心理与教育统计学第十章 同步练习与思考题
- 格式:doc
- 大小:44.00 KB
- 文档页数:1
现代心理与教育统计学(张厚粲)课后习题答案第一章绪论(略)第二章统计图表(略)第三章集中量数4、平均数约为36.14;中位数约为36.635、总平均数为91.726、平均联想速度为5.27、平均增加率约为11%;10年后的毕业人数约有3180人8、次数分布表的平均数约为177.6;中位数约为177.5;原始数据的平均数约为176.7第四章差异量数5、标准差约为1.37;平均数约为1.196、标准差为26.3;四分位差为16.037、5cm组的差异比10cm组的离散程度大8、各班成绩的总标准差是6.039、次数分布表的标准差约为11.82;第一四分位为42.89;第三四分位为58.41;四分位差为7.76第五章相关关系5、应该用肯德尔W系数。
6、r=0.8;r R=0.79;这份资料只有10对数据,积差相关的适用条件是有30对以上数据,因此这份资料适用等级相关更合适。
7、这两列变量的等级相关系数为0.97。
8、上表中成绩与性别有很强的相关,相关系数为0.83。
9、r b=0.069小于0.2.成绩A与成绩B的相关很小,成绩A与成绩B的变化几乎没有关系。
10、测验成绩与教师评定之间有一致性,相关系数为0.87。
11、9名被试的等级评定具有中等强度的相关,相关系数为0.48。
12、肯德尔一致性叙述为0.31。
第六章概率分布4、抽得男生的概率是0.355、出现相同点数的概率是0.1676、抽一黑球与一白球的概率是0.24;两次皆是白球与黑球的概率分别是0.36和0.167、抽一张K的概率是4/54=0.074;抽一张梅花的概率是13/54=0.241;抽一张红桃的概率是13/54=0.241;抽一张黑桃的概率是13/54=0.241;抽不是J、Q、K的黑桃的概率是10/54=0.1858、两个正面,两个反面的概率p=6/16=0.375;四个正面的概率p=1/16=0.0625;三个反面的概率p=4/16=0.25;四个正面或三个反面的概率p=0.3125;连续掷两次无一正面的概率p=0.18759、二项分布的平均数是5,标准差是210、(1)Z≥1.5,P=0.5-0.43=0.07(2)Z≤1.5,P=0.5-0.43=0.07(3)-1.5≤Z≤1.5,p=0.43+0.43=0.86(4)p=0.78,Z=0.77,Y=0.30(5)p=0.23,Z=0.61,Y=0.33(6)1.85≤Z≤2.10,p=0.482—0.467=0.01511、(1)P=0.35,Z=1.04(2)P=0.05,Z=0.13(3)P=0.15,Z=-0.39(4)P=0.077,Z=-0.19(5)P=0.406,Z=-1.3212、(1)P=0.36,Z=-1.08(2)P=0.12,Z=0.31(3)P=0.125,Z=-0.32(4)P=0.082,Z=-0.21(5)P=0.229,Z=0.6113、各等级人数为23,136,341,341,136,2314、T分数为:73.3、68.5、64.8、60.8、57、53.3、48.5、46.4、38.2、29.515、三次6点向上的概率为0.054,三次以上6点向上的概率为0.06316、回答对33道题才能说是真会不是猜测17、答对5至10到题的概率是0.002,无法确定答对题数的平均数18、说对了5个才能说看清了而不是猜对的19、答对5题的概率是0.015;至少答对8题的概率为0.1220、至少10人被录取的概率为0.1821、(1)t0.05=2.060,t0.01=2.784(2)t0.05=2.021,t0.01=2.704(3)t0.05=2.048,t0.01=2.76322、(1)χ20.05=43.8,χ20.0,1=50.9(2)χ20.05=7.43,χ20.0,1=10.923、(1)F0.05=2.31,F0.01=3.03(2)F0.05=6.18,F0.01=12.5324、Z值为3,大于Z的概率是0.0013525、大于该平均数以上的概率为0.0826、χ2以上的概率为0.1;χ2以下的概率为0.927、χ2是20.16,小于该χ2值以下概率是0.8628、χ2值是12.32,大于这个χ2值的概率是0.2129、χ2值是15.92,大于这个χ2值的概率是0.0730、两方差之比比小于F0.05第七章参数估计5、该科测验的真实分数在78.55—83.45之间,估计正确的概率为95%,错误概率为5%。
