽到过期牛奶的结果数,再根据概率公式计算可得.【解答】解:(1)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图如图所示,由图可知,共有12种等可能结果;(2)由树状图知,所抽取的12种等可能结果中,抽出的2瓶牛奶中恰好抽到过期牛奶的有6种结果,所以抽出的2瓶牛奶中恰好抽到过期牛奶的概率为61 122=.【点评】此题考查了列表法与树状图法,以及概率公式,用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)如图,在A处的正东方向有一港口B.某巡逻艇从A处沿着北偏东60︒方向巡逻,到达C处时接到命令,立刻在C处沿东南方向以20海里/小时的速度行驶3小时到达港口B.求A,B间的距离. 1.73 1.4,结果保留一位小数).【分析】过点C作CD AB⊥,垂足为点D,则60ACD∠=︒,45BCD∠=︒,通过解直角三角形可求出BD,AD的长,将其相加即可求出AB的长.【解答】解:过点C作CD AB⊥,垂足为点D,则60ACD∠=︒,45BCD∠=︒,如图所示.在Rt BCD∆中,sinBDBCDBC∠=,cosCDBCDBC∠=,sin 20342BD BC BCD ∴=∠=⨯≈,cos 20342CD BC BCD =∠=⨯≈; 在Rt ACD ∆中,tan AD ACD CD ∠=,tan 4272.2AD CD ACD ∴=∠=.72.242114.2AB AD BD ∴=+=+=.A ∴,B 间的距离约为114.2海里.【点评】本题考查了解直角三角形的应用-方向角问题,通过解直角三角形,求出BD ,AD 的长是解题的关键.23.(8分)2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?【分析】(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x ,根据该该贫困户2016年及2018年家庭年人均纯收入,即可得出关于x 的一元二次方程,解之取其中正值即可得出结论;(2)根据2019年该贫困户的家庭年人均纯收入2018=年该贫困户的家庭年人均纯收入(1⨯+增长率),可求出2019年该贫困户的家庭年人均纯收入,再与4200比较后即可得出结论.【解答】解:(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x , 依题意,得:22500(1)3600x +=,解得:10.220%x ==,2 2.2x =-(舍去).答:该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20%.(2)3600(120%)4320⨯+=(元),43204200>.答:2019年该贫困户的家庭年人均纯收入能达到4200元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.24.(8分)如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE CF=.(1)求证:ABE CDF∆≅∆;(2)当AC EF⊥时,四边形AECF是菱形吗?请说明理由.【分析】(1)由矩形的性质得出90B D∠=∠=︒,AB CD=,AD BC=,//AD BC,由HL 证明Rt ABE Rt CDF∆≅∆即可;(2)由全等三角形的性质得出BE DF=,得出CE AF=,由//CE AF,证出四边形AECF 是平行四边形,再由AC EF⊥,即可得出四边形AECF是菱形.【解答】(1)证明:四边形ABCD是矩形,90B D∴∠=∠=︒,AB CD=,AD BC=,//AD BC,在Rt ABE∆和Rt CDF∆中,AE CF AB CD=⎧⎨=⎩,Rt ABE Rt CDF(HL)∴∆≅∆;(2)解:当AC EF⊥时,四边形AECF是菱形,理由如下:ABE CDF∆≅∆,BE DF∴=,BC AD=,CE AF∴=,//CE AF,∴四边形AECF是平行四边形,又AC EF⊥,∴四边形AECF是菱形.【点评】本题考查了矩形的性质、全等三角形的判定与性质、菱形的判定、平行四边形的判定;熟练掌握矩形的性质和菱形的判定,证明三角形全等是解题的关键.25.(10分)如图,BD是O的直径,弦BC与OA相交于点E,AF与O相切于点A,交DB的延长线于点F,30F∠=︒,120BAC∠=︒,8BC=.(1)求ADB∠的度数;(2)求AC的长度.【分析】(1)由切线的性质得出AF OA⊥,由圆周角定理好已知条件得出F DBC∠=∠,证出//AF BC,得出OA BC⊥,求出903060BOA∠=︒-︒=︒,由圆周角定理即可得出结果;(2)由垂径定理得出142BE CE BC===,得出AB AC=,证明AOB∆是等边三角形,得出AB OB=,由直角三角形的性质得出12OE OB=,4BE==,求出OE=,即可得出2AC AB OB OE====.【解答】解:(1)AF与O相切于点A,AF OA∴⊥,BD是O的直径,90BAD∴∠=︒,120BAC∠=︒,30DAC∴∠=︒,30DBC DAC∴∠=∠=︒,30F∠=︒,F DBC∴∠=∠,//AF BC∴,OA BC∴⊥,903060BOA ∴∠=︒-︒=︒,1302ADB AOB ∴∠=∠=︒; (2)OA BC ⊥,142BE CE BC ∴===, AB AC ∴=,60AOB ∠=︒,OA OB =,AOB ∴∆是等边三角形,AB OB ∴=,30OBE ∠=︒,12OE OB ∴=,4BE ==,OE ∴,2AC AB OB OE ∴====【点评】本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、垂径定理、直角三角形的性质等知识;熟练掌握切线的性质和圆周角定理,证出OA BC ⊥是解题的关键.26.