喷油器电路分析
- 格式:ppt
- 大小:31.41 MB
- 文档页数:40
教学步骤顺序喷射的特点是能够设立最佳喷油时间,对混合气形成有利;喷油正时在排气上止点前60-70°;但是其控制软件复杂。
二、喷油量控制发动机在不同工况下运转,对混合气浓度的要求也不同。
特别是在一些特殊工况下(如起动、急加速、急减速等),对混合气浓度有特殊的要求。
电脑要根据有关传感器测得的运转工况,按不同的方式控制喷油量。
喷油量的控制方式可分为起动控制、运转控制、断油控制和反馈控制。
喷油量的控制方式可分为起动控制、运转控制、断油控制和反馈控制。
1.起动喷油控制起动时,发动机由起动马达带动运转。
由于转速很低,转速的波动也很大,因此这时空气流量传感器所测得的进气量信号有很大的误差。
基于这个原因,在发动机起动时,电脑不以空气流量传感器的信号作为喷油量的计算依据,而是按预先给定的起动程序来进行喷油控制。
电脑根据起动开关及转速传感器的信号,判定发动机是否处于起动状态,以决定是否按起动程序控制喷油。
当起动开关接通,且发动机转速低于300转/分时,电脑判定发动机处于起动状态,从而按起动程序控制喷油。
在起动喷油控制程序中,电脑按发动机水温、进气温度、起动转速计算出一个固定的喷油量。
这一喷油量能使发动机获得顺利起动所需的浓混合气。
冷车起动时,发动机温度很低,喷入进气道的燃油不易蒸发。
为了能产生足够的燃油蒸气,形成足够浓度的可燃混合气,保证发动机在低温下也能正常起动,必须进一步增大喷油量。
由电脑控制,通过增加各缸喷油器的喷油持续时间或喷油次数来增加喷油量。
所增加的喷油量及加浓持续时间完全由电脑根据进气温度传感器和发动机水温传感器测得的温度高低来决定。
60分钟重点喷油器控制电路的工作原理、电路分析和检修10分钟PPT讲解10分钟教师点评计算机与设定的目标空燃比值进行比较,将误差信号经放大器控制电磁喷油器喷油量,使空燃比保持在设定目标值附近。
二、喷油器的结构与工作原理1.喷油器的功用根据ECU指令,控制燃油喷射量。
汽车ECU电路分析 ECU电路解析正如在本章开始时我们讲到的,不同厂商的汽车电脑在功能上不是完全相同的,但结构组成和主要功能是基本一样的,因此我们以有代表性的BOSCH MOTRONIC系统为例进行ECU的电路分析。
1、BOSCH MOTRONIC系统结构图BOSCH MOTRONIC系统在电子燃油喷射系统中极具代表性,国内生产的大部分车型采用的都是BOSCH电子喷射系统。
图5.11为MOTRONIC系统框图,在此图中介绍了曲型电子燃油喷射系统的组成,各部分的联系情况,对于更好的了解电脑的工作过程,以至于分析故障与维修都是大有帮助的。
图11Motronic系统框图1-燃油箱;2-燃油泵;3-燃油滤清器;4-燃油压力调节器;5-燃油脉动衰减器;6-电子控制单元;7-分电器;8-喷油嘴;9-冷起动喷油嘴;10-节气门;11-节气门开关门;12-空气流量计;13-氧传感器;14-热敏开关;15-水温传感器;16-辅助空气阀;17-曲轴位置传感器;18-主继电器;19-燃油泵继电器在图11中,电子控制单元作为电控发动机的核心部分,由一8位/16位单片微机、集成电路和相关电子元件组成,英文表示为Electric control unit简称ECU。
其作用是接收各种传感器送来的信息,以它们进行运算、处理、判断后再发出指令信号,经输出电路进行功率放大后驱动想应的执行单元,从而实现对发动机的各种工况的控制。
这里提级的ECU是各种控制单元的统称,ECM/PCM 则是发机控制模组或动力控制模组的缩写,是包含于ECU范围之内的。
2、BOSCH MOTRONIC1.3电路分析汽车电子控制单元(ECU),不论是BOSCH的MOTRONIC,福特的EEC IV、V,通用的P4、P6等,其最终的目的只有一个,让发动机工作的更出色,表现为动力更强劲,噪声小,污染低。
