比较器和非正弦波发生电路
- 格式:pdf
- 大小:383.10 KB
- 文档页数:3
电压比较器电路。
电压比较器是比较两个电压和开关输出或高或低的状态,取决于电压较高的电路。
一个基于运放电压比较器上显示。
图1显示了一个电压比较器的反相模式图显示了在非反相模式下的电压比较。
电压比较器非反相比较在非反相比较器的参考电压施加到反相输入电压进行比较适用于非反相输入。
每当进行比较的电压(Vin)以上的参考电压进入运放的输出摆幅积极饱和度(V+),和副反之亦然。
实际上发生了什么是VIN和Vref(VIN-VREF)之间的差异,将是一个积极的价值和由运放放大到无穷大。
由于没有反馈电阻Rf,运放是在开环模式,所以电压增益(AV)将接近无穷。
+所以最大的可能值,即输出电压摆幅,V。
请记住公式AV=1+(Rf/R1)。
当VIN低于VREF,反向发生。
反相比较在相比较的情况下,参考电压施加到非反相输入和电压进行比较适用于反相输入。
每当输入电压(Vin)高于VREF,运放的输出摆幅负饱和。
倒在这里,两个电压(VIN-VREF)之间的差异和由运放放大到无穷大。
记住公式AV=-Rf/R1。
在反相模式下的电压增益的计算公式是AV=-Rf/R1.Since没有反馈电阻,增益将接近无穷,输出电压将尽可能即负,V-。
实际电压比较器电路一种实用的非基于UA741运放的反相比较器如下所示。
这里使用R1和R2组成的分压器网络设置参考电压。
该方程是VREF=(五+/(R1+R2)的)×R2的。
代入这个方程电路图值,VREF=6V。
当VIN高于6V,输出摆幅?+12V直流,反之亦然。
从A+/-12V 直流双电源供电电路。
电压比较器的使用741一些其他的运放,你可能会感兴趣的相关电路1求和放大器:总结放大器可以用来找到一个信号给定数量的代数和。
2。
集成使用运放:对于一个集成的电路,输出信号将输入信号的积分。
例如,一个集成的正弦波使余弦波,方波一体化为三角波等。
3。
反相放大器:在一个反相放大器,输出信号将输入信号的倒版,是由某些因素放大。
十六 电压比较电路一、电压比较器的基本概念:电压比较器是对输入信号进行鉴幅与比较的电路,是组成非正弦波发生电路的基本单元电路,在测量和控制中有着相当广泛的应用。
电压比较器的功能是对两个输入电压的大小进行比较,并根据比较结果输出高、低两个电平。
此外,由于高电平相当于逻辑“1”,低电平相当逻辑“0”,所以比较器可作为摸拟与数字电路之间的接口电路.由于比较器输出只有两个状态,因此,用作比较器的运放将工作在开环或正反馈的非线性状态。
电压比较器的电路符号二、电压比较器的基本特性:1. 输出 高电平(U oH )和低电平(U oL )用运放构成的比较器,其输出的高电平U OH 和低电平U OL 可分别接近于正电源电压(U CC )和负电源电压(-U CC )。
2. 鉴别灵敏度理想的电压比较器,在高、低电平转换的门限U T 处具有阶跃的传输特性。
这就要求运放:实际运放的A Ud 不为无穷大。
在U T 附近存在着一个比较的不灵敏区。
在该区域内输出既非U OH ,也非U OL ,故无法对输入电平大小进行判别。
显然,A Ud 越大,则不灵敏区就越小,称比较器的鉴别灵敏度越高。
3.转换速度作为比较器的另一个重要特性就是转换速度,即比较器输出状态发生转换所需要的时间。
ud A =∞u u EEu -u +通常要求转换时间尽可能短,以便实现高速比较。
为此可对比较器施加正反馈,以提高转换速度。
理想集成运放非线性应用时的特点非线性应用的条件:运放开环或施加正反馈。
非线性应用特点:反相电压比较器 电路如图所示, 输入信号U i 加在反相端,参考电压U r 加在同相端。
