第六章蛋白质翻译后修饰的鉴定
- 格式:ppt
- 大小:4.05 MB
- 文档页数:102
百泰派克生物科技
蛋白质修饰鉴定
蛋白质修饰及蛋白质翻译后修饰,指蛋白质在翻译中或翻译后经历的一个共价加工过程,在该过程中,蛋白质的1个或几个氨基酸残基可以共价结合不同的修饰基团而改变原来蛋白质的性质和功能。
目前已发现300多种不同的翻译后修饰,主要形式包括磷酸化、糖基化、甲基化、乙酰化、泛素化、羟基化、核糖基化和二硫键的配对等。
蛋白质翻译后修饰对维持机体正常生命活动具有重要作用,调节着蛋白质的活性状态、定位、折叠以及蛋白质与蛋白质之间的交互作用等。
蛋白质翻译后修饰鉴定就是对修饰类型、位点以及修饰水平进行鉴定,其分析鉴定难度远高于蛋白质的鉴定,主要是因为发生翻译后修饰的蛋白质样本量相对较少、发生修饰时形成的共价键很不稳定且处于动态变化中、修饰与未修饰的或多种修饰形式的蛋白质常混合存在。
目前,翻译后修饰蛋白质的分析主要是利用现有的蛋白质组学技术体系,包括电泳、色谱、生物质谱以及生物信息学工具等。
百泰派克生物科技采用Thermo Fisher的Q ExactiveHF质谱平台结合Nano-LC色谱,提供快速高效的蛋白质翻译后修饰鉴定服务技术包裹,您只需要将您的实验目的告诉我们并将您的样品寄给我们,我们会负责项目后续所有事宜,包括蛋白提取、蛋白酶切、修饰肽段富集、肽段分离、质谱分析、质谱原始数据分析、生物信息学分析,欢迎免费咨询。
蛋白质翻译和翻译后修饰的研究生物学中一个重要的领域是蛋白质翻译(protein translation)和翻译后修饰(post-translational modifications)的研究。
蛋白质是生物体内最重要的宏分子,它们在细胞内扮演着关键的功能和代谢角色。
因此,蛋白质翻译和修饰的过程非常复杂和精细,需要多个分子参与和精确协调。
本文将介绍一些最新的蛋白质翻译和修饰方面的研究进展。
1. 蛋白质翻译的基本过程蛋白质翻译是指从DNA模板转录出来的mRNA通过核糖体(ribosome)上的tRNA和氨基酸的匹配,合成具有特定氨基酸序列的蛋白质的过程。
这个过程分为三个主要的步骤:启动(initiation)、延伸(elongation)和终止(termination)。
在翻译的过程中,参与的分子有mRNA、核糖体、tRNA、氨基酸、同工酶(synthetase)、转录因子和辅因子。
最近的研究表明,这个过程包含很多的调控机制。
例如,启动因子eIF4F可以增加mRNA对核糖体的结合,从而促进翻译的开始。
而RNA结合蛋白eIF4B和eIF3则可以减慢或抑制翻译的速度。
此外,tRNA的修饰也可以影响翻译的精度和效率。
这些发现表明,蛋白质翻译不再是一个被动的过程,而是受到多种因素的调节和控制。
2. 翻译后修饰的多样性蛋白质合成完毕后,通常需要进一步的翻译后修饰,包括磷酸化、甲基化、丙酮化、酰化、酰胺化、硫醇化和二硫键形成。
这些修饰可以影响蛋白质的稳定性、活性、定位和相互作用性。
最近的研究发现,不同的修饰方式可以形成不同的修饰模式。
例如,在血管生成和肿瘤转移中,TNFα诱导的几种修饰模式(磷酸化、泛素化、SUMO化)共同参与了细胞内信号传导和基质蛋白的降解。
另外,细胞内内源性和外源性分子也可以参与修饰过程。
