数量关系之行程问题答题技巧
- 格式:docx
- 大小:11.77 KB
- 文档页数:1
数量关系之行程问题答题技巧资料来源:中政行测在线备考平台行程问题的重点在于三个量:路程、速度、时间,考来考去总是这三个点,那命题人如何增加难度呢?一是改变考查形式,比如直接求速度变成间接求解,二是增加因素,比如流水对船速的影响、车身长对路程的影响,等等。
但归根究底还是考一个公式:路程=速度*时间,命题就围绕这个公式展开,一般都是已知一个或多个运动过程,每个运动过程包含三个量:路程、速度、时间,与此同时,不同的运动过程间这三个量必然存在某个共通点,比如路程相同,或者相同时间。
因此,行程问题的基本解题思路就是:分析题干中的每一个运动过程,结合问题看未知量、找出已知量,如果有多个运动过程,找出彼此之间共通点,从一点延伸到面,列出数学表达式,思路一目了然。
1、行程问题之相遇问题答题技巧相遇问题是行程问题的一种考查形式,指两人(或两车等)从两地出发相向而行的行程问题,是研究“速度”、“相遇时间”和“两地距离”三者之间的数量关系的应用题。
三个量中比较难理解一点就是相遇时间,两人同时出发、同时到达某一点。
很明显,运动时间相同,这个时间就称为“相遇时间”,做题时要谨记这个等量关系,是隐含的已知条件。
尤其,近年来考题难度有所增加,单一的相遇问题很少考,综合题比较多,因此,做题时一定要思路清晰,抓准核心,当题中涉及相遇问题时,谨记“相遇时间相同”这一点,利用等量关系巧妙求解未知量,化未知为已知,结合其他已知条件解出最终答案。
2、行程问题之追击问题答题技巧追及问题指的是两人(物)在行进过程中同向而行,快行者从后面追上慢行者的行程问题。
它考虑的是两人(物)在相同时间内所行的路程差。
命题人一般会从三个角度命题,直线运动中有两个:“同地不同时出发型”和“同时不同地出发型”;还有一个是环形运动中的“同时同地出发型”,这里要注意一点,它的路程差是一个隐含的已知条件,与追上次数有关。
第一次追上,路程差是一个周长,第N次追上,路程差是n个周长,做题时如果不明白这一点,很难理清思路。
行测数量关系技巧:正反比法解行程问题行测数量关系技巧:正反比法解行程问题在行测数量关系中,行程问题是很重要的一局部,对于这一局部的题目,根据题干信息找等量关系就可以列出方程,从而解决题干的问题。
但是在解决行程问题的过程中,有的题目列出等量关系去解方程会相比照拟费事,对于一些计算才能不是很好的同学来讲无疑是一件头疼的事情,因此,在行程问题中,我们可以通过正反比的方法来解决。
要理解正反比,首先要知道正反比代表的是什么。
正比指的是假设两个数相除为定值,那么这两个数成正比;反比指的是假设两个数相乘为定值,那么这两个数成反比。
理解了正反比的概念之后,我们来看一下使用正反比的方法来解决两道题目。
例1、经技术改良,A、B两城间列车的运行速度由150千米/小时提升到250千米/小时,行车时间因此缩短了48分钟,那么A、B两城间的间隔为:A.300千米B.291千米C.310千米D.320千米【答案】A。
解析:题目所说列车的速度发生了变化,时间也随之发生了变化,但在这个过程中,A、B两城间的间隔没有发生变化,即路程一定,我们路程=速度×时间(s=vt),两数相乘为定值,因此,速度和时间成反比的关系,由此我们可以得到提速前和提速后的速度与时间之间的关系。
原来:如今V 150 : 250(3 : 5)t 5 : 3由题干信息可得,时间因此缩短了48分钟,由时间关系可知,如今的时间比原来的时间少2份,2份对应48分钟,因此1份时间对应24分钟,原来时间占5份,即为24×5=120分钟=2小时。
所求路程=速度×时间=150×2=300千米,选择A选项。
