炼油装置中的腐蚀类型及防护措施详解
- 格式:ppt
- 大小:853.50 KB
- 文档页数:53
石油化工设备常见腐蚀类型及其防腐措施(一)低温HCl-H2S-H2O型腐蚀与防腐1、主要腐蚀设备及部位主要腐蚀设备:此腐蚀环境主要存在于常减压装置的初馏塔和常减压塔的顶部(顶部五层塔盘以上部位)及其塔顶冷凝冷却器系统。
腐蚀部位:主要指常压塔上部五层塔盘、塔体及部分挥发线、冷凝冷却器、油水分离器、放水管和减压塔部分挥发线、冷凝冷却器等部位。
在无任何工艺防腐措施情况下,腐蚀十分严重,具体情况为:(1)常压塔顶及塔内构件,如无工艺防腐措施,碳钢腐蚀率高达2mm/a。
采用0Crl3材料作衬里,浮阀则出现点蚀,用18—8型奥氏体不锈钢作衬里则出现应力腐蚀开裂。
(2)冷凝冷却器是腐蚀最严重的部位。
在无任何防腐措施时,碳钢腐蚀率可高达2mm/a。
采用18—8型奥氏体不锈钢制冷凝器则在3个月到4年间陆续出现应力腐蚀破裂。
冷凝冷却器入口端(约100mm)处于高速两相流动时,在胀口处有冲状腐蚀。
空冷器更为严重,碳钢的腐蚀率可高达4mm/a。
(3)后冷器、油水分离器及放水管的腐蚀一般较前项为轻,腐蚀率随冷凝水pH值高低而变,一般为0.5~2.0mm/a。
(4)减压塔顶冷凝冷却器是减顶系统腐蚀主要几种的设备,无任何工艺防腐措施时,碳钢腐蚀率可高达5mm/a。
腐蚀形态:对碳钢为均匀减薄;对Crl3钢为点蚀;对1Crl8Ni9Ti钢则为氯化物应力腐蚀开裂。
腐蚀机理:HCl—H2S—H20部位的腐蚀主要是原油含盐引起的。
原油加工时,原油中所有的成酸无机盐如MgCl2、CaCl2等,在一定的温度及有水的条件下可发生强烈的水解反应,生成腐蚀性介质HCl。
在蒸馏过程中HCl和硫化物加热分解生成的H2S随同原油中的轻组分一同挥发进入分馏塔顶部及冷凝冷却。
当HCl和H2S2、HCl—H2S—H20环境下的防腐蚀措施此部位防腐应以工艺防腐为主,材料防腐为辅。
(1)工艺防腐措施“一脱四注”(原油深度电脱盐,脱后注碱、塔顶馏出线注氨、注缓蚀剂、注水)。
《石油炼制常减压装置腐蚀与防腐》篇一一、引言在石油炼制过程中,常减压装置作为关键的工艺流程之一,其稳定运行对于整个炼油厂的效益和安全至关重要。
然而,由于常减压装置在运行过程中会接触到各种腐蚀性物质,如硫化物、氯化物、水等,这些物质的存在往往会导致设备的腐蚀问题。
腐蚀不仅会降低设备的使用寿命,还可能引发安全事故,影响整个炼油厂的稳定运行。
因此,研究常减压装置的腐蚀与防腐问题具有重要的现实意义。
二、常减压装置的腐蚀问题1. 腐蚀类型及原因(1)电化学腐蚀:在常减压装置中,由于金属表面与介质之间存在电位差,容易发生电化学腐蚀。
这种腐蚀主要是由于介质中的电解质与金属发生反应,导致金属表面形成原电池效应。
(2)化学腐蚀:由于介质中的化学物质与金属直接发生化学反应,导致金属表面形成腐蚀产物。
例如,硫化物、氯化物等化学物质对金属的腐蚀作用较强。
(3)冲刷腐蚀:在常减压装置中,由于介质流动的冲击作用,金属表面会受到冲刷,从而加剧腐蚀程度。
2. 腐蚀对设备的影响设备受到腐蚀后,其强度和密封性能会降低,甚至可能导致设备泄漏、穿孔等严重后果。
此外,腐蚀还会导致设备的使用寿命缩短,增加维护成本和停机时间,影响炼油厂的稳定运行和经济效益。
三、防腐措施1. 材料选择:选用耐腐蚀性能好的材料是防止常减压装置腐蚀的有效措施。
如选用不锈钢、合金钢等耐腐蚀性较强的材料,可以有效地提高设备的耐腐蚀性能。