例如,在肝胰素调节和炎性应答中,白细胞介素-6通过抑制修饰酶PP2A的磷酸化来调控炎性基因的表达。
3. 研究的应用前景随着高通量测序和蛋白质组学技术的发展,我们可以对蛋白质合成和修饰的网络进行全面、系统的分析。
翻译后修饰和蛋白质表达这篇文章将介绍翻译后修饰对蛋白质表达的影响包括如何改变蛋白质功能翻译后修饰和蛋白质表达蛋白质是生物体内最基本的分子之一,扮演着许多生命活动中重要角色。
蛋白质表达是指蛋白质合成和功能的产生过程,而翻译后修饰则在蛋白质合成后对其进行改变,进一步调节其功能和稳定性。
本文将介绍翻译后修饰对蛋白质表达的影响,以及如何改变蛋白质功能。
一、翻译后修饰对蛋白质表达的影响1. 磷酸化修饰磷酸化是最常见的翻译后修饰方式之一,通过在蛋白质上添加磷酸基团来改变其结构和功能。
磷酸化修饰可以调节蛋白质的活性、稳定性以及与其他分子的相互作用。
磷酸化修饰还参与细胞信号传导、细胞周期调控等生物学过程。
2. 甲基化修饰甲基化修饰是通过在蛋白质上添加甲基基团来改变其功能。
甲基化修饰在染色质结构的调控中扮演重要角色,可以影响基因的转录和表达。
甲基化修饰还参与细胞分化、胚胎发育以及人类疾病的发生发展等过程。
3. 乙酰化修饰乙酰化修饰是指通过在蛋白质上添加乙酰基团来改变其功能。
乙酰化修饰可以调节蛋白质的稳定性、亲和力和活性。
乙酰化修饰还参与细胞代谢、基因转录调控以及细胞衰老等生命过程。
4. 糖基化修饰糖基化修饰是在蛋白质上附加糖分子来改变其功能。
糖基化修饰可以影响蛋白质的稳定性、折叠和识别。
糖基化修饰还参与细胞黏附、免疫应答以及疾病的发生发展等过程。
二、翻译后修饰如何改变蛋白质功能1. 调节蛋白质活性翻译后修饰可以通过改变蛋白质的结构和环境来调节其活性。
例如,磷酸化修饰可以激活或抑制蛋白质的酶活性。
2. 调控蛋白质-蛋白质相互作用翻译后修饰可以改变蛋白质与其他分子之间的相互作用。
例如,乙酰化修饰可以增强蛋白质与DNA之间的亲和力,从而影响转录调控。
3. 调整蛋白质稳定性翻译后修饰可以影响蛋白质的稳定性。
例如,甲基化修饰可以增强蛋白质的稳定性,延长其寿命。
4. 蛋白质定位和转运翻译后修饰可以调整蛋白质在细胞内的定位和转运。
蛋白质的翻译和翻译后修饰生命是由许许多多的分子组成的,而蛋白质是其中最为重要的一种。
蛋白质是由一串氨基酸组成的长链,这一长链需要经过翻译才能够转化为具有生物学功能的分子。
蛋白质的翻译和翻译后修饰是生命过程中最为重要的一环。
一、蛋白质的翻译大多数蛋白质翻译是在细胞的核内进行的,当DNA信息需要被转录成RNA信息时,核糖核酸(RNA)由RNA聚合酶开始合成。
生物体内细胞所合成的蛋白质大多是由核内DNA转录所得到的信息指令,它们之间的转化是通过RNA来实现的。
RNA只能单链存在,而DNA是双链的,因此DNA需要转录为RNA。
RNA与DNA之间的差别在于它们的碱基和糖分子不同,RNA的糖分子是核糖糖,而DNA的糖分子是脱氧核糖糖。
RNA分为mRNA、tRNA、rRNA三种类型。
其中,mRNA是单链的,又称为信使RNA,它携带着从DNA中转录来的信息,将这些信息传递到细胞质中的核糖体。
tRNA是转运RNA,它具有一定的三维结构,能够识别对应的氨基酸并将其运输到正在合成蛋白质的核糖体处。
