EMC测试及故障排除方法
- 格式:doc
- 大小:14.25 KB
- 文档页数:3
电路中的电磁兼容性(EMC)设计与测试在现代电子产品的设计与制造过程中,电磁兼容性(Electromagnetic Compatibility,简称EMC)是一个至关重要的因素。
EMC设计与测试旨在确保电子设备能够在电磁环境中正常运行并且不会对其他设备和系统造成干扰。
本文将重点介绍电路中的EMC设计与测试的关键要点。
一、什么是电磁兼容性(EMC)设计与测试电磁兼容性(EMC)是指电子设备在实际应用中与周围环境的电磁场相互作用时能够正常工作的能力。
正常工作包括两个方面,一是设备本身不会受到来自外部电磁场的干扰,二是设备自身产生的电磁干扰不会超出规定的范围,不会对其他设备和系统造成干扰。
EMC设计与测试就是为了确保电子设备在现实环境中能够满足上述要求。
EMC设计的关键在于避免或减小电磁干扰的产生,而EMC 测试则是验证设计的有效性和设备的兼容性。
通过EMC设计与测试,可以提高电子设备的性能和可靠性,降低设备故障率和维修成本。
二、EMC设计与测试的关键要点1. 设计阶段的EMC考虑在电子产品的设计阶段,应该考虑EMC设计的要求。
首先,需要了解产品的使用环境和电磁兼容性的相关标准。
其次,要合理规划电路板的布局和内部组件的排列,避免干扰源之间的相互影响。
另外,需要合理选择电磁屏蔽材料和滤波器,减少电磁辐射和敏感元器件的干扰。
2. 线路板布局与屏蔽设计线路板布局是EMC设计中的重要环节。
应该避免长线和大回路的存在,缩短信号线长度,合理规划地线和电源线的走向。
此外,还应注意信号线与电源线的交叉和平行布局,减少互相之间的干扰。
屏蔽设计是减小电磁辐射和电磁感应的重要手段。
通过采用合适的屏蔽材料,如金属壳体或导电涂层,并合理设置接地结构,可以有效地屏蔽和隔离电磁波,减小干扰。
3. 滤波器的选择与应用滤波器在EMC设计中起到了重要的作用。
电子设备通常需要使用电源滤波器和信号滤波器,以减少干扰源对电源和信号线的影响。
电源滤波器主要工作在电源输入端,用于滤除电源线上的高频噪声。
电源设计中的EMC问题与解决方法在电源设计过程中,电磁兼容性(Electromagnetic Compatibility,简称EMC)问题是一个需要被高度关注的重要方面。
EMC问题的存在可能导致电子设备之间的相互干扰,从而影响系统的正常工作。
因此,深入了解电源设计中的EMC问题并寻求解决方法,对于保证产品稳定性和可靠性具有重要意义。
首先,我们来了解一些常见的EMC问题。
电源设计中的EMC问题主要包括以下几个方面:1. 电源线干扰:电源线作为电源输入和输出的连接途径,可能成为传导干扰的通道。
当电源线上的高频噪声传导到其他部分时,会引起其他电子设备的干扰,影响其正常使用。
2. EMI辐射:电源设备在工作过程中会产生电磁辐射,如果辐射幅度过高,可能会对周围的其他设备和信号线路产生干扰,使其无法正常工作。
3. 地线干扰:地线是电路中的参考电位点,负责回流电流。
但如果地线的阻抗较大或者回流电流过大,可能会导致地线产生较大的共模干扰,进而影响整个系统的正常工作。
接下来,我们将介绍一些解决电源设计中EMC问题的方法:1. 合理的布局设计:在电源设计过程中,应注意合理的布局设计。
通过将不同电路板的布局位置安排合理,减小信号之间的干扰。
将高频和低频电路分开布局,采用屏蔽罩等措施对敏感电路进行隔离,以减少电磁辐射和传导干扰。
2. 使用滤波器:在电源设计中,适当选择并使用滤波器可以有效减小电源线上的高频噪声。
滤波器能够过滤掉不需要的高频干扰信号,提高电源线的电磁兼容性。
3. 优化接地设计:合理的地线设计对于解决地线干扰问题至关重要。
通过降低地线的阻抗并增加回流电流的路径,减小共模干扰的产生。
同时,合理选择接地点,如使用星型接地方式,可以减少单点接地带来的电磁干扰。
4. 选择合适的电源元件:在电源设计中,选择合适的电源元件也能够有效降低EMC问题。
例如,采用能够提供更好电源抗干扰能力的开关电源,选择低电磁辐射的磁性元件等。
can emc测试标准一、概述CAN是汽车电子网络系统中的一种通信协议,为了保证CAN网络系统的稳定性和安全性,需要进行相应的电磁兼容(EMC)测试。
本标准旨在为相关测试提供指导,确保测试结果的准确性和可靠性。
二、测试范围本标准适用于汽车CAN网络系统的EMC测试,包括但不限于电源线、CAN总线、车载网络等。
测试范围涵盖了电磁干扰(EMI)和电磁敏感度(EMS)两个方面。