(12分)如图,在平面直角坐标系中,已知点B 的坐标为(1,0)-,且4OA OC OB ==,抛物线2(0)y ax bx c a =++≠图象经过A ,B ,C 三点.(1)求A ,C 两点的坐标;(2)求抛物线的解析式;(3)若点P 是直线AC 下方的抛物线上的一个动点,作PD AC ⊥于点D ,当PD 的值最大时,求此时点P 的坐标及PD 的最大值.【分析】(1)44OA OC OB ===,即可求解;(2)抛物线的表达式为:2(1)(4)(34)y a x x a x x =+-=--,即可求解;(3)2sin 434PD HP PFD x x x =∠=--++,即可求解. 【解答】解:(1)44OA OC OB ===,故点A 、C 的坐标分别为(4,0)、(0,4)-;(2)抛物线的表达式为:2(1)(4)(34)y a x x a x x =+-=--,即44a -=-,解得:1a =,故抛物线的表达式为:234y x x =--;(3)直线CA 过点C ,设其函数表达式为:4y kx =-,将点A 坐标代入上式并解得:1k =,故直线CA 的表达式为:4y x =-,过点P 作y 轴的平行线交AC 于点H ,4OA OC ==,45OAC OCA ∴∠=∠=︒,//PH y 轴,45PHD OCA ∴∠=∠=︒,设点2(,34)P x x x --,则点(,4)H x x -,22sin 434)22PD HP PFD x x x x =∠=--++=+,0<,PD ∴有最大值,当2x =时,其最大值为 此时点(2,6)P -.【点评】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、图象的面积计算等,其中(3),用函数关系表示PD ,是本题解题的关键。
广西贺州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共30分)1.(3分)的倒数是()A.﹣2 B.2 C.D.2.(3分)下列各图中,∠1与∠2互为邻补角的是()A.B.C.D.3.(3分)下列式子中是分式的是()A.B.C.D.4.(3分)一条关于数学学习方法的微博在一周内转发了318000次,将318000用科学记数法可以表示为()A.3.18×105B.31.8×105C.318×104D.3.18×1045.(3分)现有相同个数的甲、乙两组数据,经计算得:=,且S甲2=0.35,S乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定 B.乙比较稳定C.甲、乙一样稳定D.无法确定6.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形B.平行四边形 C.矩形D.等边三角形7.(3分)如图,在△ABC中,点D、E分别为AB、AC的中点,则△ADE与四边形BCED的面积比为()A.1:1 B.1:2 C.1:3 D.1:48.(3分)小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()A. B.C.D.9.(3分)不等式组的解集在数轴上表示正确的是()A.B. C.D.10.(3分)一次函数y=ax+a(a为常数,a≠0)与反比例函数y=(a为常数,a≠0)在同一平面直角坐标系内的图象大致为()A.B.C.D.11.(3分)如图,在⊙O中,AB是⊙O的直径,AB=10,==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM 的最小值是10,上述结论中正确的个数是()A.1 B.2 C.3 D.412.(3分)将一组数,2,,2,,…,2,按下列方式进行排列:,2,,2,;2,,4,3,2;…若2的位置记为(1,2),2的位置记为(2,1),则这个数的位置记为()A.(5,4)B.(4,4)C.(4,5)D.(3,5)二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)要使代数式有意义,则x的取值范围是.14.(3分)为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是.(填“全面调查”或“抽样调查”)15.(3分)将多项式2mx2﹣8mx+8m分解因式的结果是.16.(3分)如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,求点A从开始到结束所经过的路径长为(结果保留π).17.(3分)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc <0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有.18.(3分)如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣1)2017+﹣(π﹣3)0+2cos30°.20.(6分)先化简,再求值:÷(1+),其中x=+1.21.(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.22.(8分)如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30°,在B 处测得探测线与地面的夹角为60°,求该生命迹象C处与地面的距离.(结果精确到0.1米,参考数据:≈1.41,≈1.73)23.