例2、某____从驻地乘车赶往训练基地,假如将车速进步1/9,就可比预定的时间提早20分钟赶到;假如将车速进步1/3,可比预定的时间提早多少分钟赶到?A.30B.40C.50D.60【答案】C。
解析:题干中车速发生变化,时间也随之发生变化,保持不变的是驻地到训练基地之间的间隔,也就是路程保持一定,因此速度和时间成反比的关系,当车速进步1/9时,原来和第一次发生变化时的速度和时间的关系如下:原来:第一次V 9 : 10t 10 : 9由题干信息可得,时间提早20分钟,由时间关系可知,第一次变化与原来相比时间少1份,即1份对应20分钟,那么原来的时间为10×20=200分钟。
行程问题的解题技巧1. 哎呀呀,行程问题中遇到相向而行的情况,那简直就像是两个人对着跑呀!比如说,小明和小红在一条路上,一个从这头走,一个从那头走,他们多久能相遇呢?这时候只要把两人的速度加起来,再用总路程除以这个和,不就能算出相遇时间啦!就像搭积木一样简单嘛!2. 嘿,要是同向而行呢,那不就是一个追一个嘛!就好像跑步比赛,跑得快的追跑得慢的。
比如小强每分钟跑 100 米,小亮每分钟跑 80 米,那小强要多久才能追上小亮呀?用他们的速度差乘以时间等于最初的距离差这个道理,一下子就能算出来啦,是不是超有趣呀!3. 碰到那种来回跑的行程问题呀,可别晕!比如说小李在 A、B 两点间跑来跑去。
这就像钟摆一样来来回回呀!这时候得仔细分析他跑的每一段路程和时间,然后加起来或者算差值,搞清楚到底怎么回事儿!这很考验耐心哦,但搞懂后会超有成就感的呀!4. 还有那种在环形跑道上跑的呢,这不就像围着一个大圆圈转嘛!比如小王在环形跑道上跑,和别人相遇几次或者追上几次,就得想想他们相对的速度和跑的圈数啦。
这多有意思呀,就好像在玩一个特别的游戏!5. 你们想想看,行程问题里有时候给的条件可隐晦啦!这就像捉迷藏一样,得仔细找线索呀!比如说告诉你一段路程走了几小时,又告诉你另外一些模糊的信息,就得开动脑筋把有用的找出来,算出行程中的各种数据。
是不是有点像侦探破案呀,刺激吧!6. 有时候行程问题里会有停顿呀什么的,那就像走路走一半歇会儿一样。
比如小张走一段路,中间停了几分钟,这时候得把停顿的时间考虑进去呀,不然可就算错啦,可不能马虎哟!7. 哈哈,行程问题其实就是生活中的各种走呀跑呀的情况。
只要我们把它当成有趣的事儿,像玩游戏一样去对待,就不会觉得难啦!所以呀,不要害怕行程问题,大胆去挑战它们吧!我的观点结论就是:行程问题没那么可怕,只要用心去理解和分析,都能轻松搞定!。
公务员行测数量关系速算公式归纳在公务员行测考试中,数量关系部分往往是让众多考生感到头疼的模块。
然而,掌握一些实用的速算公式,能够帮助我们在考场上快速解题,提高答题效率和准确率。
接下来,就为大家归纳一下常见的公务员行测数量关系速算公式。
一、行程问题1、相遇问题路程和=速度和 ×相遇时间相遇时间=路程和 ÷速度和速度和=路程和 ÷相遇时间例如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 米/秒,乙的速度为 3 米/秒,经过 10 秒相遇,那么 A、B 两地的距离就是(5 + 3)× 10 = 80 米。
2、追及问题路程差=速度差 ×追及时间追及时间=路程差 ÷速度差速度差=路程差 ÷追及时间比如:甲在乙后面 20 米,甲的速度为 7 米/秒,乙的速度为 5 米/秒,那么甲追上乙所需的时间就是 20 ÷(7 5)= 10 秒。
3、流水行船问题顺水速度=船速+水速逆水速度=船速水速船速=(顺水速度+逆水速度)÷ 2水速=(顺水速度逆水速度)÷ 2假设一艘船在静水中的速度为 15 千米/小时,水流速度为 3 千米/小时,那么顺水速度就是 15 + 3 = 18 千米/小时,逆水速度就是 15 3 =12 千米/小时。