三、测试标准1.电源线传导发射测试:测试电源线上传导的电磁干扰水平,确保不会对CAN网络系统造成干扰。
测试频率范围、测量方法和判据应符合相关标准。
2.辐射发射测试:测试车辆周围空间的电磁辐射水平,确保不会对周围环境造成干扰。
测试方法和判据应符合相关标准。
3.电磁敏感度测试:测试车辆内部电子设备的抗电磁干扰能力,确保CAN网络系统在受到电磁干扰时能够正常工作。
测试方法和判据应符合相关标准。
4.抗扰度测试:测试CAN网络系统在受到电磁干扰时的稳定性和可靠性,包括瞬态干扰、静电放电等。
测试方法和判据应符合相关标准。
四、测试方法1.测量设备:选用符合相关标准的测量设备,如频谱分析仪、信号发生器等。
2.测试环境:确保测试环境满足相关要求,如屏蔽、接地等。
3.测试步骤:按照相关标准和方法进行测试,记录数据并进行分析。
4.故障排除:针对测试中出现的问题,分析原因并进行相应的调整和改进。
五、报告与分析1.测试结果报告:将测试数据整理成报告,包括测试结果、异常情况及原因分析等。
2.结果分析:根据测试报告和分析结果,评估CAN网络系统的稳定性和安全性,提出改进意见和建议。
3.反馈与整改:将测试结果反馈给相关单位,督促其进行整改和优化,提高CAN网络系统的可靠性和稳定性。
总之,EMC测试是保证CAN网络系统安全稳定运行的重要手段之一。
本标准提供了相应的测试范围、标准和测试方法,旨在为相关单位提供指导和支持,确保汽车CAN网络系统的安全性和可靠性。
电路设计中的EMC问题与解决方法导言在电路设计与开发的过程中,电磁兼容性(Electromagnetic Compatibility,简称EMC)问题是一个必须重视的方面。
EMC问题的存在可能导致电子设备间的互相干扰,甚至造成设备的损坏。
因此,了解EMC问题的原因和解决方法对于电路设计师来说至关重要。
EMC问题的原因1. 电磁辐射(Electromagnetic Radiation):当电流在电路中流动时,会产生磁场,这个磁场会在空间中扩散并形成电磁波。
如果电磁波强度较高,就会造成电磁干扰,影响其他电子设备的正常工作。
2. 电磁感应(Electromagnetic Induction):当设备接收到外部电磁波时,其内部的电子元器件可能产生感应电流,从而引起设备的故障或异常。
3. 外部电压(External Voltages):在电路设计过程中,如果没有正确处理设备外部电源供电、地线引入等问题,外部电压可能会导致电磁兼容性问题。
EMC问题的解决方法1. 接地设计(Grounding Design):合理的接地设计能够有效降低电路的电磁辐射以及电磁感应。
在接地设计中,需要注意将设备的接地点与电源的接地点相连,以保证信号的返回路径更加稳定。
2. 滤波设计(Filtering Design):通过在电路中加入滤波电路,可以降低电磁干扰的频率范围,使设备对外界干扰的影响减小。
滤波器的选择和设计需要根据实际情况进行,合理选择滤波器的参数和频率范围。
3. 屏蔽设计(Shielding Design):通过在电路设计中添加屏蔽罩或屏蔽材料,可以阻挡或吸收外界的电磁波,减少电磁干扰。
在屏蔽设计中,需要注意材料的选择和屏蔽罩的结构设计,以提高屏蔽效果。
4. 引线布局(Routing Layout):电路引线的布局和走线方式也会对电磁兼容性产生影响。
合理布局电路引线,减小引线之间的交叉和谐振现象,可以有效减少电磁辐射和电磁感应。
emc测试及整改方法
EMC测试主要包括空间辐射、传导、功率辐射、磁场辐射、谐波、电压波动、静电、抗辐射、快速脉冲群、雷击、抗传导、工频磁场、电压跌落、低频传导骚扰等方面的测试。
EMC整改主要有以下方法:
1. 查找确认辐射源。
首先通过排除法、频谱分析仪频点搜索法、元件固有频率分析法等方法查找并确认辐射源。
排除法包括拔线法、分区工作排除法、低电压小电流的人体触摸法,区域屏蔽排除法等。
元件固有频率分析法则是通过对一些元件的固定频率及其倍频频率进行分析归类。
2. 滤波。
滤波一般分为电容滤波、RC滤波和LC滤波等,用于减少电磁干扰。
3. 吸收电磁波。
吸收电磁波方法有电路串联磁珠法、绕穿磁环法和贴吸波材料法。
需要注意的是,使用吸波材料时,要确保所吸收的电磁波频率在吸波材料的吸收范围内,否则可能无效。
4. 接地。
接地法一般分为单点接地法和多点接地法,可以有效地降低电磁干扰。
5. 屏蔽。
屏蔽法一般有加屏蔽罩屏蔽法、外壳屏蔽法和PCB走线布局屏蔽法,可以有效地阻止电磁波的传播。
请注意,不同的设备可能遇到的电磁干扰类型不同,整改方法也会有所不同,建议寻求专业人士的帮助进行整改。