2. 工艺优化:通过优化工艺流程和操作条件,减少介质中的腐蚀性物质含量,降低设备的腐蚀程度。
例如,通过控制温度、压力、流速等参数,避免介质中的化学物质与金属直接接触。
3. 防腐涂层:在设备表面涂覆防腐涂层,可以有效隔离介质与金属的接触,从而减缓设备的腐蚀速度。
防腐涂层应具有良好的耐腐蚀性、耐磨性和附着力。
4. 阴极保护:通过在金属表面施加阴极电流,使金属成为阴极而避免电化学腐蚀。
这种方法需要专业的设备和技术支持,但可以有效保护设备免受电化学腐蚀的侵害。
炼油装置的设备腐蚀与防护原油特点:低硫原油:低酸原油:酸值V0.5mgKOH/g的原油;含硫原油:含酸原油:酸值在0.5〜ImgKOH/之间的原油高硫原油:高酸原油:酸值大于1mgKOH/g高硫高酸原油:胜利孤岛(TAN 2.10 mgKOH/g S 1.9 %)劣质原油:(高酸高钙原油)辽河稠油(TAN 2.10 mgKOH/g Ca 284ppm)、硫化物的腐蚀原油中的硫化物分为活性硫化物与非活性硫化物,活性硫化物主要为单质硫、硫醇(R-SH、)硫化氢、小分子多硫化物等, 非活性硫化物主要为硫醚(R-S-R)、噻吩等大分子硫化物。
活性硫含量越高则腐蚀性越强,但原油硫含量(活性硫与非活性硫的总含量)与腐蚀性之间无明确的关系。
原油硫含量大于1%的为高硫原油。
硫化物的腐蚀与温度密切相关。
①、T < 120 C,无水情况下无腐蚀性,有水存在时,则形成低温湿硫化氢腐蚀环境。
②、120C VT W 240C,活性硫化物未分解,腐蚀性很低。
③、240C VT W 340C,硫化物开始分解生成硫化氢,腐蚀性增强,随着温度的升高而腐蚀加剧。
④、340C VTV400C,硫化氢分解为H和S,硫醇开始参与腐蚀反应,腐蚀进一步加剧。
⑤、426C VTV430C ,高温硫腐蚀最严重。
⑥、T>480C,腐蚀性下降;高于500C后为氧化腐蚀。
2、无机盐的腐蚀原油中含有水分,水分中含有盐类,主要成分是氯化钠、氯化镁和氯化钙。
氯化镁和氯化钙易受热水解,生成氯化氢。
氯腐蚀。
3、环烷酸的腐蚀环烷酸为原油中各种酸(有机酸)的混合物,分子量在很大 范围内变化(180〜350)。
环烷酸的腐蚀性与温度密切相关。
220C 以下时基本无腐蚀性,以后随温度的升高腐蚀性逐渐增强,在 270〜280 C 时腐蚀最大,温度再升高则腐蚀性下降。
温度升高到 350 C 附近时腐蚀又急剧增加,400 C 以上就没有腐蚀了。
环烷酸腐蚀发生在液相,若气相中没有凝液产生,也没有雾沫夹带,则中,流速高的部位腐蚀越严重,因而被腐蚀的金属表面光滑,呈 沟槽状。
炼化装置整体腐蚀防护技术炼化装置是石油化工行业的重要设施,其生产过程中容易受到腐蚀的影响。
为了保障炼化装置的安全运行和延长设备的使用寿命,必须采取有效的腐蚀防护技术。
本文将围绕炼化装置整体腐蚀防护技术展开讨论,包括腐蚀原因分析、腐蚀防护技术分类、应用案例分享等内容。
## 一、炼化装置腐蚀原因分析炼化装置腐蚀主要包括化学腐蚀、电化学腐蚀和高温氧化腐蚀等几种类型。
化学腐蚀是由于介质的特性引起的,例如酸性介质、碱性介质和盐性介质等都会对设备材料产生腐蚀;电化学腐蚀是由于设备表面金属和介质之间的电化学反应引起的腐蚀,例如金属被电化学腐蚀会产生锈蚀;而高温氧化腐蚀是因为高温下金属与氧气作用产生的腐蚀现象,例如设备处于高温介质中时的腐蚀。
## 二、炼化装置腐蚀防护技术分类针对不同类型的腐蚀,炼化装置腐蚀防护技术主要包括材料选择、涂层保护、阳极保护和设备监测等技术手段。
### 1. 材料选择材料选择是炼化装置腐蚀防护的首要技术手段。
通过选择抗腐蚀性能良好的材料,如不锈钢、耐酸碱合金等,可以减少设备受腐蚀的程度,延长设备的使用寿命,从而提高设备的安全性和可靠性。