(8分)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.24.(8分)如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2,求四边形ABCD的面积.25.(10分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D 的切线分别交AB,AC的延长线于E,F,连接BD.(1)求证:AF⊥EF;(2)若AC=6,CF=2,求⊙O的半径.26.(12分)如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.(1)求抛物线的解析式;(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.广西贺州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共30分)1.(3分)的倒数是()A.﹣2 B.2 C.D.【分析】根据倒数的定义求解.【解答】解:﹣的倒数是﹣2.故选:A.【点评】本题主要考查了倒数的定义,解题的关键是熟记定义.2.(3分)下列各图中,∠1与∠2互为邻补角的是()A.B.C.D.【分析】根据邻补角的定义作出判断即可.【解答】解:根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.故选:D.【点评】本题考查了邻补角的定义,正确把握定义:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.3.(3分)下列式子中是分式的是()A.B.C.D.【分析】根据分式的定义求解即可.【解答】解:、、的分母中不含有字母,属于整式,的分母中含有字母,属于分式.故选:C.【点评】本题考查了分式的定义,分母中含有字母的式子是分式.4.(3分)一条关于数学学习方法的微博在一周内转发了318000次,将318000用科学记数法可以表示为()A.3.18×105B.31.8×105C.318×104D.3.18×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将318000用科学记数法可以表示为3.18×105,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)现有相同个数的甲、乙两组数据,经计算得:=,且S甲2=0.35,S乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定 B.乙比较稳定C.甲、乙一样稳定D.无法确定【分析】根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立解答即可.【解答】解:∵S甲2>S乙2,∴乙比较稳定,故选:B.【点评】本题考查的是平均数和方差,掌握方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立是解题的关键.6.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形B.平行四边形 C.矩形D.等边三角形【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【解答】解:A、正五边形,不是中心对称图形,是轴对称图形,故本选项错误;B、平行四边形,是中心对称图形,不是轴对称图形,故本选项错误;C、矩形,既是中心对称图形又是轴对称图形,故本选项正确;D、等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(3分)如图,在△ABC中,点D、E分别为AB、AC的中点,则△ADE与四边形BCED的面积比为()A.1:1 B.1:2 C.1:3 D.1:4【分析】证明DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,DE=BC,证出△ADE ∽△ABC,由相似三角形的性质得出△ADE的面积:△ABC的面积=1:4,即可得出结果.【解答】解:∵D、E分别为△ABC的边AB、AC上的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面积:△ABC的面积=()2=1:4,∴△ADE的面积:四边形BCED的面积=1:3;故选:C.【点评】本题考查了相似三角形的判定与性质、三角形中位线定理;熟记三角形中位线定理,证明三角形相似是解决问题的关键.8.(3分)小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()A. B.C.D.【分析】根据看等边三角形木框的方向即可得出答案.【解答】解:竖直向下看可得到线段,沿与平面平行的方向看可得到C,沿与平面不平行的方向看可得到D,不论如何看都得不到一点.故选:B.【点评】本题主要考查对平行投影的理解和掌握,能熟练地观察图形得出正确结论是解此题的关键.9.(3分)不等式组的解集在数轴上表示正确的是()A.B. C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x+4≤13,得:x≤3,解不等式﹣x<1,得:x>﹣1,则不等式组的解集为﹣1<x≤3,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(3分)一次函数y=ax+a(a为常数,a≠0)与反比例函数y=(a为常数,a≠0)在同一平面直角坐标系内的图象大致为()A.B.C.D.