单片机系统的EMC测试及故障排除的方法解析
所谓EMC就是:设备或系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。
EMC测试包括两大方面内容:对其向外界发送的电磁骚扰强度进行测试,以便确认是否符合有关标准规定的限制值要求;对其在规定电磁骚扰强度的电磁环境条件下进行敏感度测试,以便确认是否符合有关标准规定的抗扰度要求。
对于从事单片机应用系统设计的工程技术人员来说,掌握一定的EMC测试技术是十分必要的。
1 单片机系统EMC测试
(1)测试环境
为了保证测试结果的准确和可靠性,电磁兼容性测量对测试环境有较高的要求,测量场地有室外开阔场地、屏蔽室或电波暗室等。
(2)测试设备
电磁兼容测量设备分为两类:一类是电磁干扰测量设备,设备接上适当的传感器,就可以进行电磁干扰的测量;另一类是在电磁敏感度测量,设备模拟不同干扰源,通过适当的耦合/去耦网络、传感器或天线,施加于各类被测设备,用作敏感度或干扰度测量。
(3)测量方法
电磁兼容性测试依据标准的不同,有许多种测量方法,但归纳起来可分为4类;传导发射测试、辐射发射测试、传导敏感度(抗扰度)测试和辐射敏感度(抗扰度)测试。
(4)测试诊断步骤
(5)测试准备
①试验场地条件:EMC测试实验室为电波半暗室和屏蔽室。
前者用于辐射发射和辐射敏感测试,后者用于传导发射和传导敏感度测试。
②环境电平要求:传导和辐射的电磁环境电平最好远低于标准规定的极限值,一般使环境电平至少低于极限值6dB。
③试验桌。
EMC/EMI问题解决策略引言EMC(Electromagnetic Compatibility,电磁兼容性)和EMI(Electromagnetic Interference,电磁干扰)是现代电子设备设计和生产中常见的问题。
EMC指的是不同电子设备之间,以及设备与电磁环境之间互不干扰的能力;而EMI指的是电子设备对其周围电磁环境的干扰。
在电子设备频繁使用的现代社会,解决EMC/EMI问题至关重要。
本文将介绍一些常见的EMC/EMI问题解决策略,以帮助电子设备设计者和制造商解决这些问题。
问题识别与分析在解决EMC/EMI问题之前,首先需要对问题进行识别和分析。
以下是识别和分析EMC/EMI问题的一些常见方法:1.测试和测量:通过使用专业的EMC测试设备和测量仪器,对电子设备进行测试和测量,以确定是否存在EMC/EMI问题。
例如,使用频谱分析仪、信号发生器和射频扫描仪等设备,可以对电磁辐射和传导干扰进行测量和分析。
2.频谱分析:通过频谱分析,可以识别电子设备发出的电磁辐射信号的频率和幅度。
这有助于确定是否存在干扰源,并确定其频段和强度。
3.电磁场模拟软件:使用专业的电磁场模拟软件,如ANSYS、CST等,可以对电子设备的辐射和接收情况进行模拟和仿真。
这些软件可以帮助电子设备设计者预测和处理EMC/EMI问题。
4.故障排除:当电子设备出现EMC/EMI问题时,通过排除法逐步确定问题的来源。
可以通过逐个关闭或断开电子设备的部件,以确定是否是某个特定部件引起的问题。
解决策略一旦识别和分析了EMC/EMI问题,下一步就是采取适当的解决策略来解决这些问题。
以下是一些常见的EMC/EMI问题解决策略:1.电磁屏蔽:电磁屏蔽是减少或消除电子设备之间和设备与环境之间电磁干扰的一种常用方法。
可以使用金属外壳、金属屏蔽罩等材料来包裹电子设备,以阻隔电磁干扰。
此外,还可以采用地线、屏蔽接地等技术手段,有效地抑制电磁干扰。
通信电子设备的EMC测试在现代社会,通信电子设备越来越不可缺少,无论是个人使用的手机、电脑,还是工业领域的控制系统、通讯设备,都需要进行EMC测试,以确保它们能够在不发生干扰的情况下正常工作。
本文将介绍通信电子设备的EMC测试的基本原理、测试方法和注意事项。
一、EMC测试的基本原理EMC(Electromagnetic Compatibility)指电磁兼容性,也就是指不同设备之间或同一设备内部不发生电磁干扰,从而保证设备能够正常工作。
在通信电子设备的EMC测试中,主要涉及到三个方面的性能测试,包括辐射(Radiated),传导(Conducted)和静电放电(ESD)。
其中辐射测试主要是针对设备发射出去的电磁波;传导测试主要是检测设备通过电源或其他连接线传递出去的电磁波;静电放电测试是针对设备在操作中产生的静电放电进行的测试。
二、EMC测试的方法一般情况下,EMC测试分为两种方法,分别是发射测量和抗扰度测量。
发射测量是检测设备发射的电磁场强度,主要是通过天线接收电磁场的数据并分析得出设备的辐射随时间变化的图像。