### 2. 涂层保护涂层保护是通过在设备表面涂覆一层耐蚀涂料,以隔绝设备表面和介质的直接接触,从而达到防腐蚀的目的。
常用的涂层材料包括环氧树脂、聚氨酯、氟树脂等,这些材料具有良好的耐蚀性能和耐高温性能。
### 3. 阳极保护阳极保护是一种利用阳极保护原理来降低金属材料在电化学腐蚀介质中的腐蚀速率的技术手段。
通过在设备表面安装阳极,利用阳极与金属材料产生电流的原理,减少金属材料的电化学腐蚀,从而实现腐蚀防护的效果。
### 4. 设备监测设备监测是通过各种先进的监测设备,对设备进行实时、全面的监测,及早发现设备腐蚀问题并采取相应的修复措施,以减少腐蚀损失,提高设备的安全性和可靠性。
## 三、炼化装置腐蚀防护技术应用案例分享### 案例一:材料选择某炼化装置使用的废气处理设备,在设计选择材料时,充分考虑了废气中的酸性物质对设备的腐蚀影响,最终选择了具有良好抗酸蚀性能的不锈钢材料,保证了设备能够稳定运行。
炼油设备的腐蚀及其防护对策1. 引言炼油设备在石油加工过程中起着至关重要的作用。
然而,由于炼油设备经过长时间高温高压操作,其表面容易受到腐蚀的影响。
腐蚀会导致设备性能下降、寿命缩短甚至发生事故。
因此,了解炼油设备的腐蚀机理以及采取适当的防护对策对于确保设备运行的稳定性和安全性至关重要。
2. 炼油设备的常见腐蚀类型2.1 酸性腐蚀酸性腐蚀是指由于介质中存在酸性物质,如硫酸、盐酸等,使得炼油设备表面金属发生腐蚀反应的情况。
酸性腐蚀会导致设备金属表面产生洗蚀、蚀孔、蚀坑等现象,严重时甚至会造成设备的泄漏。
此外,酸性腐蚀还会破坏设备的防腐涂层,加剧腐蚀的发展。
2.2 电化学腐蚀电化学腐蚀是指由于设备金属表面与介质中的电解质产生电化学反应而导致的腐蚀现象。
电化学腐蚀包括腐蚀速率较慢的普通腐蚀和速度较快的局部腐蚀。
普通腐蚀是在整个金属表面均匀腐蚀的现象,而局部腐蚀则是在特定部位出现的腐蚀现象。
电化学腐蚀的发生与介质的PH值、温度、溶解氧的含量以及金属的电位等因素密切相关。
2.3 废物腐蚀废物腐蚀是由于炼油过程中产生的废物或副产物对设备金属表面产生腐蚀作用导致的。
废物中常含有硫、盐等腐蚀性物质,它们在炼油设备中积聚并引发腐蚀反应,加速设备的老化和腐蚀。
3. 炼油设备腐蚀防护对策3.1 材料选择选择适合的材料对于防止炼油设备腐蚀具有至关重要的意义。
通常情况下,不同的腐蚀环境对材料的腐蚀性能要求不同。
例如,在酸性环境中,具有良好耐酸性能的材料,如不锈钢等,是首选材料。
而在高温高压条件下,具有优异耐热性能的合金材料更适合作为炼油设备的构建材料。
3.2 防腐涂层采用防腐涂层是减缓炼油设备腐蚀的重要手段之一。
防腐涂层可以保护金属表面不受腐蚀介质的直接接触,减少腐蚀的发生。
通常采用的防腐涂层包括有机涂层和无机涂层。
有机涂层主要是环氧树脂、氟碳漆等,而无机涂层主要是陶瓷涂层、玻璃涂层等。
在选择防腐涂层时需要考虑介质的腐蚀性质以及操作条件。
炼油设备腐蚀与防护专题前面我们主要讲述了“金属腐蚀”的基本理论以及腐蚀防护的原则和方法。
本部分主要结合我们的专业特点,利用前面所讲的基本理论,来分析探讨有关炼油厂中的腐蚀情况以及采用的相关防腐措施。
炼油系统中的主要腐蚀介质炼油系统中的腐蚀介质主要来自于原油中的无机盐、硫化物、环烷酸、氮化物、微量金属元素以及石油开采和炼制过程中的各种添加剂等,在原油加工过程中,这些物质会变成或分解成为活性腐蚀介质腐蚀设备。