【分析】分为a>0和a<0两种情况,然后依据一次函数和反比例函数的图象的性质进行判断即可.【解答】解:当a>0时,一次函数y=ax+a,经过一二三象限,反比例函数图象位于一、三象限,当a<0时,一次函数y=ax+a,经过二、三、四象限,反比例函数图象位于二、四象限.故选:C.【点评】本题主要考查的是一次函数、反比例函数的图象和性质,熟练掌握相关性质是解题的关键.11.(3分)如图,在⊙O中,AB是⊙O的直径,AB=10,==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A.1 B.2 C.3 D.4【分析】根据==和点E是点D关于AB的对称点,求出∠DOB=∠COD=∠BOE=60°,求出∠CED,即可判断①②;根据圆周角定理求出当M和A重合时∠MDE=60°即可判断③;求出M点的位置,根据圆周角定理得出此时DF是直径,即可求出DF长,即可判断④.【解答】解:∵==,点E是点D关于AB的对称点,∴=,∴∠DOB=∠BOE=∠COD==60°,∴①正确;∠CED=∠COD==30°=,∴②正确;∵的度数是60°,∴的度数是120°,∴只有当M和A重合时,∠MDE=60°,∵∠CED=30°,∴只有M和A重合时,DM⊥CE,∴③错误;做C关于AB的对称点F,连接CF,交AB于N,连接DF交AB于M,此时CM+DM的值最短,等于DF长,连接CD,∵===,并且弧的度数都是60°,∴∠D==60°,∠CFD==30°,∴∠FCD=180°﹣60°﹣30°=90°,∴DF是⊙O的直径,即DF=AB=10,∴CM+DM的最小值是10,∴④正确;故选C.【点评】本题考查了圆周角定理,轴对称﹣最短问题等知识点,能灵活运用圆周角定理求出各个角的度数和求出M的位置是解此题的关键.12.(3分)将一组数,2,,2,,…,2,按下列方式进行排列:,2,,2,;2,,4,3,2;…若2的位置记为(1,2),2的位置记为(2,1),则这个数的位置记为()A.(5,4)B.(4,4)C.(4,5)D.(3,5)【分析】先找出被开方数的规律,然后再求得的位置即可.【解答】解:这组数据可表示为:、、、、;、、、、;…∵19×2=38,∴为第4行,第4个数字.故选:B.【点评】本题主要考查的是数字的变化规律,找出其中的规律是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)要使代数式有意义,则x的取值范围是x≥且x≠1 .【分析】直接利用二次根式的定义、分式的有意义的条件分析得出答案.【解答】解:由题意可得:2x﹣1≥0,x﹣1≠0,解得:x≥且x≠1.故答案为:x≥且x≠1.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.14.(3分)为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是抽样调查.(填“全面调查”或“抽样调查”)【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:了调查某市中小学生对“营养午餐”的满意程度,因为人员多、所费人力、物力和时间较多所以适合采用的调查方式是抽样调查,故答案为:抽样调查.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.15.(3分)将多项式2mx2﹣8mx+8m分解因式的结果是2m(x﹣2)2.【分析】原式提取2m,再利用完全平方公式分解即可.【解答】解:原式=2m(x2﹣4x+4)=2m(x﹣2)2,故答案为:2m(x﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.(3分)如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,求点A从开始到结束所经过的路径长为(结果保留π)π.【分析】利用余弦的概念求出AC,根据弧长公式计算即可.【解答】解:Rt△ABC中,∠A=60°,AC==2,∠ACB=30°,∴∠ACA1=150°,点A从开始到结束所经过的路径长为以C为圆心、2为半径的弧,即=π,故答案为:π.【点评】本题考查的是点的轨迹以及弧长的计算,掌握弧长公式、旋转变换的性质、正确找出点的运动轨迹是解题的关键.17.(3分)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc <0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有①④⑤.【分析】根据图象的开口可确定a,结合对称轴可确定b,根据图象与y轴的交点位置可确定c,根据图象与x轴的交点个数可确定△;根据当x=﹣2时,y<0;抛物线与x轴的另一个交点的坐标是(3,0),即可得出结论.【解答】解:①∵开口向下∴a<0∵与y轴交于正半轴∴c>0∵对称轴在y轴右侧∴b>0∴abc<0,故①正确;∵二次函数的对称轴是直线x=1,即二次函数的顶点的横坐标为x=﹣=1,∴2a+b=0,故②错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③错误;∵b=﹣2a,∴可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);由函数的图象知:当x=﹣2时,y<0;即4a﹣(﹣4a)+c=8a+c<0,故④正确;∵二次函数的图象和x轴的一个交点是(﹣1,0),对称轴是直线x=1,∴另一个交点的坐标是(3,0),∴设y=ax2+bx+c=a(x﹣3)(x+1)=ax2﹣2ax﹣3a,即a=a,b=﹣2a,c=﹣3a,∴a:b:c=a:(﹣2a):(﹣3a)=﹣1:2:3,故⑤正确;故答案为:①④⑤.