抗扰度测量则是检测设备对外部电磁场的抗干扰能力。
在检测时,用刺激信号产生电磁场,然后观察被测设备是否会出现异常状况或故障。
三、EMC测试的注意事项在进行EMC测试时,需要注意以下几点:1.选用合适的测试设备和测试方法,尽量保证测试的精度和准确度。
2.预先测试设备是否符合测试范围和要求,如是否符合规格、是否与测试设备兼容等。
3.进行EMC测试时,应尽量在低电磁干扰的环境中进行,以防止干扰对测试结果的影响。
4.进行EMC测试时,应尽量排除外部因素的干扰,如大气电场、电磁辐射等。
5.进行静电放电测试时,应尽量避免人体接触被测设备,以保证测试的准确性。
总之,EMC测试是保障通信电子设备正常工作的必要手段,它的准确性和精度对于设备的性能和使用寿命有至关重要的影响。
因此,在进行EMC测试时,需要注意以上几点事项,以确保测试的可靠性和有效性。
EMC电磁兼容测试常见故障及排除技术总结什么是电磁兼容之测试故障?有什么解决办法?对于从事EMC的工程师,在日常工作中经常会遇到瓶颈,而解决这样的问题需要很多时间和精力。
比如说,EMC 测试包括两大方面内容:对其向外界发送的电磁骚扰强度进行测试,以便确认是否符合有关标准规定的限制值要求;对其在规定电磁骚扰强度的电磁环境条件下进行敏感度测试,以便确认是否符合有关标准规定的抗扰度要求。
对于从事单片机应用系统设计的工程技术人员来说,掌握一定的EMC测试技术是十分必要的。
1、EMC测试
(1)测试环境
为了保证测试结果的准确和可靠性,电磁兼容性测量对测试环境有较高的要求,测量场地有室外开阔场地、屏蔽室或电波暗室等。
(2)测试设备
电磁兼容测量设备分为两类:一类是电磁干扰测量设备,设备接上适当的传感器,就可以进行电磁干扰的测量;另一类是在电磁敏感度测量,设备模拟不同干扰源,通过适当的耦合/去耦网络、传感器或天线,施加于各类被测设备,用作敏感度或干扰度测量。
(3)测量方法
电磁兼容性测试依据标准的不同,有许多种测量方法,但归纳起来可分为4类;传导发射测试、辐射发射测试、传导敏感度(抗扰度)测试和辐射敏感度(抗扰度)测试。
(4)测试准备
①试验场地条件:EMC测试实验室为电波半暗室和屏蔽室。
前者用于辐射发射和辐射敏感测试,后者用于传导发射和传导敏感度测试。
②环境电平要求:传导和辐射的电磁环境电平最好远低于标准规定的极限值,一般使环境电平至少低于极限值6dB。
③试验桌。
④测量设备和被测设备的隔离。
⑤敏感性判别准则:一般由被测方提供,并实话监视和判别,以测量和观察的方式确定性能降低的程度。
CERTIFICATION & MARKS 52SAFETY & EMC No.1 2020WORK NOTEEMC 测试中EUT 启动异常问题及对策1 常见问题被测样品(EUT)按照GJB 151B-2013《军用设备和分系统电磁发射和敏感度要求与测量》进行电磁兼容(EMC)检测时,经常碰到的问题是:EUT 与供电电源直接连接时,能正常启动工作;但连接EMC 测量设备后,EUT 无法启动,测量无法正常进行。
检查EMC 测量系统,连接正确,其电压、电流等额定参数也能满足EUT 正常工作需求。
该现象通常被认为是测量系统内阻过大引起,为保证实验正常进行,倾向于采购更大电流容量、更低阻抗的各类耦合网络。
这样既增加了EMC 测量设备成本,也影响试验的如期进行。
2 原因分析图1为GJB 151B-2013的通用试验布置,为确保各试验项目的顺利实施,试验一般在电波暗室内进行。
为保证暗室的屏蔽性能,外部电源需经过暗室高质量电源滤波器才能进入暗室。
若EUT 供电不是220/380 VAC,50 Hz 时(如120 V/400 Hz、27 VDC 等),暗室外还需为EUT 单独配置稳压电源。
因此,实验室整个供电配置为:交流市网电源经稳压电源稳压后,通过暗室滤波器进入暗室内,再由线性阻抗稳定网络(LISN)给EUT 供电。
在图1的供电回路中,暗室滤波器和LISN 都内置了大电感量电感线圈。
若EUT 内置了开关电源型二次电源,电源启动时,需要远大于正常工作电流的瞬态电流,而供电回路中的滤波电感抑制了该瞬态电流的幅度,当该抑制过度时,EUT 内置电源可能无法正常启动。
同样,EUT 内置大功率电机时,电机的启动电流是正常工作电流的5~10倍,也可能受到供电回路滤波电感的抑制,使得电机无法正常启动。
EUT 由非市网的低压交流(如120 V/400 Hz)或低压直流(27 VDC)供电时,其正常工作电流已经很大,再加上启动时瞬态电流的放大效应,需要的启动瞬态电流更大,更容易出现EUT 测试时的启动瞬态电流偏低,无法正常启动的问题。