1. 无机盐类原油中的无机盐类主要有NaCl 、MgCl 2、CaCl 2等,盐类的含量一般为(5~130)×10-6,其中NaCl 约占75%、MgCl 2约占15%、CaCl 2约占10%左右,随原油产地的不同,Na 、Mg 、Ca 盐的含量会有很大的差异。
原油加工过程中,这些无机盐会水解成HCl 腐蚀设备,发生水解的反应式如下: HCl OH Mg O H MgCl 2)(2222+→+HCl OH Ca O H CaCl 2)(2222+→+钠盐通常在蒸馏的情况下不会水解,但当原油中有环烷酸和某些金属元素存在时,在300℃以前就有可能水解成HCl 。
2. 硫化物原油中存在的硫化物主要有硫化氢、硫醇、硫醚、二硫化物以及环状硫化物等。
胜利油以及中东油的含硫量都非常高,原油加工的过程中,硫化物会受热分解成硫化氢而产生腐蚀,硫化氢的生成量主要是由总硫含量、硫的种类及温度等众多因素决定的,但硫化氢的生成量与总的硫含量不成正比。
3. 环烷酸环烷酸是一种存在于石油中的含饱和环状结构的有机酸,其通式为RCH 2COOH ,石油中的酸性化合物包括环烷酸、脂肪酸、以及酚类,而以环烷酸的含量最多,故一般称石油中的酸为环烷酸,因此石油中的酸是一种非常复杂的混合物,其分子量的差别很大,在180~700之间,又以300~400之间的居多,其沸点范围大约在177~343℃之间。
4. 氮化物原油中的氮化物主要有吡啶、吡咯及其衍生物。
炼油装置设备的氢腐蚀、氢鼓包、氢脆和氢蚀1.氢鼓包定义:氢原子扩散到金属内部(大部分通过器壁),在另一侧结合为氢分子逸出。
如果氢原子扩散到钢内空穴,并在该处结合成氢分子,由于氢分子不能扩散,就会积累形成巨大内压,引起钢材表面鼓包甚至破裂的现象称为氢鼓包。
低强钢,尤其是含大量非金属夹杂物的钢,最容易发生氢鼓包。
产生氢鼓包的腐蚀环境:介质中通常含有硫化氢、或者砷化合物、或者氰化物、或者含磷离子等毒素。
这些介质阻止了放氢反应。
预防措施:消除毒素介质;如果不能消除,选用空穴少的镇静钢,也可采用对氢渗透低的奥氏体不锈钢。
或者采用镍衬里、衬橡胶衬里、塑料保护层、玻璃钢衬里等;有时加入缓蚀剂。
体心立方晶格的致密度为0.68(即晶格中有68%的体积被原子所占据,其余为空隙),配位数为8(配位数越大,原子排列越紧密,空隙越小);面心立方晶格和密排六方晶格的致密度为0.74,配位数为12。
2.氢脆定义:在高强钢中金属晶格高度变形,氢原子进入金属后使晶格应变增大,因而降低韧性及延性,引起脆化,这种现象为氢脆。
氢脆与钢内的空穴无关,所以仅仅靠使用镇静钢无效。
预防措施:选用对氢脆不敏感的材料,如选用含Ni、Mo的合金钢。
在制造过程中,尽量避免或减少氢的产生。
3.氢蚀定义:在高温高压环境下,氢进入金属内与一种组分或元素产生化学反应使金属破坏,称为氢蚀。
如在200℃以上氢进入低强钢内与碳化物反应生成甲烷气体,这种气体占有很大体积使金属内产生小裂缝及空穴,从而使钢变脆,在很小的形变下即破裂。
这种破裂没有任何先兆,是非常危险的。
预防措施:选用抗氢钢。
可选用16MnR(HIC)、15CrMoR(相当于1Cr-0.5Mo)、14Cr1MoR (相当于1.25Cr-0.5Mo)、2Cr-0.5Mo、2.25Cr-1Mo、2.25Cr-1Mo-0.25V、3Cr-1Mo-0.25V等。
抗氢钢中的Cr和Mo能形成稳定的碳化物,这样就减少了氢与碳结合的机会,避免了甲烷气体的产生。