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.18.(3分)如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为 6 .【分析】由旋转的性质可知:AF=AG,∠DAF=∠BAG,接下来再证明∠GAE=∠FAE,由全等三角形的性质可知:AB=AH,GE=EF=5.设正方形的边长为x,接下来,在Rt△EFC中,依据勾股定理列方程求解即可.【解答】解:由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠FAE.在△GAE和△FAE中,∴△GAE≌△FAE.∵AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x﹣2,FC=x﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.解得:x=6.∴AB=6.∴AH=6.故答案为:6.【点评】本题主要考查的是四边形的综合应用,解答本题主要应用了旋转的性质、全等三角形的性质和判定、勾股定理的应用,正方形的性质,依据旋转的性质构造全等三角形和直角三角形是解题的关键.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣1)2017+﹣(π﹣3)0+2cos30°.【分析】直接利用算术平方根的性质以及零指数幂的性质和特殊角的三角函数值分别化简求出答案.【解答】解:原式=﹣1+3﹣1+2×=1+.【点评】此题主要考查了算术平方根的性质以及零指数幂的性质和特殊角的三角函数值,正确化简各数是解题关键.20.(6分)先化简,再求值:÷(1+),其中x=+1.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=•=当x=+1时,原式==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21.(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.【分析】(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.【解答】解:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=;(2)不公平,理由如下:∵P(小王)=,P(小李)=,≠,∴规则不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30°,在B 处测得探测线与地面的夹角为60°,求该生命迹象C处与地面的距离.(结果精确到0.1米,参考数据:≈1.41,≈1.73)【分析】过C点作AB的垂线交AB的延长线于点D,由三角形外角的性质可得出∠ACB=30°,进而可得出BC=AB=4米,在Rt△CDB中利用锐角三角函数的定义即可求出CD的值.【解答】解:过C点作AB的垂线交AB的延长线于点D,∵∠CAD=30°,∠CBD=60°,∴∠ACB=30°,∴∠CAB=∠ACB=30°,∴BC=AB=4米,在Rt△CDB中,BC=4米,∠CBD=60°,sin∠CBD=,∴sin60°=,∴CD=4sin60°=4×=2≈3.5(米),故该生命迹象所在位置的深度约为3.5米.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(8分)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.【分析】可设乙工程队单独完成这项工程需要x天,根据等量关系:甲、乙两个工程队合作10天完成了剩余的工程,即工程总量的1﹣,依此列出方程求解即可.【解答】解:设乙工程队单独完成这项工程需要x天,依题意有(+)×10=1﹣,解得x=20,经检验,x=20是原方程的解.答:乙工程队单独完成这项工程需要20天.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.24.(8分)如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2,求四边形ABCD的面积.【分析】(1)根据等腰三角形的性质得到∠ABD=∠ADB,根据角平分线的定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠CBD,根据全等三角形的性质得到AO=OC,于是得到结论;(2)根据菱形的性质得到OD=BD=,根据勾股定理得到OC==2,于是得到结论.【解答】(1)证明:∵AB=AD,∴∠ABD=∠ADB,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠CBD,∵AC⊥BD,AB=AD,∴BO=DO,在△AOD与△COB中,,∴△AOD≌△COB,∴AO=OC,∵AC⊥BD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OD=BD=,∴OC==2,∵AC=4,∴S=AC•BD=4.菱形ABCD【点评】本题考查了菱形的性质和判定,勾股定理,菱形的面积的计算,全等三角形的判定与性质,角平分线的定义,熟练掌握菱形的判定和性质定理是解题的关键.25.(10分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D的切线分别交AB,AC的延长线于E,F,连接BD.