分析不对称故障的对称分量法——综合
- 格式:pdf
- 大小:1.71 MB
- 文档页数:30
§第14讲《对称分量法在不对称故障分析中的应⽤》§第 14 讲《对称分量法在不对称故障分析中的应⽤》⼀、教学⽬标各序分量是独⽴的,即在⼀个三相对称的元件中,如果流过三相正序电流,则在元件上的三相电压降也是正序的,如果流过三相负序电流或零序电流,则元件上的三相电压降也是负序的或零序的。
在分析不对称短路故障时如何应⽤对称分量法,如何画三序序⽹图和复合序⽹图。
⼆、教学重点正序、负序、零序电压、电流之间符合电路理论,能构成独⽴的正序、负序、零序⽹络,即序⽹络概念,各序⽹络中对应着正序、负序、零序阻抗;根据不对称短路的边界条件画复合序⽹三、教学难点对故障点处的各序电压电流的理解;正序电流与正序电压关系、负序电流与负序电压关系、零序电流与零序电压关系各⾃满⾜电路理论电流、电压间关系;各⾃对应的阻抗分别是正序、负序、零序三种阻抗;可以建⽴各⾃的正序、负序、零序三种等值⽹络──序⽹络。
四、教学内容和要点⼀个不对称短路系统依据对称分量法原理,可将短路点的三相不对称电压⽤正序、负序、零序三个电压串联替代;三相不对称电流可⽤正序、负序、零序三个电流并联替代;然后利⽤叠加原理将其拆成正序、负序、零序三个独⽴的序⽹络。
正序⽹络特点:含有电源电势,正序阻抗,短路点正序电压(如经阻抗短路,还包含该过渡阻抗)。
负序⽹络特点:不含电源电势,含负序阻抗,短路点负序电压(如经阻抗短路,还包含该过渡阻抗)。
零序⽹络特点:不含电源电势,含零序阻抗,短路点零序电压(如经阻抗短路,还包含该过渡阻抗)。
对应各序⽹,按基尔霍夫电压定律可写序⽹⽅程。
五、采⽤的教学⽅法和⼿段教学⽅法(如:讲述法、讨论法、实验法等):讲述法教学⼿段(如:挂图、模型、仪器、投影、幻灯等):板书。
对称分量法公式摘要:一、对称分量法简介1.对称分量法的概念2.对称分量法在工程中的应用二、对称分量法公式推导1.基本电路分析2.对称分量法的推导过程3.对称分量法公式三、对称分量法应用实例1.三相电路分析2.发电机和变压器分析3.其他应用场景四、对称分量法的优缺点1.优点2.缺点正文:一、对称分量法简介对称分量法是一种电路分析方法,主要用于解决不对称三相电路的问题。
该方法将三相电路分解为三个独立的单相电路,通过对每个单相电路的分析,可以得到三相电路中各相的电流和电压。
对称分量法广泛应用于电力系统、自动化控制等领域。
二、对称分量法公式推导1.基本电路分析首先,我们分析一个简单的不对称三相电路,包含三个相电压U1、U2、U3 和一个中性线N。
我们用矢量表示电压和电流:U1、U2、U3 和I1、I2、I3。
2.对称分量法的推导过程为了方便分析,我们将电压和电流分解为正序和负序两个分量。
正序分量表示三相电压和电流的平衡部分,负序分量表示三相电压和电流的不平衡部分。
正序分量和负序分量的关系如下:U1p = U1 + U2 + U3I1p = I1 + I2 + I3U1n = U1 - U2 - U3I1n = I1 - I2 - I3其中,U1p、I1p 表示正序分量的电压和电流,U1n、I1n 表示负序分量的电压和电流。
3.对称分量法公式根据对称分量法,我们可以得到以下公式:U1p = U1 + jU2 + jU3I1p = I1 + jI2 + jI3U1n = U1 - jU2 - jU3I1n = I1 - jI2 - jI3其中,j 表示虚数单位。
三、对称分量法应用实例1.三相电路分析通过对称分量法,我们可以将复杂的不对称三相电路分解为三个简单的单相电路。
这样,我们可以分别分析每个单相电路,从而简化电路分析过程。
2.发电机和变压器分析对称分量法广泛应用于发电机和变压器的分析。
通过分解发电机和变压器的不对称电流和电压,我们可以了解设备的运行状态,及时发现故障,保证电力系统的稳定运行。
对称分量法在不对称短路故障处计算短路电流中的应用应用对称分量法计算不对称短路故障处短路电流的步骤如下:1. 进行不对称短路故障模拟,生成短路故障模拟数据。
该数据包括短路点电压、短路点电流、母线电压等参数。
2. 对短路故障模拟数据进行变换,将其转换为对称分量形式。
具体来说,可以将短路故障模拟数据进行傅里叶变换,将其分解成正弦波和余弦波的乘积。
其中以正弦波为主,余弦波为辅,因为它们构成短路故障时的主要分量。
3. 计算对称分量中的正弦波分量和余弦波分量。
具体来说,可以使用短路故障模拟数据中的正弦波分量和余弦波分量的系数,乘以母线电压和短路点电流的系数,得到对称分量中的正弦波分量和余弦波分量。
4. 计算不对称短路故障处的短路电流。
具体来说,可以使用对称分量法计算出正弦波分量和余弦波分量的和,即短路电流的幅值和相位。
拓展:除了上述步骤外,使用对称分量法计算不对称短路故障处的短路电流,还需要注意以下几点:1. 确保短路故障模拟数据的准确性和可靠性。