二、工程问题工作总量=工作效率 ×工作时间工作效率=工作总量 ÷工作时间工作时间=工作总量 ÷工作效率例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,那么两人合作完成这项工程需要的时间就是 1 ÷(1/10 + 1/15)=6 天。
三、利润问题利润=售价成本利润率=利润 ÷成本 × 100%售价=成本 ×(1 +利润率)成本=售价 ÷(1 +利润率)比如:一件商品的成本是 80 元,售价是 100 元,那么利润就是 10080 = 20 元,利润率就是 20 ÷ 80 × 100% = 25%。
考公数量关系题型和解题技巧以下是 7 条关于考公数量关系题型和解题技巧:1. 嘿,朋友们!行程问题可是考公数量关系里的常客啊!就像从 A 地到 B 地,知道速度和时间,怎么去求路程呢?来看这个例子,小明以每小时5 公里的速度走了 3 小时,那他走了多远呀?这不是很容易就能算出来嘛!学会这个题型,简直就是为你的考公之路铺上一块坚实的砖啊!2. 哇塞!工程问题也不能小瞧呀!可以把一项工程看成是一个大目标,不同的人或团队以不同的效率干,多久能干完?比如说修一条路,甲队一天能修10 米,乙队一天能修 8 米,两队一起修要几天修完?这么一想,是不是就很好理解啦?工程问题绝对会在考场上让你大放异彩啊!3. 各位亲,排列组合可是个神奇的题型哟!从一堆东西里选出几个来排列或者组合,就像从一堆糖果中选出几颗,有几种不同的选法呢?好比有 5 个不同颜色的球,选 3 个出来排列,那有多少种排法呢?好好掌握这个技巧,让你在考场上如有神助!4. 嘿呀!浓度问题也常出现呢!就像一杯糖水,糖的多少和水的多少决定了糖水的浓度。
比如有一杯 100 克水里加了 20 克糖,那这杯糖水的浓度是多少?是不是很有意思呀?学会了处理浓度问题,考公就多了一份把握!5. 大伙注意啦!年龄问题有时候会让人有点晕乎,但其实掌握技巧就不难啦!两个人的年龄差是不变的呀,就好似小明和小红现在年龄不一样,过几年还是那个差值。
像小明今年 10 岁,小红 15 岁,5 年后他们年龄差还是 5 岁呀!这技巧可得记住哦!6. 哇哦!利润问题也是重要角色呢!一件商品进价多少,卖价多少,利润就出来啦!例如进价 80 元的东西,卖 100 元,那利润是多少?这还用说嘛!掌握利润问题的解法,让你在考公路上披荆斩棘!7. 快瞧瞧!植树问题也不能忘呀。
行程问题的解题技巧和方法
行程问题是数学中常见的问题之一,它涉及到速度、时间、距离等基本概念。
在解题时,我们需要根据题目中所给出的信息,运用合适的方法进行求解。
以下是一些常用的解题技巧和方法:
1. 基本公式法:行程问题的基本公式为:路程=速度×时间。
利用这个公式,我们可以很方便地求解各类行程问题。
2. 比例法:比例法是行程问题中常用的方法之一。
如果题目中给出的比例关系正确,我们可以通过比例关系来求解问题。
3. 假设法:假设法适用于一些无法确定具体数值的行程问题。
通过假设一些数值,然后根据题目中给出的信息,进行分析推理,进而求解问题。
4. 方程法:方程法是行程问题中最常见的方法之一。
通过建立方程,我们可以将行程问题转化为代数问题,然后通过解方程来求解答案。
5. 正反比法:正反比法适用于一些行程问题中的速度变化情况。
如果题目中给出的速度变化规律正确,我们可以通过正反比关系来求解问题。
6. 比例分配法:比例分配法适用于一些行程问题中的比例关系不正确,但可以分解成两个比例关系的情况。
通过比例分配,我们可以将问题转化为两个比例关系的问题,然后求解答案。
总之,行程问题的解题技巧和方法有很多种,我们需要根据具体情况进行选择。
在学习过程中,我们应该注重基础知识的掌握和技巧的应用,这样才能在解题时更加从容自信。