(1)求证:AF⊥EF;(2)若AC=6,CF=2,求⊙O的半径.【分析】(1)连接OD,由切线的性质和已知条件可证得OD∥EF,则可证得结论;(2)过D作DG⊥AE于点G,连接CD,则可证得△ADF≌△ADG、△CDF≌△BDG,则可求得AB 的长,可求得圆的半径.【解答】(1)证明:如图1,连接OD,∵EF是⊙O的切线,且点D在⊙O上,∴OD⊥EF,∵OA=OD,∴∠DAB=∠ADO,∵AD平分∠BAC,∴∠DAB=∠DAC,∴∠ADO=∠DAC,∴AF∥OD,∴AF⊥EF;(2)解:如图2,过D作DG⊥AE于点G,连接CD,∵∠BAD=∠DAF,AF⊥EF,DG⊥AE,∴BD=CD,DG=DF,在Rt△ADF和Rt△ADG中∴Rt△ADF≌Rt△ADG(HL),同理可得Rt△CDF≌Rt△BDG,∴BG=CF=2,AG=AF=AC+CF=6+2=8,∴AB=AG+BG=8+2=10,∴⊙O的半径OA=AB=5.【点评】本题主要考查切线的性质及圆周角定理,掌握过切点的半径与切线垂直是解题的关键,注意全等三角形的应用.26.(12分)如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.(1)求抛物线的解析式;(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【分析】(1)首先依据等腰直角三角形的性质求得点B的坐标,然后将点A和点B的坐标代入抛物线的解析式求解即可;(2)设直线AB的解析式为y=kx+b,将点A和点B的坐标代入可求得直线AB的解析式,设点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3),然后列出EF关于t的函数关系式,最后利用配方法求得EF的最大值即可;(3)过点F作直线a⊥EF,交抛物线于点P,过点E作直线b⊥EF,交抛物线P′、P″,先求得点E和点F的纵坐标,然后将点E和点F的纵坐标代入抛物线的解析式求得对应的x的值,从而可求得点P、P′、P″的坐标.【解答】解:(1)∵A,C的坐标分别为(1,0),(﹣4,0),∴AC=5.∵△ABC为等腰直角三角形,∠C=90°,∴BC=AC=5.∴B(﹣4,﹣5).将点A和点B的坐标代入得:,解得:,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)如图1所示:设直线AB的解析式为y=kx+b,将点A和点B的坐标代入得:,解得:k=1,b=﹣1.所以直线AB的解析式为y=x﹣1.设点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3).∴EF=﹣t2﹣2t+3﹣(t﹣1)=﹣t2﹣3t+4=﹣(t+)2+.∴当t=﹣时,FE取最大值,此时,点E的坐标为(﹣,﹣).(3)存在点P,能使△PEF是以EF为直角边的直角三角形.理由:如图所示:过点F作直线a⊥EF,交抛物线于点P,过点E作直线b⊥EF,交抛物线P′、P″.由(2)可知点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3),t=﹣,∴点E(﹣,﹣)、F(﹣,).①当﹣t2﹣2t+3=时,解得:t=﹣或t=﹣(舍去).∴点P的坐标为(﹣,).②当﹣t2﹣2t+3=﹣时,解得:t=﹣1+或t=﹣1﹣.∴点P′(﹣1﹣,﹣),P″(﹣1+,﹣).综上所述,点P的坐标为(﹣,)或(﹣1﹣,﹣)或P″(﹣1+,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、等腰直角三角形的性质、二次函数的性质,列出EF的长关于t的函数关系式是解题的关键.。
2018年中考数学考前押题试卷1一、选择题(本大题共12小题,共36.0分)1.下列各数中,最小的数是A. B. C. 0 D. 12.如图所示的几何体是由五个小正方体组合而成的,箭头所指示的为主视方向,则它的俯视图是A. B. C. D.3.下列图形既是轴对称图形,又是中心对称图形的是A. B. C. D.4.地球绕太阳公转的速度约为,则110000用科学记数法可表示为A. B. C. D.5.如图,已知,则的度数是A. B. C. D.6.下列运算正确的是A. B.C. D.7.十九大以来,中央把扶贫开发工作纳入“四个全面”战略并着力持续推进,据统计2015年的某省贫困人口约484万,截止2017年底,全省贫困人口约210万,设过两年全省贫困人口的年平均下降率为x,则下列方程正确的是A. B.C. D.8.如图,在平面直角坐标系中,点P是反比例函数图象上一点,过点P作垂线,与x轴交于点Q,直线PQ交反比例函数于点M,若,则k的值为A.B.C.D.9.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有个黑子.A. 37B. 42C. 73D. 12110.二次函数的部分图象如图,图象过点,对称轴为直线,下列结论;;;当时,y的值随x值的增大而增大,其中正确的结论有A. 1个B. 2个C. 3个D. 4个11.如图,河流的两岸互相平行,河岸PQ上有一排小树,已知相邻两树CD之间的距离为50米,某人在河岸MN的A处测得,然后沿河岸走了130米到达B处,测得则河流的宽度CE为A. 80B.C.D.12.若a使关于x的不等式组至少有三个整数解,且关于x的分式方程有正整数解,a可能是A. B. 3 C. 5 D. 8二、填空题(本大题共4小题,共12.0分)13.因式分解:______.14.一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,则摸到的不是红球的概率为______15.