rRNA是核糖体RNA,是组成核糖体的重要组成部分。
mRNA的翻译是通过核糖体完成的。
核糖体是由rRNA和蛋白质组成的复合物,每个核糖体可以同时合成一条蛋白质链。
当mRNA被核糖体识别后,它将被解码以便识别并对应一个氨基酸,这一过程是由tRNA完成的。
tRNA上有一个“反密码子”,它与mRNA相对应的“密码子”匹配,从而指示该tRNA上的氨基酸在蛋白质链的什么位置插入。
每次合成一个氨基酸后,核糖体会相对移动一个密码子,并等待下一个tRNA的到来。
这样反复进行直到整个蛋白质链合成完成。
在蛋白质链合成的过程中,核糖体会自动将一条完整的蛋白质链连在一起。
经过长时间的重复,整个蛋白质链就被合成出来了。
二、蛋白质翻译后修饰在蛋白质合成完成后,蛋白质还需要一些修饰才能够发挥其生物学功能。
蛋白质的修饰分为多种类型,包括切割、糖基化、磷酸化、酰化等,都是通过进一步地化学反应来修改已合成的蛋白质分子结构。
蛋白质的翻译后修饰和调控蛋白质是生命活动中最为重要的分子之一,它们既可以是细胞的结构组成,也可以作为代谢酶、激素、调节因子等生物分子的重要载体。
蛋白质的结构和功能不仅与其天然的氨基酸序列有关,还与其经过多种酶催化的修饰过程密切相关。
这些修饰包括:翻译后修饰、翻译后超表达、裂解和脱附等。
本文将重点探讨蛋白质的翻译后修饰和调控。
一、蛋白质翻译后修饰敲蛋白质的翻译过程通常被认为是从N-到C-端,从氨基基团到羧基,由核酸和翻译机械制成。
生物细胞内的合成蛋白质,则需要进行多种酶的修饰,以使其最终呈现出所要求的生物活性和三维结构。
1. 磷酸化磷酸化是蛋白质修饰的最为普遍的一种方式,通常是由一些酪氨酸或苏氨酸上的酸性侧链上结合的磷酸基所完成。
磷酸化可以使蛋白质结构和荷电特性发生改变,进而影响蛋白质的结合和催化活性。
2. 糖基化蛋白质上的糖基化通常是由一种糖基转移酶催化的,常见的糖基包括N-糖基、O-糖基和C-糖基等。
这些糖基化行为通常可以增强蛋白质的稳定性和生物学活性,还可以改变蛋白质的质量和凝聚性质。
3. 甲基化和乙酰化蛋白质上还经常会发生一些特定结构上的编辑修饰,如甲基化和乙酰化等。
这些修饰可以影响某些细胞稳定性和外界刺激对蛋白质的响应。
二、蛋白质翻译后调控蛋白质合成不仅受制于基因表达水平和翻译效率,还受到各种内部和外部因素的调控。
下面分别分析各种调控因素。
1.蛋白酶降解蛋白质的稳定性一般由蛋白酶进行去催化。
当细胞感觉到一定的环境刺激,如氧化应激或低钙离子等,在一个较短的时间内,通常会发生蛋白酶催化或蛋白利氧化等情况。
2.磷酸酶反应蛋白质的翻译后编辑修饰中,蛋白酶对蛋白质的磷酸化处于一种动态调控周期。
在细胞中,有一类蛋白质酶能够催化磷酸化的去除,并且有很好的选择性。
这意味着当细胞需要调节某些类型蛋白质的磷酸化状态时,通过控制这些蛋白质磷酸酶反应来实现。
3.转录因子转录因子是一些能够识别DNA序列的特异性蛋白质,它们可以促进或阻止基因的转录。
翻译后修饰蛋白组分析蛋白质翻译后修饰(PTMs)是指蛋白质在翻译中或翻译后的化学修饰过程。
蛋白质翻译后修饰(PTMs)通过给蛋白质添加磷酸酯,乙酸酯,酰胺基或甲基等官能团增加蛋白质组的功能多样性,并影响正常细胞生物学和发病机理的几乎所有方面。