i < u r , u o =u OH i > u r , u o =u OL当该电路的参考电压为零时,则为反相过零比较器。
0o CC oL o CC oHi i u u u U U u u u U U +--+-+==>≈-=<≈+=同相电压比较器电路如图所示,输入信号U i加在同相端,参考电压U r 加在反相端。
第8章 波形的发生器和信号的转换8.1 复习笔记一、正弦波振荡电路1.产生正弦波振荡的条件(1)振幅平衡条件:(2)相位平衡条件:(3)起振条件:2.正弦波振荡电路的组成(1)放大电路:保证电路有从起振到动态平衡的过程,使电路获得一定幅值的输出量,实现能量的控制。
(2)选频网络:确定电路的振荡频率,使电路产生单一频率的振荡,即保证电路产生正弦波振荡。
(3)正反馈网络:引入正反馈,使放大电路的输入信号等于反馈信号。
(4)稳幅环节:也是非线性环节,使输出信号幅值稳定。
在不少实用电路中,常将选频网络和正反馈网络“合二而一”,且对于分立元件放大电路,也不再另加稳幅环节,而依靠晶体管特性的非线性来起到稳幅作用。
3.判断电路能否震荡的方法(1)观察电路是否包含了放大电路、选频网络、正反馈网络和稳幅环节四个组成部分。
(2)判断电路是否有合适的静态工作点且动态信号是否能够输入、输出和放大。
(3)判断电路是否满足振荡的相位条件、幅值条件。
3.RC 正弦波振荡电路(1)振荡条件:反馈系数,电压放大倍数。
(2)起振条件:,即。
12f R R (3)振荡频率:。
(4)典型的RC 正弦波振荡电路:文氏电桥正弦波振荡电路,如图8.1所示。
图8.1 RC 文氏电桥正弦波振荡电路4.LC正弦波振荡电路(1)谐振时,回路等效阻抗为纯阻性,阻值最大,值为:其中,为品质因数;为谐振频率。
(2)如图8.2所示,LC并联谐振回路等效阻抗为:图8.2 LC 并联网络(3)变压器反馈式振荡电路的振荡频率为:(4)三点式LC 正弦波振荡器(1MHz 以上频率),典型电路如图8.3所示。
(a)电感三点式振荡器(b)电容三点式振荡器图8.3 典型三点式LC正弦波振荡器①组成原则:与晶体管发射极相联的电抗是相反性质的,不与发射极相联的另一电抗是相同性质的。
②振荡频率:计算振荡频率时,只需分离出LC总回路求谐振频率即可。
电容式:电感式:5.石英晶体振荡器(1)石英晶体等效电路:R、C、L串联后与Co并联,如图8.4所示。
快来看看电压比较器的电路构成、原理框图及引脚功
能
首先,电压比较器它可用作模拟电路和数字电路的接口,其次还可以用作波形产生和变换电路等。
利用简单电压比较器可将正弦波变为同频率的方波或矩形波。
电压比较器是对输入信号进行鉴别与比较的电路,是组成非正弦波发生电路的基本单元电路。
常用的电压比较器有单限比较器、滞回比较器、窗口比较器、三态电压比较器等。
电压比较器可以看作是放大倍数接近“无穷大”的运算放大器。
电压比较器的功能:比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系):当”+”输入端电压高于”-”输入端时,电压比较器输出为高电平;当”+”输入端电压低于”-”输入端时,电压比较器输出为低电平;可工作在线性工作区和非线性工作区。
工作在线性工作区时特点是虚短,虚断;工作在非线性工作区时特点是跳变,虚断;由于比较器的输出只有低电平和高电平两种状态,所以其中的集成运放常工作在非线性区。
从电路结构上看,运放常处于开环状态,又是为了使比较器输出状态的转换更加快速,以提高响应速度,一般在电路中接入正反馈。
电压比较器的原理框图及其引脚功能