定义新运算:对于任意有理数a、b都有,等式右边是通常的加法、减法及乘法运算比如:则,则______.16.正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分时,,则______.三、解答题(共52分)17.先化简,再求值:,其中.18.19.“共享单车,绿色出行”,现如今骑共享单车出行不但成为一种时尚,也称为共享经济的一种新形态,某校九班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图:摩拜单车;B:ofo单车;C:请根据图中提供的信息,解答下列问题:求出本次参与调查的市民人数;将上面的条形图补充完整;若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩托单车出行?20.随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.设定价减少x元,预订量为y台,写出y与x的函数关系式;若每台手机的成本是1200元,求所获的利润元与元的函数关系式,并说明当定价为多少时所获利润最大;若手机加工成每天最多加工50000台,且每批手机会有的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?21.如图,在中,,以AB为直径的分别交于点D、的延长线与的切线AF交于点F.求证:;已知,求的直径22.如图1,在等腰中,,点E在AC上且不与点A、C重合,在的外部作等腰,使,连接AD,分别以为邻边作平行四边形ABFD,连接AF.求证:是等腰直角三角形;如图2,将绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:;如图3,将绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且在的下方时,若,求线段AE的长.23.如图1,二次函数的图象过点,顶点B的横坐标为1.求这个二次函数的表达式;点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;如图3,一次函数的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线,垂足为点M,且M在线段OC上不与O、C重合,过点T作直线轴交OC于点若在点T运动的过程中,为常数,试确定k的值.答案和解析【答案】1. A2. C3. D4. B5. D6. D7. C8. D9. C10. A11. C12. C13.14.15. 116. 417. 解:,当时,原式.18. 解:原式.19. 解:本次参与调查的市民人数人;品牌人数为人品牌人数为人,补全图形如下:人,答:估计该区有3000名市民选择骑摩拜单车出行.20. 解:根据题意:;设所获的利润元,则;所以当降价400元,即定价为元时,所获利润最大;根据题意每天最多接受台,此时,解得:.所以最大量接受预订时,每台定价元.21. 证明:如图,连接BD.为的直径,,.是的切线,,即..,..如图,连接AE,,设,::4,,在中,,即,..22. 解:如图四边形ABFD是平行四边形,,,,,,,是等腰直角三角形;如图2,连接交BC于K.四边形ABFD是平行四边形,,,,,,,,,,在和中,,≌,,,是等腰直角三角形,.如图3,当时,四边形ABFD是菱形,设AE交CD于H,依据,可得AE垂直平分CD,而,,中,,.23. 解:二次函数的图象过点,顶点B的横坐标为1,则有解得二次函数,由得,,,直线AB解析式为,设点以A、B、P、Q为顶点的四边形是平行四边形,当AB为对角线时,根据中点坐标公式得,则有,解得或和当AB为边时,根据中点坐标公式得解得或或.故答案为或或或.设,可以设直线TM为,则,由解得,,,时,.当时,点T运动的过程中,为常数.【解析】1. 解:,最小的数为,故选:A.根据正实数大于一切负实数,0大于负实数,两个负数绝对值大的反而小解答即可本题考查的是实数的大小比较,任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2. 解:从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:C.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3. 解:A、不是轴对称图形,是中心对称图形,不合题意;B、不是轴对称图形,不是中心对称图形,不合题意;C、是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4. 解:将110000用科学记数法表示为:.故选:B.科学记数法的表示形式为的形式,其中为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定a的值以及n的值.5. 解:如图,延长的边与直线b相交,,,由三角形的外角性质,可得,故选:D.延长的边与直线b相交,然后根据两直线平行,同旁内角互补求出,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并作出辅助线是解题的关键.6. 解:,故此题错误;B.,故此题错误;C.,故此题错误;D.,正确.故选:D.按照整式的加法、整式的乘法、完全平方公式和平方差公式,分别计算,再判断.此题考查整式的运算,掌握各运算法则和运算公式是关键.7. 解:设过两年全省贫困人口的年平均下降率为x,根据题意得:,故选:C.等量关系为:2015年贫困人口下降率年贫困人口,把相关数值代入计算即可.本题考查由实际问题抽象出一元二次方程;得到2年内变化情况的等量关系是解决本题的关键8. 