这是针对发动机系统而言,其他系统也是一样,每个系统都有自己的目标,这就好像是电视机一样,世界各国生产的电视机,无论是哪个厂家的,都是要以接收电视节目为目的。
喷油器电路检修对汽车平稳运行和低排放的严格要求使得每一个工作循环都需要提供完全精确的混合气配制。
喷射的燃油量必须精确计量以匹配吸入的空气量,因此,每个气缸都配有一个电磁喷油器。
喷油器由发动机ECU控制,在准确的时间点将精确的燃油量直接喷向气缸进气门。
这样大大避免了沿进气管壁的凝结现象。
多点喷射系统的喷油器安装在各缸进气歧管或汽缸盖上的各缸进气道处。
一、喷油器组成与工作原理1.喷油器的分类按喷油口的结构不同,喷油器可分为轴针式和孔式两种,如图1所示为轴针式喷油器结构原理图。
目前主要采用球阀式喷油器。
按喷油器电磁线圈阻值大小的不同,喷油器可分为低阻型(1-3 Ω)和高阻型(13-18 Ω)两种。
图1 轴针式喷油器结构原理图2.喷油器的结构及工作原理喷油器主要由滤网、线束连接器、电磁线圈、回位弹簧、衔铁和针阀等组成,针阀与衔铁制成一体。
燃油供给管路中的滤网防止污物进入喷油器,同时,两个O形圈分别对油轨和进气歧管与喷油器连接处进行密封。
线圈中不通电时,弹簧和燃油压力将针阀紧压在阀座上,使燃油轨道与进气歧管分隔开来。
当喷油器电磁阀绕组通电时,线圈即产生电磁场。
电磁场使衔铁升起,针阀随之离开阀座,燃油从喷油器喷出。
系统压力和喷油嘴量孔开度是单位时间内喷油量的决定因素。
触发电流中止,针阀立即关闭。
喷油器通常采用顺序燃油喷射,即曲轴每转两圈,各缸的喷油器按照发动机的点火顺序,依次在最合适的曲轴转角位置进行燃油喷射。
发动机的喷油量通过电控单元控制喷油器的通电时间(喷油脉冲宽度)来确定。
发动机电脑根据发动机运转工况及各种影响因素进行计算,最后确定喷油器通电时间。
二、喷油器的检测使发动机转速达到2500r/min以上.听喷油器的工作声音.发动机工作时用手指或听诊器(触杆式)接触喷油器,通过声音来判断喷油器是否动作。
1.喷油器的电阻检查拨开喷油器的导线连接器,用万用表欧姆挡测量喷油器上两个接线端子间的电阻,阻值应为12~17Ω,如果阻值不符,则应更换喷油器。
2. 喷油器及其控制电路的检修喷油器性能的好坏对发动机工作性能影响很大,下面就讲喷油器及其控制电路的检修。
1) 喷油器的检查首先应对喷油器的工作状况进行检查,即在发动机运转时,用手触试或用听诊器检查喷油器针阀开闭时的振动声响,如果感觉无振动或听不到声响,说明喷油器是或其电路有故障。
然后,再对喷油器的电阻值进行检查。
拔下喷油器的连接器,再用万用表欧姆挡测量喷油器电磁线圈的电阻值。
一般来说,低阻抗型喷油器线圈的电阻值约为2~3 Ω,高阻抗型喷油器线圈的电阻值约为13~16 Ω。
如不符,则应更换喷油器。
注意:低阻喷油器不能直接与蓄电池连接,必须串联一个8-l10的附加电阻。
所以若为低阻喷油器,还应检测串接电阻是否正常。
最后,应对喷油器的喷油质量进行检查,主要包括喷油量、雾化质量和泄漏的检查。
此项检查可在专用的喷油器试验台上进行。
也可用发动机上的电动油泵来检验喷油器,具体做法是:将需要检验喷油器拆下,用软管接于发动机的主油路中,并将喷油器置于一个量筒上;然后接通点火开关,但不要启动发动机,使燃油泵进入强制运转(可采用跨接检查插座的方法);如图7-75所示(见幻灯片18),,将喷油器正端连接线与蓄电池正极连接15 s(低阻值型的喷油器需用专用接线器或串入一个10Ω左右的电阻),用量筒测量喷油器每15 s 的喷油量,同时观察喷油器的喷油形状,每个喷油器应重复测量3次。
标准喷油量为55~70 mL/15 s(丰田系列);喷油量的允许误差应小于10 mL(丰田系列)。
如不符合标准,则应清洗或更换喷油器。
