数学建模及典型案例分析共28页
- 格式:ppt
- 大小:2.79 MB
- 文档页数:28
数学建模案例分析数学建模是将现实问题转化为数学模型,并利用数学方法对模型进行求解的过程。
它是数学与实际问题结合的重要手段,能够帮助人们深入理解问题的本质,提供科学的决策依据。
以下是一个数学建模案例分析。
市有4个城区,现准备改造城市供水系统,以满足未来的供水需求。
根据过往的数据分析,每个城区的用水量与其人口数量、平均收入以及大型工厂的数量有关。
现在的问题是如何设计供水系统,使得满足各城区的用水需求,并且降低总成本。
为了解决这个问题,我们需要进行数学建模。
首先,我们需要确定影响用水量的因素。
1.人口数量:根据过往数据,我们可以得到人口数量与用水量之间的关系。
假设每增加1个人口,用水量增加A升,其中A为一个常数。
2.平均收入:平均收入的提高可能会促使人们增加用水量。
假设平均收入每提高1个单位,用水量增加B升,其中B为一个常数。
3.大型工厂数量:大型工厂对水的需求较大,可能对城区的用水量产生较大的影响。
假设每增加1个大型工厂,用水量增加C升,其中C为一个常数。
通过对过往数据的分析和回归分析,我们可以得到A、B和C的具体数值。
然后,我们可以建立供水系统的数学模型:设城区1、城区2、城区3和城区4的人口分别为x1、x2、x3和x4,平均收入分别为y1、y2、y3和y4,大型工厂数量分别为z1、z2、z3和z4设城区1、城区2、城区3和城区4的用水量分别为w1、w2、w3和w4根据前述的假设,我们可以得到数学模型:w1=A*x1+B*y1+C*z1w2=A*x2+B*y2+C*z2w3=A*x3+B*y3+C*z3w4=A*x4+B*y4+C*z4此外,由于我们希望降低总成本,我们还需要引入成本模型。
假设供水系统的建设成本与每个城区的用水量成正比,并且平均每增加1升用水量,建设成本增加D元,其中D为一个常数。
设城区1、城区2、城区3和城区4的建设成本分别为cost1、cost2、cost3和cost4根据成本因素,我们可以得到成本模型:cost1 = D * w1cost2 = D * w2cost3 = D * w3cost4 = D * w4接下来,我们需要优化这个数学模型。
数学建模经典案例分析以葡萄酒质量评价为例一、本文概述本文旨在通过深入剖析数学建模在葡萄酒质量评价中的应用,展示数学建模的经典案例。
我们将首先简要介绍数学建模的基本概念及其在各个领域的应用,然后聚焦葡萄酒质量评价这一具体问题,阐述如何通过数学建模对其进行科学、客观的分析。
文章将详细分析数据的收集与处理、模型的建立与求解、模型的验证与优化等关键环节,并探讨不同数学模型在葡萄酒质量评价中的优缺点。
我们将总结数学建模在葡萄酒质量评价中的实际应用效果,展望其在未来葡萄酒产业中的发展前景。
通过阅读本文,读者将能够了解数学建模在葡萄酒质量评价中的重要作用,掌握相关数学建模方法和技术,为类似问题的解决提供有益的参考和借鉴。
本文也将促进数学建模在葡萄酒产业中的应用与发展,推动葡萄酒产业的科技进步和产业升级。
二、数学建模基础数学建模是一种将实际问题抽象化、量化的过程,通过数学工具和方法来求解问题的近似解。
在葡萄酒质量评价这一案例中,数学建模提供了从复杂的实际生产环境中提取关键信息,并建立预测模型的可能。
这需要我们具备一定的数学基础,如统计学、线性代数、微积分等,同时也需要理解并掌握数据处理的基本技术,如数据清洗、特征提取和选择等。
在葡萄酒质量评价问题中,我们首先需要收集大量的葡萄酒样本数据,这些数据可能包括葡萄品种、产地、气候、土壤、酿造工艺、化学成分等多个方面的信息。
然后,我们需要对这些数据进行预处理,如去除缺失值、异常值,进行数据标准化等,以提高模型的稳定性和准确性。
接下来,我们可以选择适合的模型进行训练。
在这个案例中,我们可以选择线性回归、决策树、随机森林、神经网络等模型进行尝试。
我们需要根据数据的特性和问题的需求,选择最合适的模型。
同时,我们还需要进行模型的训练和验证,通过调整模型的参数,提高模型的预测能力。
我们需要对模型进行评估和优化。
这可以通过交叉验证、ROC曲线、AUC值等评估指标来进行。
如果模型的预测能力不足,我们需要对模型进行优化,如改进模型的结构、增加更多的特征等。
案例分析1:自行车外胎的使用寿命问题:目前,自行车在我国是一种可缺少的交通工具。
它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。
但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。
扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。
为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换?分析:分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断.若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。
这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。
产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。
我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。
寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。
本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。
如换成自行车的路程寿命来比较,就好得多。
产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。
弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。
自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。