教育与心理统计学习题《教育与心理统计学》复习思考题一一、简答题3.简述点二列相关系数的应用条件。
4.简述t分布与标准正态分布的关系。
5.简述判断估计量优劣的标准。
6.什么是相关样本?请列举相关样本显著性检验的各种情况。
7.有人说:“t检验适用于样本容量小于30的情况。
Z检验适用于大样本检验”,谈谈你对此的看法8.什么是标准分数?使用标准分数有什么好处?9.简答标准Z分数的用途。
10.简答χ2分布具有哪些特点。
11.简述区间估计的涵义。
12.学业考试成绩为某,智力测验分数为y,已知这两者的r某y=0.5,IQ=100+15z,某学校根据学业考试成绩录取学生,录取率为15%,若一个智商为115的学生问你他被录取的可能性为多少,你如何回答他?二、计算题1.某年级200名学生在一次数学测验中的成绩如下表:已知数据如下表:成绩90~10080~8970~7960~6950~5940~4930~39(1)求其平均数(2)试计算组中值95857565554535频数累计频数103040544416620019016012066226累计频率1.000.950.800.600.330.110.03某70,某80。
(3)已知某考生的成绩为66分,试计算该考生的百分位。
3.已知在某年高考数学中,平均成绩为70分,标准差S15分,甲乙两考生的成绩分别为65分和80分,试计算他们的标准分数,如果该年的考试成绩服从正态分布N(70,152),试计算甲乙考生的百分位?4.已知在一次测验中数学平均成绩为75分,语文的平均成绩是数学平均成绩的1.2倍,语文成绩的标准差是数学成绩标准差的1.5倍,语文成绩Y与数学成绩某之间的相关系数为r0.75,(1)试求语文成绩Y与数学成绩某之间的回归方程。
(2)如果考生的数学成绩为60,试估计他的语文成绩Y,并计算估计的标准误(设SY10)?5.某校高一年级共150人,高一上学期由甲教师任教,在统考中平均成绩为75分,标准差S12分,高一下则由乙教师任教,期末统考中平均成绩为72分,标准差为S10分,假设该校所在城市两次考试成绩均服从正态分布,且总体平均成绩,总体标准差相同。
心理与教育统计绪论练习题与思考题一、单项选择题1. 下列数据中测量数据是参考答案 A 。
A、17公斤B、17人C、17个班D、17个样本2. 下列数据中计数数据是参考答案D 。
A、53秒B、53厘米C、53公斤D、53人 3. 有相等的单位又有绝对零的数据是参考答案 A 。
A、比率变量B、名称变量C、等距变量D、顺序变量4. 有相等单位但无绝对零的数据是参考答案C 。
A、比率变量B、名称变量C、等距变量D、顺序变量 5. 既无相等单位也无绝对零的数据是参考答案 D 。
A、比率变量B、名称变量C、等距变量6. 身高、体重、反应时的物理量属于参考答案A 。
A、比率变量B、名称变量C、等距变量D、顺序变量D、顺序变量7. 反应时各种感觉阈值的物理量是参考答案 A 。
A、比率变量B、名称变量C、等距变量D、顺序变量8. 学生的各种智商能力测试分数是参考答案 C 。
A、比率变量B、名称变量C、等距变量D、顺序变量9. 学生的品德等级能力等级是参考答案D 。
A、比率变量B、名称变量C、等距变量D、顺序变量10. 样本和总样的关系为参考答案D 。
A、大于B、小于C、等于D、小于等于11. 样本和总体的关系为参考答案B A、大于等于B、小于等于C、小于D、大于12. 样本和总体的关系为参考答案A A、小于等于B、小于C、大于等于D、大于13. 人数理统计学的奠基人是比利时的统计学家参考答案B A、韦特斯坦B、凯特勒C、高尔顿D、皮尔逊14. 人描述统计学产生于20世纪20年代之前其代表人物是参考答案D A、高斯和高而顿B、高尔顿和皮尔逊C、高斯和皮尔逊D、高尔顿和费舍15. 人推论统计学产生于20年代之后其创始者是参考答案A A、费舍B、高斯C、皮尔逊D、拉普拉斯16. 