图7-75 喷油器喷油量的测量另外还要进行漏油量的检查。
在进行喷油量的检测后,脱开喷油器和蓄电池的连接,检查喷油器喷嘴处有无漏油,要求每分钟喷油器的泄漏量应少于一滴为正常,否则应更换喷油器。
2)喷油器控制电路的检查喷油器控制电路一般均由点火开关直接或通过继电器间接提供电源,再由ECU控制喷油器的搭铁回路。
其检查内容与方法如下:(1) 检测喷油器电源供给电路。
电喷发动机燃油泵电路与喷油器电路控制原理电喷发动机是一种现代化的燃油喷射系统,它能够提高发动机的燃烧效率、降低排放,并且具有较高的可调性和适应性。
其中,燃油泵电路与喷油器电路是电喷发动机中至关重要的部分,控制着燃油的供给和喷射过程。
本文将深入探讨电喷发动机燃油泵电路与喷油器电路的控制原理,以及其在发动机工作中的作用。
一、燃油泵电路的控制原理电喷发动机的燃油泵电路主要用于控制燃油泵的工作,确保燃油按照规定的压力供给给喷油器。
该电路由电源、电喷控制器、燃油泵和相关传感器组成。
1. 电喷控制器电喷控制器是燃油泵电路的核心部件,它通过读取传感器信号并根据预设的工作模式进行计算,从而控制燃油泵的开关。
电喷控制器根据发动机的工况和需求,调节燃油泵的工作状态,以保证燃油的稳定供给。
2. 传感器燃油泵电路中常用的传感器有转速传感器和压力传感器。
转速传感器用于检测发动机的转速,并将转速信号传输给电喷控制器。
压力传感器则用于测量燃油的压力,以便电喷控制器根据需求控制燃油泵的输出压力。
3. 燃油泵燃油泵是燃油泵电路中最关键的组件,它负责将燃油从油箱中抽取并供给给喷油器。
燃油泵的工作通过电喷控制器的控制信号来实现,当电喷控制器发出启动信号时,燃油泵会开始工作,并将燃油送入喷油器。
二、喷油器电路的控制原理喷油器电路是控制喷油器工作的电路,其作用是将燃油喷射到发动机的气缸中,以实现燃烧。
喷油器电路由电源、电喷控制器、喷油器和相关传感器组成。
1. 电喷控制器喷油器电路中的电喷控制器起到关键的作用,它通过读取传感器信号,并按照计算结果发送控制信号给喷油器。
电喷控制器根据发动机的工况和需求来控制喷油器的喷油量和喷油时机,从而保证燃油的有效喷射。
2. 传感器喷油器电路中常用的传感器有进气温度传感器、进气压力传感器、曲轴传感器等。
这些传感器的作用是向电喷控制器提供发动机工作的相关参数,以便电喷控制器根据实时数据进行喷油控制。
3. 喷油器喷油器是喷油器电路中最重要的组成部分,它负责将燃油喷射到发动机的气缸中。
电喷发动机燃油泵电路与喷油器电路控制原理电喷发动机是现代汽车中常见的燃油供给系统,其燃油泵电路与喷油器电路的控制原理是实现高效燃烧和降低尾气回收的关键。
本文将详细介绍电喷发动机燃油泵电路与喷油器电路的控制原理。
一、燃油泵电路控制原理1.1 燃油泵的作用与结构燃油泵的主要作用是将汽车油箱中的燃油送至发动机燃烧室,以提供燃料供给。
燃油泵一般由电机、机械泵和控制单元组成。
其中,电机驱动机械泵,机械泵通过真空产生负压,将燃油从油箱吸出,并向发动机供给。
1.2 燃油泵电路的基本原理燃油泵电路的基本原理是通过控制电磁阀的开启与关闭,实现燃油泵的工作和停止。
电喷发动机的电控单元通过传感器获取发动机工作状态和驾驶员行为的信息,并根据这些信息来控制燃油泵的工作。
通常情况下,当发动机启动、工作或驾驶员踩油门时,电控单元会输出一个控制信号,使电磁阀闭合,电磁阀的闭合将电流导通至燃油泵电机,从而使燃油泵开始供油。
相反,当发动机停止工作或驾驶员松开油门时,电控单元输出的信号使电磁阀断开,电流无法通过电磁阀流向燃油泵电机,从而停止供油。
1.3 燃油泵电路的保护措施由于燃油泵在工作时需要不断地吸取并供应燃油,过长时间工作会导致燃油泵过热,甚至损坏。
为了保护燃油泵,电喷发动机的电控单元通常会设置一个时间限制,在超过一定工作时间后,电控单元将关闭电磁阀,停止供电给燃油泵,以确保其正常使用寿命。