蛋白质翻译后修饰在许多细胞过程中起着关键作用,如细胞分化、蛋白质降解、信号传导和调节过程、基因表达调节以及蛋白质相互作用。
蛋白质翻译后修饰PTMs通常包括磷酸化,糖基化,泛素化,亚硝基化,甲基化,乙酰化,脂质化和蛋白水解。
因此,PTM的特征(包括修饰类别和修饰位点)在细胞生物学以及疾病诊断和预防研究中至关重要。
蛋白质翻译后修饰(PTMs)受许多因素影响,鉴定过程比较繁琐。
例如:大多数翻译后修饰水平很低。
因此,在鉴定之前必须对修饰蛋白进行富集。
此外,修饰的稳定性以及质谱的检测效率也是PTMs分析过程中的关键因素。
百泰派克生物科技搭建有高级的分析平台,可用于表征各种翻译后修饰(PTM)。
BTP-蛋白质翻译后修饰鉴定能够解决的生物学问题百泰派克公司采用Thermo Fisher的Q ExactiveHF质谱平台,Orbitrap Fusion质谱平台,Orbitrap Fusion Lumos质谱平台结合Nano-LC,为广大科研工作者提供磷酸化/糖基化/泛素化/乙酰化/甲基化/二硫键/亚硝基化等翻译后修饰鉴定。
蛋白质氨基酸序列的特定位置可以与化学基团或者小分子量的蛋白共价结合从而发生蛋白质翻译后修饰(post-translational modifications,PTMs),相较于没有发生修饰的蛋白,PTMs会导致特定序列分子量的增加。
在蛋白翻译后修饰方式的鉴定过程中,蛋白会首先被酶切成肽段,然后进入质谱进行分析;通过质谱分析,得到的是一系列肽段的分子质量信息。
对于某一个特定肽段而言,在没有发生任何翻译后修饰的情况下,其序列信息和分子量是确定的;蛋白质翻译后修饰方式鉴定示意图当它发生了某种翻译后修饰之后,例如磷酸化修饰,由于序列信息和分子量是确定的,磷酸根的分子量也是确定的;在质谱检测过程中发现其中的部分肽段的分子量刚好增加了一个磷酸根的分子量,假设这个肽段就发生了磷酸化修饰,再通过二级质谱图进行二次确认。
蛋白质翻译后修饰指南蛋白质是构成生物体的重要组成部分,其翻译后修饰对于蛋白质的功能和稳定性具有重要的影响。
本指南将介绍蛋白质翻译后修饰的主要类型和作用,以及在实验室中常用的技术和方法。
一、蛋白质翻译后修饰的类型1. 糖基化:糖基化是一种常见的蛋白质翻译后修饰方式,它可以增加蛋白质的稳定性和溶解性,并调节蛋白质的功能。
糖基化的糖链可以通过N-糖基化和O-糖基化两种方式与蛋白质结合。
2. 磷酸化:磷酸化是一种通过添加磷酸基团来改变蛋白质功能的修饰方式。
磷酸化可以调节蛋白质的酶活性、亲和力和细胞定位,从而影响细胞信号传导和许多生物学过程。
3. 乙酰化:乙酰化是一种通过添加乙酰基团来改变蛋白质的修饰方式。
乙酰化可以影响蛋白质的结构和亲和力,从而调节其功能、稳定性和细胞定位。
4. 甲基化:甲基化是一种通过添加甲基基团来改变蛋白质的修饰方式。
甲基化可以影响蛋白质的稳定性、DNA或RNA结合能力,从而调节基因表达和细胞分化。
二、蛋白质翻译后修饰的作用1. 调节蛋白质功能:翻译后修饰可以改变蛋白质的结构和活性,进而影响其功能。
例如,磷酸化可以调节酶的活性,糖基化可以影响蛋白质的折叠和稳定性。
2. 控制蛋白质降解:某些翻译后修饰方式可以促进或抑制蛋白质的降解,从而控制蛋白质在细胞内的寿命和稳定性。
例如,泛素化是一种促进蛋白质降解的修饰方式。