推论统计学产生于20年代之后其创始者是参考答案C A、卡特尔B、桑代克C、费舍D、瑟斯顿17. 1908年以quot 学生quotStudent笔名提出t分布开始建立小样本理论的统计学家是参考答案B A、卡特尔B、高赛特C、桑代客D、瑟斯顿18. 根据实验所获得的一组观察值计算得到的量数是参考答案C A、参数B、平均数C、统计量D、标准差19. 下列描述样本数据集中情况的统计指标是参考答案B A、平均数和标准差B、平均数、中数、众数C、参数D、统计量20. 人描述总体情况的统计指标是参考答案D A、平均数和标准差B、方差和标准差C、统计量D、参数21. 描述总体集中情况的统计指标称为参考答案C A、总体平均数B、期望值C、总体平均数或期望值D、总体期望值二、填空题1. 具有某种______的变量称为随机变量。
第一章同步练习与思考题1.解释下列名词的意思统计学教育统计学描述统计推断统计实验设计统计常态法则小数永存法则大量惰性原则有效数字随机变量数据总体个体样本参数统计量名称变量顺序变量等距变量比率变量连续变量离散变量计数数据度量数据指标标志绝对数相对数2.简述统计学和教育统计学的发展简史,整理其发展脉络。
3.简述教育统计学内容及其各内容之间的关系。
4.简述参数与统计量的区别和联系。
5.简述统计总体的基本特征。
6.论述教育统计学的重要意义。
7.论述教育统计学在教育科学研究中的作用。
8.简述指标与标志的区别与联系。
9.在括号内指出每一种情况有效数字的个数。
287 () 2.8700×104 ( ) 4023 ( )25.0400 ( ) 0.000499 ( ) 475.00 ( )10.如果不考虑测量结果,下列变量中哪些是连续变量,哪些是离散变量?①时间()②性别()③家庭的大小()④绝对感觉阈限()⑤职员工作评定等级()⑥测验成绩()11.试从变量的性质上,连续性上及数据类型上指出下列观测值所属的变量类型。
①李芳在班上名列第5名。
()②初二(3)班有女生24人。
()③王鹏跑100米用了16秒4。
()④丹丹的身高是150厘米。
()⑤朱华英做对了10道题。
()⑥郭明明的数学测验是90分。
()第三章同步练习与思考题1.解释下列名词集中量数集中趋势平均数中数众数几何平均数倒数平均数百分位数四分位数2.平均数、中数、众数三者之间有何关系?如何选用?3.中数与百分位数、四分位数的关系如何?4.为什么说平均数是最具代表性、最好的集中量指标?作为一种优良集中量的指标应具备哪些条件?集中量的各项指标各有什么特殊用途?5.分析平均速度时应如何选择计算方法?6.某校2001级心理班学生的普通心理学的考试成绩如下表。
试问①平均数、中数、众数分别是多少?②百分之40和百分之86位置上的分数是多少?③四分位数分别是多少?表3-11 学生普通心理学考试成绩分布表组别93- 90- 87- 84- 81- 78- 75- 72- 69- 66- 63- 60- 57- 54- 人数 1 2 4 5 7 11 8 7 5 3 2 3 1 17.请就下列各组数据选择最佳的集中量指标,并计算出结果。
心理与教育统计学课后题答案心理统计学试题及答案张厚粲现代心理与教育统计学第一章答案张厚粲现代心理与教育统计学第一章答案第一章1 名词概念(1)随机变量)答:在统计学上把取值之前,不能准确预料取到什么值的变量,称为随机变量。
(2)总体)答:总体(population)又称为母全体或全域,是具有某种特征的一类事物的总体,是研究对象的全体。
(3)样本)答:样本是从总体中抽取的一部分个体。
(4)个体)答:构成总体的每个基本单元。
(5)次数)是指某一事件在某一类别中出现的数目,又称作频数,用 f 表示。
(6)频率)答:又称相对次数,即某一事件发生的次数除以总的事件数目,通常用比例或百分数来表示。
(7)概率)答:概率(probability),概率论术语,指随机事件发生的可能性大小度量指标。
其描述性定义。
随机事件 A 在所有试验中发生的可能性大小的量值,称为事件 A 的概率,记为P(A)。
(8)统计量)答:样本的特征值叫做统计量,又称作特征值。
(9)参数)答:又称总体参数,是描述一个总体情况的统计指标。
(10)观测值)答:随机变量的取值,一个随机变量可以有多个观测值。