二、喷油器电路控制原理2.1 喷油器的作用与结构喷油器主要负责将由燃油泵供给的燃油喷射至发动机燃烧室内。
喷油器的结构通常包括电磁阀、喷油嘴和喷油嘴清洗器。
电磁阀作为喷油器的控制元件,通过控制喷油嘴的开启和关闭来控制燃油的喷射。
2.2 喷油器电路的基本原理喷油器电路的基本原理是通过控制电磁阀的开启和关闭来控制喷油器的工作状态。
当电喷发动机启动或工作时,电控单元会输出一个开启信号,使电磁阀闭合。
电磁阀的闭合将电流导通至喷油器,电流的通过激活喷油器的电磁阀,从而使喷油器喷出燃油。
一款提高喷油器喷射品质的驱动电路提高喷油器喷射品质的驱动电路喷油器是发动机燃油系统中不可或缺的一个零部件。
其作用是将燃油喷射到发动机的气缸中,参与燃烧反应。
如何提高喷油器的喷射品质,是发动机技术研究的焦点之一。
在喷油器的驱动电路方面,设计出稳定、精准、高速的电路,能够有效改善喷油器的喷射品质。
一、提高电源稳定性首先,在喷油器的驱动电路中,电源的稳定性是至关重要的。
电源的工作电压和电流稳定性直接影响到喷油器的喷射量和精度。
因此,在设计驱动电路时,应该选用稳定的电源。
二、控制电路的设计其次,在驱动喷油器的控制电路中,应该充分考虑高速、稳定、准确的特性。
通过对控制电路的优化,能够充分发挥喷油器的性能,使其达到最佳工作状态。
具体设计上,应该采用高速、大电流的场效应晶体管或功率放大器等元件,充分增强电路的驱动能力,从而实现更好的喷射品质。
三、信号滤波设计喷油器的驱动信号是在一定频率下高速切换的。
受电磁干扰等因素的影响,信号可能会出现噪声或者抖动等情况,从而使喷油器的喷射品质受到影响。
为了防止这种情况的发生,需要在信号上添加一些滤波电路,对信号进行滤波处理。
具体来说,可以采用低通滤波器等电路,有效减少干扰和抖动,改善喷油器的喷射质量。
四、失火控制设计如果喷油器在工作时失火,将直接影响发动机的性能和正常运作。
为了防止这种情况的发生,应在设计驱动电路时,加入失火控制电路。
一旦检测到喷油失火,控制电路就会自动切断供电,从而保护发动机的正常运转。
总之,喷油器的驱动电路是发动机燃油系统中的重要部分。
很多因素都会影响到喷油器的喷射品质。
因此,在设计喷油器驱动电路时,需要充分考虑到电源稳定性、控制电路的精准性和失火控制等因素,从而设计出更加稳定、精准、高速的电路,为发动机性能的提升提供有力保障。
五、提高工作效率喷油器驱动电路的工作效率直接关系到燃油供应的效率和功率输出。
因此,在设计电路的时候,应该精心选择和搭配各种元器件,达到尽可能高的工作效率,并且尽量减少能量损耗和热量消耗。
汽车喷油器电路的工作原理
汽车喷油器电路的工作原理是指在汽车发动机燃烧过程中,喷油器的电路是如何进行控制的。
汽车喷油器电路是由车载电脑控制的,它根据发动机的工况,实时控制喷油器的喷油时间和喷油量,确保发动机正常运转。
汽车喷油器电路主要由以下几个部分组成:传感器、车载电脑、驱动电路和喷油器。
首先,传感器负责感知发动机的工况信息,例如氧气传感器检测发动机排放的氧气含量,进气温度传感器检测进气口温度等。
这些信息被传输到车载电脑中,作为控制喷油器的依据。
其次,车载电脑根据传感器所得到的信息,计算出喷油器需要喷油的时间和喷油量。
然后,它会向驱动电路发送信号,控制喷油器的开闭时间,让喷油器按照正确的方式喷出燃油。
最后,喷油器是汽车发动机燃油系统中的重要组成部分,它负责将燃油喷入发动机燃烧室,产生燃烧反应。
当车载电脑向驱动电路发送信号时,驱动电路会控制喷油器的电磁阀开启和关闭,使喷油器按照正确的时间和量喷出燃油,确保发动机正常运转。
因此,汽车喷油器电路的工作原理是通过传感器感知发动机的工况信息,车载电脑计算喷油量和时间,驱动电路控制喷油器的电磁阀实现喷油。
这一过程的顺畅与否,直接影响着发动机的运转效果。
- 1 -。