在进行短路故障模拟时,需要考虑多种因素,如导线电阻、电缆电阻、短路点热稳定等。
此外,还需要考虑不同电气设备的阻抗和导纳,以确保计算结果的准确性。
2. 确保对称分量法的计算模型正确。
在使用对称分量法计算不对称短路故障处的短路电流时,需要确保计算模型正确。
具体来说,需要确保母线电压、短路点电流和正弦波分量和余弦波分量的系数正确,否则计算结果可能不准确。
3. 考虑不对称短路故障处的电气特性。
在使用对称分量法计算不对称短路故障处的短路电流时,需要考虑到不对称短路故障处的电气特性,如短路点电压、短路点电流、母线电压等参数的变化。
否则,计算结果可能不准确。
对称分量法对称分量法(method of symmetrical components)电工中分析对称系统不对称运行状态的一种基本方法。
广泛应用于三相交流系统参数对称、运行工况不对称的电气量计算。
电力系统正常运行时可认为是对称的,即各元件三相阻抗相同,各自三相电压、电流大小相等,具有正常相序。
电力系统正常运行方式的破坏主要与不对称故障或者断路器的不对称操作有关。
由于整个电力系统中只有个别点是三相阻抗不相等,所以一般不使用直接求解复杂的三相不对称电路的方法,而采用更简单的对称分量法进行分析。
任何不对称的三相相量A,B,C 可以分解为三组相序不同的对称分量:①正序分量A1,B1,C1,②负序分量A2,B2,C2,③零序分量A,B,C。
即存在如下关系:(1)每一组对称分量之间的关系为(2)式中,复数算符....a=e j120。
将(2)代入(1)可得;(3)式中系数矩阵是非奇异的,其逆矩阵存在,所以有(4)任意不对称的电压、电流都可以用式(4)求出它们的正序、负序和零序电压、电流分量。
已知三序分量时,又可用式(3)合成三相向量。
在计算电力系统不平衡情况下引用了对称分量法,即任何三相不平衡的电流、电压或阻抗都可以分解成为三个平衡的相量成分即正相序(UA1、UB1、UC1)、负相序(UA2、UB2、UC2)和零相序(UA0、UB0、UC0),即有:UA=UA1+UA2+UA0,UB=UB1+UB2+UB0,UC=UC1+UC2+UC0,其正相序的相序(顺时方向)依次为UA1、UB1、UC1,大小相等,互隔120度;负相序的相序(逆时方向)依次为UA2、UB2、UC2,大小相等,互隔120度;零相序大小相等且同相,各相序都是按逆时针方向旋转。
在对称分量法中引用算子a ,其定义是单位相量依逆时针方向旋转120度,则有:UA0=1/3(UA+UB+UC ),UA1=1/3(UA+aUB+aaUC ),UA2=1/3(UA+aaUB+aUC )注意以上都是以A 相为基准,都是矢量计算。
浅析电力系统故障分析中的对称分量法摘要:对故障电力系统的分析中,对称分量法是一种十分重要的分析方法,可以将非对称的故障部分分解为正序、负序和零序,从而组建对称系统,使得适用于对称电力系统的分析方法依然适用于非对称故障系统。
为了能有效掌握对称分量法,本文结合非对称故障电力系统进行推导并有效验证了对称分量法。
电力系统在正常运行情况下,三相元件参数和电路完全相同,可以由单相电路等效三相电路进行分析。
当电力系统出现单相短路或断线、两相短路或断线等非对称故障时,三相电路不再对称【1】,此时无法直接用单相电路等效进行分析【2】。
在发生不对称故障时,三相电路的电压、电流、阻抗等存在差异,单相电路无法等效三相进行分析,因此需要一种新的分析三相电路的方法【2】。
依据线性数学知识可知,三个不对称相量可以被唯一地分解成三组对称相量【3】。
这样,就可以将出现不对称故障的三相电力系统,分解为正序、负序和零序三组对称相量表示【4、5】。
正序、负序和零序是在电力系统分析中常见的三相对称分量,如图1所示。
(a)正序分量(b)负序分量(c)零序分量图1 正序、负序和零序电流分量图1中,、和代表正序电流,、和代表负序电流,、和代表零序电流。
正序电流三相相量大小相等、相位顺时针依次相差,负序电流三相相量大小相等、相位逆时针依次相差,零序电流三相相量大小、相位都相等,如公式(1~3)所示【5】。
(1)(2)(3)为了方便计算,令,则有:(4)从上述公式,我们可以进行如下推导:(5)如果取:(6)则有公式(7)成立,从而可以推算出对称相量法的成立,同理我们也可以得出电压等相量的相序分解。
(7)从上述推导过程,可以得知,对称分量法在电力系统不对称故障分析中的有效性,则可以将电力系统不对称故障部分分为正序、负序和零序三个对称部分的叠加。
对称分量法用于分析不对称故障电力系统时,首先将故障电力系统分为正常部分和故障部分,正常部分是三相对称电路不需要单独用对称分量法分解,故障部分则依据对称分量法将电路中参数分为正序、负序和零序再依据对称电路分析方法对整个电力系统进行处理。