电压比较器内部含输入级、中间放大器和输出级电路,我们需要掌握的是输入端和输出端之间的关系,由此分析电路原理和找到故障检测方法。
如前述,运算放大器开环应用时,即为(不太精确的)电压比较器。
但放大器的比较特性并不理想,专业的设计和专业的性能需要由专业器件来保障,在应用到电压比较器的场所,大多还是采用专用的电压比较器。
其中,集电极开。
第6章习题答案1. 概念题:(1)由运放组成的负反馈电路一般都引入深度负反馈,电路均可利用虚短路和虚断路的概念来求解其运算关系。
(2)反相比例运算电路的输入阻抗小,同相比例运算电路的输入阻抗大,但会引入了共模干扰。
(3)如果要用单个运放实现:A u=-10的放大电路,应选用 A 运算电路;将正弦波信号移相+90O,应选用 D 运算电路;对正弦波信号进行二倍频,应选用 F 运算电路;将某信号叠加上一个直流量,应选用 E 运算电路;将方波信号转换成三角波信号,应选用 C 运算电路;将方波电压转换成尖顶波信号,应选用 D 运算电路。
A. 反相比例B. 同相比例C. 积分D. 微分E. 加法F. 乘方(4)已知输入信号幅值为1mV,频率为10kHz~12kHz,信号中有较大的干扰,应设置前置放大电路及带通滤波电路进行预处理。
(5)在隔离放大器的输入端和输出端之间加100V的电压会击穿放大器吗?(不会)加1000V的交流电压呢?(不会)(6)有源滤波器适合于电源滤波吗?(不适用)这是因为有源滤波器不能通过太大的电流或太高的电压。
(7)正弦波发生电路中,输出端的晶体管一定工作在放大区吗?(一定)矩形波发生电路中,输出端的晶体管一定工作在放大区吗?(不一定)(8)作为比较器应用的运放,运放一般都工作在非线性区,施密特比较器中引入了正反馈,和基本比较器相比,施密特比较器有速度快和抗干扰性强的特点。
(9)正弦波发生电路的平衡条件与放大器自激的平衡条件不同,是因为反馈耦合端的极性不同,RC正弦波振荡器频率不可能太高,其原因是在高频时晶体管元件的结电容会起作用。
(10)非正弦波发生器离不开比较器和延时两个环节。
(11)当信号频率等于石英晶体的串联谐振或并联谐振频率时,石英晶体呈阻性;当信号频率在石英晶体的串联谐振频率和并联谐振频率之间时,石英晶体呈感性;其余情况下石英晶体呈容性。
(12)若需要1MHz以下的正弦波信号,一般可用 RC 振荡电路;若需要更高频率的正弦波,就要用 LC 振荡电路;若要求频率稳定度很高,则可用石英晶体振荡电路。
三种波形发生器电路
一、产品说明
三种波形发生器以集成运算放大器LM324为核心,分别与周围元件构成了电压比较器,积分电路及电压放大器,最终可以有选择性地输出矩形波、三角波和正弦波三种常见的函数波形,具有电路简单、波形形状典型、稳定的特点。
使用仪器设备对波形的测量方便、准确,是学会用仪器设备对电路进行测量与调试的一款实用型电路。
二、简单原理说明
1、由A1组成的电压比较器输出端(7脚)把输出信号经R3、R1反馈到输入端(5脚),形成正反馈电路。
A2的输出端(8脚)的输出信号经R2同样输入到A1的输入端,控制A1的工作状态,由于在A1的输出端接有双向稳压二极管VS进行限幅,所以TP1的波形为矩形波。
2、由A2、C1和相关元件组成的积分电路,对输入的矩形波进行积分运算,输出(TP2)三角波。
RP1可以改变积分电路的充放电时间,从而改变三角波的频率。
3、A2输出的三角波经R7、C2和R8、C3组成的高通滤波器滤除高频谐波,输出(TP3)正弦波。
4、当S4与不同的触点接通时,将给由A3及周围元件组成的电压放大器输入不同的波形,输出也就得到了不同的波形。
RP2可调节波形输出幅度,RP3和R9用于限制最大和最小输出波形幅度。
电路供电电压为直流±12V。