行测数量关系技巧:如何利用正反比巧解行程问题行测数量关系技巧:如何利用正反比巧解行程问题对于众多考生来说,行测数量中的行程问题基本上是属于年年必考类的题型,但是这种题型有时简单有时复杂,所以接下来给大家介绍一种关于行程问题可以巧解的方法——正反比方法。
一、行程问题中基本公式S=VT(路程=速度×时间)二、行程问题中正反比存在S=VT时且3个未知数有其中一个量处于不变时当S不变时,V与T成反比当V不变时,S与T成正比当T不变时,S与V成正比三、例题展示例:甲乙两辆从A地驶往90公里外的B地,两车的速度比为5:6。
甲车于上午10点半出发,乙车于10点40分出发,最终乙车比甲车早2分钟到达乙地。
问两车的时速相差多少千米/小时?A.10B.12C.12.5D.15【解析】:选D。
根据题意,甲乙两车的速度比为5:6,两车都是从A走向B路程一致,速度与时间成反比,因此两车从A到B所用的时间比为6:5,乙比甲晚出发10分钟,且比甲早2分钟到达,所以全程乙比甲快了12分钟,即时间所差的一份对应12分钟,因此全程乙用时12×5=60分钟,即乙的速度为90公里/小时,甲的速度为90×5/6=75公里/小时,因此两车速度之差为15公里/小时。
例:有两个山村之间的公路都是上坡和下坡,没有平坦路。
农车上坡的速度保持20千米/小时,下坡的速度保持30千米/小时,已知农车在两个山村之间往返一次,需要行驶4小时,问两个山村之间的距离是多少千米?A.45B.48C.50D.24【解析】:选B。
往返相当于走了一个全程的上坡和一个全程的下坡,根据S=VT,当S一定时,VT成反比。
上坡的速度:下坡速度=20:30=2:3,则上坡时间:下坡时间=3:2,5份对应4小时,1份是0.8时间,上坡对应3×0.8=2.4小时,全程是2.4×20=48千米。
例:两名运动员进行110米栏赛跑,结果甲领先乙10米到达终点。
行程问题的解题技巧和方法
行程问题是数学中常见的一种问题类型,通常应用于时间、速度、距离等方面。
解题时需要掌握一定的技巧和方法,下面介绍一些常见的解题技巧:
1. 建立方程
在解决行程问题时,可以根据题目所给出的条件,建立相应的方程式,来求解未知数。
例如,当我们知道两个物体在同一方向上移动时,可以运用公式:距离=速度×时间,建立方程,进而求出未知数。
2. 画图辅助解题
有些行程问题,尤其是多个物体同时移动时,画图可以帮助我们更好地理解题目意思,并且有利于我们找到解题的方法。
因此,在解题时,可以根据题目要求,画出相应的图形,帮助我们更好地理解题目。
3. 分析速度、时间、距离之间的关系
在行程问题中,速度、时间和距离之间有着密切的关系。
当我们知道任意两项,都可以通过公式求出另一项。
因此,在解题时,可以尝试从速度、时间、距离之间的关系入手,找到解题的方法。
4. 求平均速度
有些题目中,物体在行程中可能有多个速度。
此时,我们可以求出平均速度来解决问题。
平均速度的公式是:平均速度=总路程÷总时间。
在求解平均速度时,我们需要注意速度的单位应该统一。
总之,解决行程问题需要综合运用数学知识和思维能力,灵活运用解题技巧和方法,精准地分析题目,才能得到正确的答案。
行程问题数学解题技巧一、基本公式1. 路程 = 速度×时间,即s = vt。
- 速度v=(s)/(t)。
- 时间t=(s)/(v)。
二、相遇问题1. 题目类型及公式- 相向而行(两人或两车等从两地同时出发,面对面行走):总路程s = (v_1 + v_2)t,其中v_1、v_2分别是两者的速度,t是相遇时间。
2. 题目解析- 例:甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是5米/秒,乙的速度是3米/秒,经过10秒两人相遇,求A、B两地的距离。