汽车电磁兼容性(EMC)测试汽车电磁兼容性(Electromagnetic Compatibility,简称EMC)测试是保证汽车及其相关设备在电磁环境中稳定运行的重要环节。
由于汽车内部装置的不断增加和市区电磁污染的严重程度,汽车电磁兼容性测试变得尤为重要。
本文将介绍汽车电磁兼容性测试的背景、目的、方法以及常见的测试标准。
背景随着现代汽车电子系统的快速发展,汽车内部出现的电磁干扰现象也越来越普遍。
这些电磁干扰源可能来自引擎、点火系统、充电系统、通信设备等。
这些干扰源可能会影响车辆内部的电子设备的正常工作,甚至导致车辆故障。
此外,汽车作为一种移动设备,还需要考虑周围环境的电磁干扰,如无线电通信设备、高压输电线路等对车辆的干扰。
汽车电磁兼容性测试的目的就在于提供一种方法来评估汽车及其相关设备在电磁环境中的稳定性。
目的汽车电磁兼容性测试的目的是确保车辆及其电子设备在电磁环境中的稳定工作。
该测试的主要目标包括:1.评估车辆及其相关设备的抗扰度:通过检测车辆在电磁干扰环境下的性能,确定其是否能够正常工作。
2.评估车辆对周围环境的电磁干扰:通过检测车辆对无线电通信设备、高压输电线路等外部干扰源的抗干扰性能,确保不会对周围环境造成干扰。
3.遵守相关标准和法规:汽车电磁兼容性测试需要符合各国家和地区的相关标准和法规,确保车辆在特定的电磁环境下能够满足要求。
方法汽车电磁兼容性测试通常包括以下步骤:1.测试计划制定:在进行测试之前,需要制定详细的测试计划,包括测试的范围、测试环境、测试方法和测试设备等。
测试计划应该根据相关标准和法规制定,确保测试的准确性和可靠性。
2.静态测试:静态测试主要是对车辆及其相关设备进行电磁辐射测试和电磁干扰抑制测试。
电磁辐射测试主要是检测车辆及其相关设备在工作时所产生的电磁辐射水平,确保其在规定的范围内。
电磁干扰抑制测试主要是检测车辆及其相关设备对外部电磁干扰的抵抗能力。
3.动态测试:动态测试主要是对车辆及其相关设备进行传导干扰测试和辐射干扰测试。
电磁兼容emc原理设计与故障排除实例详解电磁兼容(EMC)是指电子设备在电磁环境下的能力,即在此环境中,设备应能够正常工作且不会对其它设备及环境造成有害的电磁干扰。
设计方面,EMC原理设计需要考虑以下几个方面:1.接地:要正确地接地,将所有金属部件接地,建立一个良好的接地系统。
接地线的截面面积越大,阻抗越小,抗干扰能力越强。
2.常模和差模传输线:差模信号是指从两个平行线传输的信号,它们的电位相等,而与地电位之间有一定的差别。
常模信号是指从一个信号线到地的信号。
在传输线长过渡区域,尽可能的减小差模信号,增加常模信号阻抗,以提高电磁干扰环境下的抗干扰能力。
3.滤波器:对于较直流的信号,通过使用滤波器来阻止它们进入电路板。
滤波器能够从电源线上滤除噪音,进而保证设备工作的稳定性。
4.屏蔽:屏蔽能够减少电磁辐射和抑制电磁敏感性,从而实现电磁兼容。
可以通过屏蔽层、RF条板、地板和隔离屏进行屏蔽。
在实施时,可能会遇到以下问题:1.射频信号的跳变导致传输链路的故障。
2.电源线过长或线路质量不佳而导致的电压波动和电流跳变。
3.设备设计不当导致的电子设备故障和噪声干扰。
在排除故障时,可以考虑以下几个方面:1.检查设备是否有接地错误,确认所有金属部分是否正确接地。
2.检查是否有电源线的过长或线路质量不佳现象。
可以通过改进线路质量或减少线路长度来解决这个问题。
3.检查电子设备的设计是否正确,是否有滤波器和屏蔽器,并且确认所有模拟和数字信号线路的正确性。
4.在检查设备整合前,检查设备是否有电磁干扰原因,并且逐个排除可能的原因。
需要使用恰当的测试设备,如频谱分析器等。
emc测试报告一、引言电磁兼容性(EMC)是现代电子产品设计中需要考虑的重要因素之一。
EMC测试报告对于产品的合规性评估和市场准入至关重要。
本文将从测试方法、结果分析以及解决方案等方面探讨EMC 测试报告的重要性和影响。
二、测试方法EMC测试是通过模拟真实环境中可能存在的电磁干扰场景来检验产品的电磁兼容性。
主要分为辐射测试和传导测试两种方式。
1. 辐射测试辐射测试用于评估产品在发射电磁辐射时的电磁泄漏情况。
常见的测试方法包括开路测试、近场测试和远场测试。
开路测试通过检测设备对外部电源线的非意图辐射水平来评估其电磁辐射情况。
近场测试则通过在近距离内测量产生辐射的设备来判断其是否符合规定的辐射限值。
而远场测试则是将设备放置在测量室内,再通过测量室外的电磁场强度来评估设备的电磁辐射情况。