3. 调控细胞信号传导:许多翻译后修饰方式可以调节细胞内的信号传导通路。
例如,磷酸化可以激活或抑制信号蛋白的功能,从而影响细胞的生理过程。
三、蛋白质翻译后修饰的实验方法1. 质谱分析:质谱分析是研究蛋白质翻译后修饰的重要方法之一。
通过质谱仪可以检测修饰蛋白质的质量和结构,从而确定修饰的类型和位置。
2. 免疫印迹:免疫印迹是一种常用的蛋白质检测方法,可以用于检测特定修饰的蛋白质。
通过使用特异性的抗体,可以识别和分析特定修饰方式下的蛋白质。
3. 免疫组织化学:免疫组织化学是一种用于研究修饰蛋白质在细胞或组织中的定位和表达的方法。
蛋白质的翻译和翻译后修饰蛋白质是细胞中最基本的生物大分子,参与了生物体内几乎所有的生命活动。
蛋白质的合成涉及到翻译过程和翻译后修饰两个主要步骤。
一、蛋白质的翻译蛋白质的翻译是指将mRNA上的遗传信息转化为氨基酸序列的过程。
这一过程主要发生在细胞质中的核糖体上。
1. 启动子与小核仁RNA(rRNA)的结合:翻译开始前,mRNA的5'端结合到核糖体小亚基上的小核仁RNA,形成启动复合体。
这一步骤确保正确的起始点和适当的翻译框架。
2. 外显子剪接和核糖体扫描:mRNA经过剪接后,转录内含子被去除,形成成熟的mRNA转录本。
核糖体扫描该mRNA,寻找起始密码子(AUG),确定翻译开始位置。
3. 起始复合物形成:核糖体识别起始密码子并与亚单位Met-tRNAiMet结合,形成起始复合物。
这一复合物包含大、小核糖体亚基以及tRNAiMet。
4. 转移rna(tRNA)结合:核糖体在mRNA上滑动,直到识别到一个新的密码子。
合适的tRNA通过抗密码子与mRNA上的密码子配对,保证正确的氨基酸被加入到蛋白质链上。
5. 肽键形成和elongation:肽键的形成是翻译的关键步骤,它由蛋白合成酶催化,将新到达的氨基酸与蛋白质链上的上一氨基酸连接起来。
步骤重复进行,直到到达终止密码子。
6. 翻译终止:终止密码子标志着蛋白质链的结束。
在终止密码子到达时,核糖体与复合物解离,蛋白质链被释放,并经过后续的修饰和折叠。
二、蛋白质的翻译后修饰蛋白质翻译后经历一系列修饰过程,使其成为活性蛋白质并能够履行其功能。
1. 氨基酸修饰:氨基酸修饰包括磷酸化、甲基化和乙酰化等。
这些修饰可以改变蛋白质的稳定性、活性以及与其他分子的相互作用。
2. 糖基化修饰:糖基化修饰是将糖基添加到蛋白质上,形成糖蛋白。
糖蛋白在细胞识别、细胞黏附和信号传导等过程中起着重要作用。
3. 蛋白质折叠:翻译后的蛋白质链通常处于未折叠的状态,需要经过蛋白质折叠过程才能形成稳定的三维结构。
蛋白质合成中的转录后修饰和翻译后修饰蛋白质是生命活动中不可或缺的分子,它们在细胞内发挥着重要的功能。
在细胞合成蛋白质的过程中,转录后修饰和翻译后修饰是两个关键的步骤。
本文将探讨这两个过程及其在蛋白质合成中的作用。
一、转录后修饰1. 外消旋修饰外消旋修饰是在RNA合成结束后对RNA分子进行的修饰过程。
在这个过程中,一些特定的酶能够识别RNA分子上的特定序列并进行修饰。
这些修饰能够改变RNA的结构和功能,影响蛋白质的合成和功能。
2. RNA剪接修饰RNA剪接是在RNA分子合成过程中的一个重要步骤。