- 解析:已知v_1 = 5米/秒,v_2 = 3米/秒,t = 10秒。
根据相遇问题公式s=(v_1 + v_2)t=(5 + 3)×10 = 8×10 = 80米,所以A、B两地的距离是80米。
三、追及问题1. 题目类型及公式- 同向而行(一人或一车等在前面走,另一人或车在后面追):追及路程s=(v_1 - v_2)t,其中v_1是快者速度,v_2是慢者速度,t是追及时间。
2. 题目解析- 例:甲在乙前面100米,甲的速度是8米/秒,乙的速度是10米/秒,问乙多长时间能追上甲?- 解析:这里追及路程s = 100米,v_1=10米/秒,v_2 = 8米/秒。
根据追及问题公式t=(s)/(v_1 - v_2)=(100)/(10 - 8)=(100)/(2)=50秒,所以乙50秒能追上甲。
四、环形跑道问题1. 相遇情况(同地出发,反向而行)- 公式:环形跑道一圈的长度s=(v_1 + v_2)t,和普通相遇问题公式一样,v_1、v_2是两人速度,t是相遇时间。
- 题目解析:例如,甲、乙两人在周长为400米的环形跑道上,同时同地反向出发,甲的速度是6米/秒,乙的速度是4米/秒,求两人第一次相遇的时间。
- 解析:已知s = 400米,v_1 = 6米/秒,v_2 = 4米/秒,根据公式t=(s)/(v_1 + v_2)=(400)/(6 + 4)=(400)/(10)=40秒,所以两人第一次相遇的时间是40秒。
数量关系答题技巧:行程问题解题思路更多信息关注辽宁事业单位考试网数量关系技巧包含了数学运算技巧和数字推理技巧两大部分,公务员考试数学运算是最为考生所头疼,其所占分值高并且难度也高。
今天中公教育为考生整理了数量关系答题技巧中的行程问题解题思路,希望对考生有所帮助!行程问题常考的有三种,分别是相遇、追及和环形运动。
下面中公教育逐一为考生介绍。
第一,相遇问题:相遇问题的基本形式可以描述为:甲从A地到B地,乙从B地到A地,两人在途中C点相遇。
如果甲、乙两个人同时出发,则路程、速度、时间三者之间的数量关系可以用公式表示为:AB之间的路程=(甲的速度+乙的速度)×相遇时间第二,追及问题:追及问题的基本形式可以描述为:两个人行走,一个人走得快,一个人走得慢,如果走得慢的在前面,走得快的过一些时间就能追上他。
设甲走得快,乙走得慢,如果要求“追及路程”,即求在“追及时间”内甲比乙多走的路程,则追及路程、速度、追及时间三者之间的数量关系可以用公式表示为:追及路程=(甲的速度-乙的速度)×追及时间第三,环形运动问题:环形运动中,同向而行,相邻两次相遇所需要的时间=周长/(大速度-小速度);背向而行,相邻两次相遇所需要的时间=周长/(大速度+小速度) 逆向而行,则相邻两次相遇的路程和为周长。
(同向而行,则相邻两次相遇的路程差为周长。
)下面再通过三个例子让你了解行程问题的解决思路。
【例题1】甲、乙两辆汽车同时分别从A、B两地相对开出,甲车的速度是40千米/小时,乙车的速度是45千米/小时。
甲、乙两车第一次相遇后继续前进,各自到达B、A两地后,立即按原路原速度返回。
如果两车从开始到第二次相遇的时间为6小时,那么A、B两地间相距多少千米?( )A.110B.130C.150D.170【中公教育解析】甲、乙两车从开始出发到第一次相遇共同行驶了一个A、B间的路程;第一次相遇后继续前进,各自到达B、A两地时,又共同行驶了一个A、B间的路程;当甲、乙两车第二次相遇时,再共同行驶了一个A、B间的路程。
个人收集整理-ZQ
行程问题是研究物体运动地,它研究地是物体速度、时间、行程三者之间地关系.此类问题是公务员考试中常见地题型之一.行程问题一般只有四种类型,考生只需牢牢掌握这四种类型,便可轻松搞定这类问题.