2. 传导测试传导测试用于评估设备在受到外部电磁场干扰时会不会引发故障。
常见的传导测试方法包括电源线传导和信号线传导测试。
电源线传导测试主要是通过监测设备在特定电磁干扰环境下,对电源线造成的电磁干扰情况进行评估。
信号线传导测试则是通过模拟设备受到其他信号线干扰的情况,来判断设备是否具备足够的抗干扰能力。
三、结果分析EMC测试报告中,测试结果是其中最重要的部分。
通过对各项测试指标的分析,可以评估产品是否满足国际标准和法规要求。
1. 辐射测试结果辐射测试结果表明产品在发射电磁辐射时的电磁泄漏程度。
测试报告会指明产品的辐射电磁场强度,以及其与国际标准要求的比较。
若产品的测试结果未超出规定的限值,则表明产品在该方面通过测试,具备较好的电磁兼容性能。
2. 传导测试结果传导测试结果则详细列出产品在受到外部电磁场干扰时的表现。
通过测试报告可以看出产品是否出现故障、异常或失效。
若产品能够在一定的电磁干扰环境下正常工作,且不对周围其他设备产生干扰,则可以认为其具备良好的电磁兼容性。
四、解决方案对于出现不合格结果的产品,EMC测试报告中通常还提供了相应的解决方案。
EMC测试简介EMC测试简介EMC即电磁兼容性,是指“一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其它设备产生电磁干扰。
”意指电子机器有两面性,一个为干扰源对其他电子仪器造成的影响,一个为受到周围电子仪器发生的干扰影响,才有EMC的论题出现。
EMC的产品认证,目前主要依据的法规有FCC,CISPR,ANSI,VCCI及EN┅等国际规范,而这些EMC标准对于产品的测试要求,可分为两大测试题,一为电磁干扰(EMI)测试,另一为电磁耐受性(EMS)测试。
EMC测试项目与规范电磁兼容性的测量分干扰(骚扰)和抗干扰:电磁干扰(Electromagnetic Interference)简称EMI,测量一般为两个参数即辐射干扰(Radiated Interference) 和传导干扰(CONducted Interference) ,所谓辐射干扰是指通过空间传播的干扰,所谓传导干扰是指通过电源端而产生的干扰。
测量所需的主要设备有:1、接收天线(根据测量频率不同可以选则偶极子天线、双锥天线、对数周期天线等)2、测量接收机3、人工电源网络(Artificial Mains Network,串接在被测设备电源进线处的网络。
它在给定频率范围内,为骚扰电压的测量提供规定的负载阻抗,并使被试设备与电源相互隔离)4、天线升降架、转台及部分适配器5、吸收钳(Absorbing Clamp)6、计算机、接口板、软件等对抗干扰(Electromagnetic Susceptibility)简称EMS,这方面的测量参数一般有 10 项:静电放电、无线电频率电磁辐射场、电快速瞬变脉冲、浪涌、由射频场引起的传导、电源频率磁场、脉冲磁场、阻尼振荡磁场、电压跌落短期中断和电压变化、振荡波抗扰度试验。
其中无线电频率电磁辐射场和由射频场引起的传导两项试验所需的仪器多一些如需高频信号源、高频功率放大器、功率计、场监系统、计算机及相应的专用测试软件和接口等,价格较高,另外一些大都是专用仪器或几合一的专用仪器如浪涌仪、静电发生器、电快速瞬变模拟器等。
EMC测试及故障排除方法中心议题:单片机系统的EMC测试电磁兼容故障排除技术电磁兼容性新器件新材料的应用所谓EMC就是:设备或系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。
EMC测试包括两大方面内容:对其向外界发送的电磁骚扰强度进行测试,以便确认是否符合有关标准规定的限制值要求;对其在规定电磁骚扰强度的电磁环境条件下进行敏感度测试,以便确认是否符合有关标准规定的抗扰度要求。
对于从事单片机应用系统设计的工程技术人员来说,掌握一定的EMC测试技术是十分必要的。
1 单片机系统EMC 测试(1)测试环境为了保证测试结果的准确和可靠性,电磁兼容性测量对测试环境有较高的要求,测量场地有室外开阔场地、屏蔽室或电波暗室等。
(2)测试设备电磁兼容测量设备分为两类:一类是电磁干扰测量设备,设备接上适当的传感器,就可以进行电磁干扰的测量;另一类是在电磁敏感度测量,设备模拟不同干扰源,通过适当的耦合/去耦网络、传感器或天线,施加于各类被测设备,用作敏感度或干扰度测量。
(3)测量方法电磁兼容性测试依据标准的不同,有许多种测量方法,但归纳起来可分为4类;传导发射测试、辐射发射测试、传导敏感度(抗扰度)测试和辐射敏感度(抗扰度)测试。