解:如图,连接.由题意;,,故选:D.根据反比例函数系数k的几何意义即可解决问题;本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9. 解:第1、2图案中黑子有1个,第3、4图案中黑子有个,第5、6图案中黑子有个,第7、8图案中黑子有个,故选:C.观察图象得到第1、2图案中黑子有1个,第3、4图案中黑子有个,第5、6图案中黑子有个,,据此规律可得.本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10. 解:由图象可得,,,,故错误;抛物线的对称轴为直线,,即,故本结论正确;当时,,,即,故本结论错误;对称轴为直线,当时,y的值随x值的增大而增大,当时,y随x的增大而减小,故本结论错误;故选:A.由图象可得,根据抛物线的对称轴为直线,则有;观察函数图象得到当时,函数值小于0,则,即;由于对称轴为直线,根据二次函数的性质得到当时,y随x的增大而减小;本题考查了二次函数图象与系数的关系:二次函数,二次项系数a决定抛物线的开口方向和大小,当时,抛物线向上开口;当时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时即,对称轴在y轴左;当a与b异号时即,对称轴在y轴右;常数项c决定抛物线与y轴交点抛物线与y轴交于;抛物线与x轴交点个数由决定,时,抛物线与x轴有2个交点;时,抛物线与x轴有1个交点;时,抛物线与x轴没有交点.11. 解:过点C作交AB于点F.,四边形AFCD是平行四边形.,,设,,,,,解得:,,故选:C.过点C作交AB于点F,易证四边形AFCD是平行四边形再在直角中,利用三角函数求解.本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、构造合适的直角三角形是解题的关键.12. 解:,不等式组整理得:,由不等式组至少有三个整数解,得到,,分式方程去分母得:,解得:,分式方程有正整数解,且,,只有选项C符合.故选:C.将不等式组整理后,由不等式组至少有三个整数解确定出a的范围,再由分式方程有正整数解确定出满足条件a的值,进而求出之积.此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.13. 解:,,.先提取公因式y,再对余下的多项式利用平方差公式继续分解.本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14. 解:根据题意,摸到的不是红球的概率为,故答案为:.将黄球和绿球的个数除以球的总个数即可得.本题考查了概率公式:随机事件A的概率事件A可能出现的结果数除以所有可能出现的结果数.15. 解:根据题意得:,去括号得:,移项合并得:,解得:.故答案为:1.利用题中的新定义列出所求式子,解一元一次方程即可得到结果.本题考查了解一元一次方程,解决本题的关键是根据新定义得到方程.16. 解:如图,过B作于P,连接BE,交FH于N,则,四边形ABCD是正方形,,,平分,又,≌,,,,≌,,,由折叠得:,垂直平分BE,是等腰直角三角形,,,,,中,,,,故答案为:4.作辅助线,构建全等三角形,先证明,利用是等腰直角三角形,即可求得的长,中,依据勾股定理可得,根据,即可得到.本题考查翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.17. 根据分式的除法和加法可以化简题目中的式子,然后将代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18. 直接利用负指数幂的性质和零指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19. 根据B品牌人数及其所占百分比可得总人数;总人数分别乘以A、D所占百分比求出其人数即可补全图形;总人数乘以样本中A的百分比即可得.本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据.20. 根据题意列代数式即可;根据利润单台利润预订量,列出函数表达式,根据二次函数性质解决定价为多少时所获利润最大;根据题意列式计算每天最多接受的预订量,根据每天最多接受的预订量列方程求出最大量接受预订时每台售价即可.本题主要考查了函数实际应用问题,涉及到列代数式、求函数关系式、二次函数的性质、一元一次方程应用等知识,弄清题意,找出数量关系是解决问题的关键.21. 首先连接BD,由AB为直径,可得,又由AF是的切线,易证得然后由,证得:;首先连接AE,设,由勾股定理可得方程:求得答案.本题主要考查了切线的性质、三角函数以及勾股定理,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用是解答此题关键.22. 依据,即可证明是等腰直角三角形;连接交BC于K,先证明≌,再证明是等腰直角三角形即可得出结论;当时,四边形ABFD是菱形,先求得中,,即可得到.本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.23. 利用待定系数法即可解决问题.当AB为对角线时,根据中点坐标公式,列出方程组解决问题当AB为边时,根据中点坐标公式列出方程组解决问题.设,由,可以设直线TM 为,则,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.本题考查二次函数综合题,平行四边形的判定和性质,中点坐标公式等知识,解题的关键是利用参数,方程组解决问题,学会转化的思想,属于中考压轴题.第21页,共21页。