在这个过程中,一些特定的酶能够将含有不同外显子序列的RNA链拼接起来,形成成熟的mRNA分子。
这个过程能够产生多种不同的mRNA,从而影响蛋白质的编码和表达。
3. RNA编辑修饰RNA编辑是在RNA合成过程中的一个重要修饰方式。
在这个过程中,一些特定的酶能够通过添加、删除或改变RNA分子上的碱基,改变RNA的序列和结构。
这个修饰过程能够增加RNA的多样性,从而影响蛋白质的翻译和功能。
二、翻译后修饰1. N-糖基化修饰N-糖基化是蛋白质翻译后修饰中的一种常见形式。
在这个过程中,一些特定的酶能够将糖基添加到蛋白质分子的氨基酸残基上,改变其结构和功能。
N-糖基化修饰能够影响蛋白质的稳定性、活性以及相互作用。
2. 磷酸化修饰磷酸化是蛋白质翻译后修饰中的一种重要形式。
在这个过程中,一些特定的酶能够将磷酸基团添加到蛋白质分子的氨基酸残基上,改变其电荷特性和结构。
磷酸化修饰能够影响蛋白质的稳定性、活性以及参与信号转导等功能。
3. 甲基化修饰甲基化是蛋白质翻译后修饰中的一种常见形式。
在这个过程中,一些特定的酶能够在蛋白质分子上的亚氨基酸残基上添加甲基基团,改变其结构和功能。
甲基化修饰在蛋白质的稳定性、相互作用以及参与细胞分化和发育等方面起着重要作用。
蛋白质合成中的转录后修饰和翻译后修饰是两个不可或缺的过程,它们能够影响蛋白质的结构和功能,调控细胞的生理活动。
蛋白质翻译后修饰和蛋白质相互作用的研究蛋白质是细胞内重要的生物大分子之一,担负着各种功能。
蛋白质的生物功能与其结构密不可分,蛋白质分子的结构和功能是通过蛋白质翻译后的修饰和相互作用进行调控的。
蛋白质翻译后修饰是指蛋白质在合成后的修饰。
这些修饰包括蛋白质的磷酸化、甲基化、乙酰化、泛素化等,这些化学修饰可以改变蛋白质分子的三维构象,从而影响蛋白质的生物活性、局部稳定性和相互作用。
磷酸化修饰是最常见的一种蛋白质修饰方式之一,例如细胞周期蛋白激酶(CDK)磷酸化可以导致细胞周期进程的调节。
除了生物大分子内部的蛋白质修饰,蛋白质与其他生物大分子的相互作用也十分重要。
蛋白质相互作用可以改变蛋白质分子的构象和功能,从而影响细胞的生物学过程。
蛋白质与蛋白质的相互作用,例如酶的催化、信号转导等,这些相互作用往往具有特异性和多样性。
此外,蛋白质与各种配体的相互作用也是十分重要的,例如受体与荷尔蒙、免疫球蛋白与抗原、血红蛋白与氧气等。
近年来,蛋白质翻译后修饰与蛋白质相互作用已成为研究热点。
随着各种现代生物技术的迅速发展,例如蛋白质组学、蛋白质质谱学、蛋白质晶体学等,研究人员可以更准确地解析蛋白质的结构和功能。
通过对蛋白质修饰的分析和生物大分子之间的相互作用,可以进一步揭示生物体内复杂的生物学事件,例如蛋白质降解、信号转导、基因表达调节等。
同时,这些研究也为发现肿瘤、病原体、自身免疫等疾病的新靶标提供了借鉴和思路。
除此之外,同时关注蛋白质翻译后修饰和蛋白质相互作用的研究也扩大了对药物结构和药效的理解,从而有利于新药研发。
例如,因特殊修饰而激活或抑制一些特定的蛋白质,研究人员可以针对这些修饰点开发有针对性的新药物。
同时,发现特定分子间相互作用失调引起的病理状态,对这些互作分子间相互作用进行调节,也可以成为治疗某些疾病的途径。
总之,蛋白质翻译后修饰和蛋白质相互作用是研究蛋白质结构和功能的重要方向之一。