(4)测试诊断步骤图1给出了一个设备或系统的电磁干扰发射与故障分析步骤。
按照这个步骤进行,可以提高测试诊断的效率。
5)测试准备①试验场地条件:EMC测试实验室为电波半暗室和屏蔽室。
前者用于辐射发射和辐射敏感测试,后者用于传导发射和传导敏感度测试。
②环境电平要求:传导和辐射的电磁环境电平最好远低于标准规定的极限值,一般使环境电平至少低于极限值6dB。
③试验桌。
④测量设备和被测设备的隔离。
⑤敏感性判别准则:一般由被测方提供,并实话监视和判别,以测量和观察的方式确定性能降低的程度。
⑥被测设备的放置:为保证实验的重复性,对被测设备的放置方式通常有具体的规定。
(6)测试种类传导发射测试、辐射发送测试、传导抗扰度测试、辐射抗扰度测试。
(7)常用测量仪电磁干扰(EMI)和电磁敏感度(EMS)测试,需要用到许多电子仪器,如频谱分析仪、电磁场干扰测量仪、信号源、功能放大器、示波器等。
由于EMC测试频率很宽(20Hz~40GHz)、幅度很大(μV级至kW级)、模式很多(FM、AM等)、姿态很多(平放、斜放等),因此正确地使用电子仪器非常重要。
测量电磁干扰的合适仪器是频谱分析仪。
频谱分析仪是一种将电压幅度随频率变化的规律显示出来的仪器,它显示的波形称为频谱。
频谱分析仪克服了示波器在测量电磁干扰中的缺点,能够精确测量各个频率上的干扰强度,用频谱分析仪可以直接显示出信号的各个频谱分量。
在解决电磁干扰问题时,最重要的一个问题是判断干扰的来源。
只有准确将干扰源定位后,才能够提出解决干扰的措施。
根据信号的频率来确定干扰源泉是最简单的方法,因为在信号的所有特征中,频率特征是最稳定的,并且电路设计人员往往对电路中各个部位的信号频率都十分清楚。
因此,只要知道了干扰信号的频率,就能够推测出干扰是哪个部位产生的。
对于电磁干扰信号,由于其幅度往往远小于正常工作信号,用频谱分析仪做这种测量是十分简单的。
由于频谱分析仪的中频带宽较窄,因此能够将与干扰信号频率不同的信号滤除掉,精确地测量出干扰信号频率,从而判断产生干扰信号的电路。
2 电磁兼容故障排除技术(1)传导型问题的解决①通过串联一个高阻抗来减少EMI电流。
②通过并联一个低阻抗将EMI电流短路到地或引到其它回路导体。
③通过电流隔离装置切断EMI电流。
④通过其自身作用来抑制EMI电流。
(2)电磁兼容的容性解决方案一种常见的现象是不把滤波电容的一侧看成直接与一个分离的阻抗相连,而看成与传输线相连。
典型的情况是,当一条输入输出线的长度达到或超过1/4波长时,该传输线变“长”。
实际可以用下式近似表示这种变化:l ≥ 55/f式中:l单元为m,f单位为MHz。
这个公式考虑了平均传播速度,它是自由空间理论的0.75倍。
a. 电介质材料及容差:电磁干扰滤波使用的大部分电容是无极性电容b. 差模(线到线)滤波电容性电容c. 共模(线到地/机壳)滤波电容共模(CM)去耦通常使用小电容(10~100nF)。
小电容可以将不期望的高频电流在其进入敏感电路之前或在其离噪声电路较远时就将其短路到机壳上去。
为了得到良好的高频衰减电路,减小或消除寄生电感是关键之所在。
因此有必要使用超短导线,尤其希望使用无引线元器件。
(3)感性、串联损耗电磁兼容解决方案就电容而言,Zs和Z1如果不是纯电阻的话,在计算频率时,要使用它们的实际值。
电容器串联在电源或信号电路时,必须满足:①流过的工作电流不应该引起电感过热或过大的有过之而无不及降;②流过的电流不能引起电感磁饱和,尤其是对高导磁材料是毫无疑问的。
解决方案有以下几种:磁芯材料;铁氧体和加载铁氧体的电缆;电感、差模和共模;接地扼流圈;组合式电感电容元件。
(4)辐射型问题的解决在很多情况下,辐射电磁干扰问题可能在传导阶段产生并被排除,还有些解决方案是可以抑制干扰装置在辐射传输通道上,就像场屏蔽那样工作。
根据屏蔽理论,这种屏蔽的效果主要取决于电磁干扰源的频率、与屏蔽装置之间的距离以及电磁干扰场的特性——电场、磁场或者平面波。
①导体带。
使用铜或铝带要吧简单快速地建立一种直接的屏蔽和低阻连连接或总线。
它们对于临时的解决方案和相对永久的解决方案来说是很方便的。
厚度在0.035~0.1mm之间,并且背面带有导电黏合剂以便安装。
如果使用铜导电带,其通过电阻约 20mΩ/cm2。
应用场合:电气屏蔽罩;发生故障时泄露点定位;作为一个应急的解决方案,将塑料连接器变成金属的、屏蔽普通的扁平电缆等。
②网状屏蔽带和拉链式外套。
涂锡的钢网带:主要用来安装在一个已经装配好的电费护套上作为一种易安装的绷带型的屏蔽罩。