查看行程问题四种类型知识点详解:初等行程问题、相遇问题、追及问题、行船问题行程问题地基本解题思路就是:分析题干中地每一个运动过程,结合问题看未知量、找出已知量,如果有多个运动过程,找出彼此之间共通点,从一点延伸到面,列出数学表达式,思路一目了然.个人收集整理勿做商业用途
相遇问题是行程问题地一种考查形式,指两人(或两车等)从两地出发相向而行地行程问题,是研究“速度” 、“相遇时间”和“两地距离”三者之间地数量关系地应用题.三个量中比较难理解一点就是相遇时间,两人同时出发、同时到达某一点.很明显,运动时间相同,这个时间就称为“相遇时间”,做题时要谨记这个等量关系,是隐含地已知条件.尤其,近年来考题难度有所增加,单一地相遇问题很少考,综合题比较多,因此,做题时一定要思路清晰,抓准核心,当题中涉及相遇问题时,谨记“相遇时间相同”这一点,利用等量关系巧妙求解未知量,化未知为已知,结合其他已知条件解出最终答案.个人收集整理勿做商业用途(大家可以通过:数学运算【相遇问题】特训通关题库,对以上所讲技巧进行锻炼)
追及问题指地是两人(物)在行进过程中同向而行,快行者从后面追上慢行者地行程问题.它考虑地是两人(物)在相同时间内所行地路程差.命题人一般会从三个角度命题,直线运动中有两个:“同地不同时出发型”和“同时不同地出发型”;还有一个是环形运动中地“同时同地出发型”,这里要注意一点,它地路程差是一个隐含地已知条件,与追上次数有关.第一次追上,路程差是一个周长,第次追上,路程差是个周长,做题时如果不明白这一点,很难理清思路.这三类大家不仅要记得,还要学会辨别,如果是考追及问题,先理清它地类别,根据类别找准路程差,将其代入追及问题特有地公式“路程差速度差*追及时间”,列出数学表达式,求解未知量.个人收集整理勿做商业用途
但这只是基本地解题思路,现在地考题难度越来愈大,一道题可能涉及多个追及过程,两两相关,如果想正确解题,一看你能否找准每一个“路程差”,二看你地火眼金睛跟思维清晰度.比如这样一道题.个人收集整理勿做商业用途
甲、乙二人练习跑步,若甲让乙先跑米,则甲跑秒可追上乙,若乙比甲先跑秒,则甲跑秒能追上乙,则甲每秒跑多少米?( )个人收集整理勿做商业用途
很明显,题中涉及两次追及,一一分析,第一次甲乙两人是同时不同地,找准路程差:米,追及时间是秒,思维清晰地话,根据这两个量很快就能想到公式“路程差速度差*时间”,进而得到:速度差.下面看第二个追及过程,依然是同时不同地型,路程差就是乙秒跑地路程,追及时间秒,但注意不要忘记前面求出地速度差,因此,路程差*,即乙秒跑了米,速度,那么,甲地速度是.答案是.个人收集整理勿做商业用途
1 / 1。