这种对蛋白质的深入研究在生物学、医学和药学等多个领域具有重要意义。
百泰派克生物科技
蛋白翻译后修饰
很多蛋白质在加工合成过程中都要经历一个共价修饰的过程,即在相应酶作用条件下,通过在氨基酸残基处加上官能基团而改变蛋白质的性质,这种过程称为蛋白质翻译后修饰(PTMs, post-translation modifications)。
目前,已发现超过400多种不同的翻译后修饰,主要形式包括糖基化、磷酸化、甲基化、乙酰化、泛素化等。
蛋白质翻译后修饰具有重要的生理意义,参与调节多项生命活动,如蛋白质的物理化学性质、活性状态、细胞定位、信号传导及蛋白之间的相互作用等。
蛋白质翻译后修饰组学主要研究蛋白质翻译后修饰的类型及发生该种修饰的水平。
目前,常用的蛋白质翻译后修饰鉴定方法有电泳法、色谱法、生物质谱等。
由于蛋白质翻译后修饰存在水平较低,形成的共价键不稳定,修饰前后差异不显著,种类多样且可能同时存在等问题,故对其进行鉴定有一定的难度,进而在研究中对修饰蛋白质进行富集分离至关重要。
百泰派克生物科技基于Thermo公司最新推出的Obitrap Fusion Lumos质谱仪结合Nano-LC,提供蛋白质翻译后修饰组学服务,包括磷酸化/糖基化/泛素化/乙酰化/甲基化/二硫键等翻译后修饰鉴定,欢迎免费咨询。
Chapter VChapter VPost‐translational ModificationOf ProteinsOne gene more proteinsOne gene, more proteins•蛋白质翻译后修饰(PTM)是指蛋白质在翻译中或翻译后经历的个共价加工过程,即通过1个或几个氨基酸残基加上修饰的一个基团或通过蛋白质水解剪去基团而改变蛋白质的性质。
•从定义的角度,可以如下理解蛋白质翻译后修饰:1. 对某氨基酸的修饰包括共价连接简单的官能团(如乙酰基或磷酸基)1对某一氨基酸的修饰包括和引入一些复杂结构,如脂类和糖类。
2. 将已经结束翻译的转录本产物切割成成熟的形式,如信号肽或活性肽的加工等。
3. 氨基酸的交联,如丝氨酸和酪氨酸。
•可以说,蛋白质组中任一蛋白质都能在翻译时或翻译后进行修饰。
不同类型的修饰都会影响蛋白质的电荷状态、疏水性、构饰不同类型的修饰都会影响蛋白质的象和(或)稳定性,最终影响其功能。
•诸多实例表明蛋白质的修饰都采取一种可逆模式‐“开”或“关”的状态行或者调节蛋白质的功能或者作为个真实的分的状态进行,或者调节蛋白质的功能,或者作为一个真实的分子开关。
•目前已发现300多种不同的翻译后修饰,主要形式包括磷酸化、糖基化、乙酰化、泛素化、羧基化、核糖基化以及二硫键的配对等。
等•加入官能团乙酰化—通常于蛋白质的N末端加入乙酰。
磷酸化—加入磷酸根至Ser、Tyr、Thr或His。
糖化—将糖基加入Asn、羟离氨酸、Ser或Thr,形成糖蛋白。
烷基化加入如甲基或乙基等烷基。
—甲基化—烷基化中常见的一种,在Lys、Arg等的侧链氨基上加入甲基。
生物素化—主要有组蛋白的生物素酰化修饰,由羧化全酶合成酶与组蛋白直接相互作用完成,以及生物素附加物令赖氨酸残基酰化。
以及生物素附加物令赖氨酸残基酰化谷氨酸化—谷氨酸与导管素及其他蛋白质之间建立共价键。
甘氨酸化—一个至超过40种甘氨酸与导管素的C末端建立共价键。