为了降低电费的磁场辐射或敏感问题,钢网带是一种有效的解决方案。
拉链式屏蔽外套:当有明显迹象表明电费是主要的引起EMI耦合的原因时使用。
③EMI密封垫。
应用场合:当下述条件存在,并且需要真正的SE时,EMI密封垫是最常用的解决辐射问题、敏感问题、ESD、电磁脉冲和TEMPEST问题的方法。
已经把机箱泄漏确认为主要的辐射路径。
啮合面不够光滑、平整或不够硬、本身无法提供良好的连接接触。
④窗口和通风板的EMI屏蔽:适合对孔径的屏蔽。
平面波的大概模型是:SE≈104(-20-lgl)-20lgf式中,SE单位为dB;l为网格或网孔的尺寸,单位为mm;f单位为MHz。
当然,随着频率的下降,网孔的屏蔽效率SE的上限受限于金属本身。
在近区场,对H场的屏蔽,其屏蔽功率SHE不受频率的影响,可由下式近似得出:SEH≈10lg(πr/l)其中,r为源到屏蔽罩之间的距离,l为网孔尺寸,两者单位均为mm。
⑤导电涂料:应用于在系统的塑料外壳建立EMI屏蔽罩、发送现有普通的或恶化的导电表面的屏蔽效能SE、防止ESD或静电积累现象、增大结合面或密封垫片的接触面积。
⑥导电箔:铝是一种良导体,在10MHz 以下没有吸收损耗,但它对于电场的任何频率都有较好的反射损耗。
应用场合请参阅有关资料。
⑦导电布:可应用于任何100kHz到GHz级频率范围需要达到30~30dB衰减的立体屏蔽场合中。
3 电磁兼容性新器件新材料的应用3.1 电源线滤波器电源线滤波器安装在电源线与电子设备之间,用于拟制电能传输中寄生的电磁干扰,对提高设备的可靠性有重要作用。
滤波器允许一些频率通过,而对其它频率的成份加以拟制。
根据干扰源的特性、频率范围、电压和阻抗等参数及负载特性的要求,适当选择滤波器。
3.2 信号阻隔变压器脉冲型(数字或晶闸管门驱动)或模拟隔离式变压器与交流电源中使用的隔离变压器与交流电源中使用的隔离变压器的原理相同,但传输频带却完全不同,有用信号处理对变压器的一些性能要求(例如失真、3dB带宽、损耗、对称性、阻抗、脉冲延时等)非常严格。
这种变压器属于宽带设备,最高频率与最低频率的比值fMAX/fMIN达到数十倍。
通过在发送端或接收端切断共模地环路,隔离变压器在不改变差模信号的同时拟制共模噪声。
由于共模电压是加在变压器一次侧、二次侧的两边,这种隔离器必须具有较高的击穿电压:典型值为1.5kV,某些场合则高达10kV。
信号变压器的主要优点是它的简单、耐用、持久和线性,而且价格适中。
当频率增加时,其电磁兼容性能下降。
应用场合:当需要环路隔离时,其频率范围从直流到几十MHz;在低噪声和低失真条件下传输模拟小信号(≤10mV)时,信号线上可能存在几V至几kV 的共模电压;在晶闸管应用电路中,将触发器驱动电路与共模电压隔离;作为一个现场解决方案,可用来切断一个地环路和搭建一个平衡连接或非平衡连接传输线路。
3.3 电源隔离变压器、电源稳压器和不间断电源(1)电源隔离变压器普通的隔离变压器可以在低频范围切断主电源线的接地环路。
当频率升高时,电气隔离由于一次侧间寄存电容C1-2的存在而下降。
为了减少寄生电容的影响,可以使用落系、螺旋状、分立式的一次和二次绕组,这样可以将寄生电容减小为原为的1/3~/10。
(2)法拉第屏蔽变压器在一次和二次线圈之间包着一层铝箔或铜箔,并使之不与线圈接触以免形成短路。
法拉第屏蔽或静电屏蔽层接地。
应用范围如下:应用于入室电源或电源分配箱上,作为简单1:1的隔离变压器,隔离50/60Hz的地环路;在同一系统中的某一部分重新产生对地保持中性的交流电源,与总电源分配点保持电气隔离;应用于当系统中存在很大的对地漏电电流时,防止过渡频繁触发系统中的接地故障检测器;可以与电源线滤波器结合使用,电源线滤波器的衰减特性仅开始于几十或几百kHz以上。
3.4 暂态抑制器变阻器和固态变阻器(transzorbs)是具有非线性V-I特性曲线的元件,可以作为稳压元件。
当电压通过该器件后就被箝位在等于或大于击穿电压VBR的电压值上。
该器件的响应速度快,但在处理的能量值上有一定限制。
3.5 搭接、接地连续性和减少RF阻抗器件①接地编织层或金属带宽而扁的导线比同样横截而积的圆导线具有较小的电感。
作为优先的选择参考,可以使用:扁平金属带;带有扁平接地端子的扁平编织层;圆形、多股绞线的跳线。
②印制电路板(PCB)接地垫片。
为了建立一个更直接的低阻扰电磁干扰电流接收器,需要使用接地垫片。
通常在树脂型垫片中间有一个弹簧夹,用以在一边的OV铜板上和加一边PCB的安装底盘上提供较强的可靠压力。
由于弹簧是铜锡材料制成的,电气接触性能良好,接触电阻为mΩ数量级。