2 何谓心理与教育统计学?学习它有何意义?何谓心理与教育统计学?学习它有何意义?答:(1)心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育统计活动规律的一门学科。
具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。
(2)学习心理与教育统计学有重要的意义。
①统计学为科学研究提供了一种科学方法。
科学是一种知识体系。
它的研究对象存在于现实世界各个领域的客观事实之中。
它的主要任务是对客观事实进行预测和分类,从而揭示蕴藏于其中的种种因果关系。
目 录第一部分 考研真题精选一、单项选择题二、多项选择题三、简答题四、综合题第二部分 章节题库第1章 绪 论第2章 统计图表第3章 集中量数第4章 差异量数第5章 相关关系第6章 概率分布第7章 参数估计第8章 假设检验第9章 方差分析第10章 χ2检验第11章 非参数检验第12章 线性回归第13章 多变量统计分析简介第14章 抽样原理及方法第一部分 考研真题精选一、单项选择题1已知某小学一年级学生的体重平均数21kg,标准差3.2kg,身高平均数120cm,标准差6.0cm,则下列关于体重和身高离散程度的说法正确的是( )。
[统考2019研]A.体重离散程度更大B.身高离散程度更大C.两者离散程度一样D.两者无法比较【答案】A【解析】计算体重和身高的变异系数,CV体重=(3.2/21)×100%=15.2%,CV身高=(6/120)×100%=5%。
由此可知体重离散程度更大。
2已知某正态总体的标准差为16,现从中随机抽取一个n=100的样本,样本标准差为16,则样本平均数分布的标准误为( )。
[统考2019研]A.0.16B.1.6C.4D.25【答案】B【解析】总体正态,且方差已知,则样本平均数的分布为正态分布,标准误SE=σ/sqr(n)=16/10=1.6。
3如果学生参加压力量表测试的分数服从正态分布,平均数为5,标准差为2,那么分数处在5和9之间的学生百分比约为( )。
[统考2019研]A.34%B.48%C.50%D.68%【答案】B【解析】计算原始分数为5的标准分数Z1=0,原始分数为9的标准分数Z2=2,已知±1.96包含95%的个体,则可估计p(0<Z<2)=0.48。
4对样本平均数进行双尾假设检验,在α=0.10水平上拒绝了虚无假设。
如果用相同数据计算总体均值的置信区间,下列描述正确的是( )。
[统考2019研]A.置信区间不能覆盖总体均值B.置信区间覆盖总体均值为10%C.置信区间覆盖总体均值为90%D.置信区间覆盖总体均值为0.9%【答案】C【解析】置信度即置信区间覆盖总体均值的概率,题干说明置信度为1-α=0.90。
第一章 绪论 1. 名词解释随机变量:在统计学上,把取值之前不能预料取到什么值的变量称之为随机变量总体:又称为母全体、全域,指据有某种特征的一类事物的全体样本:从总体中抽取的一部分个体,称为总体的一个样本 个体:构成总体的每个基本单元称为个体次数:指某一事件在某一类别中出现的数目,又成为频数,用 f 表示频率:又称相对次数,即某一事件发生的次数被总的事件数目除,亦即某一数据出现的次数被这一组数据总个数去除。
频率通畅用比例或百分数表示 概率:又称机率。
或然率,用符号 P 表示,指某一事件在无限的观测中所能预料的相对出现的次数,也就是某一事物或某种情况在某一总体中出现的比率 统计量:样本的特征值叫做统计量,又叫做特征值参 数:总体的特性成为参数,又称总体参数,是描述一个总体情况的统计指标观测值:在心理学研究中,一旦确定了某个值,就称这个值为某一变量的观测值,也就是具体数据 2. 何谓心理与教育统计学? 学习它有何意义心理与教育统计学是专门研究如何运用统计学原理和方法,搜集。
整理。
分析心理与教育科学研究中获得的随机数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。
3. 选用统计方法有哪几个步骤?首先要分析一下试验设计是否合理,即所获得的数据是否适合用统计方法去处理,正确的数量化是应用统计方法的起步,如果对数量化的过程及其意义没有了解,将一些不着边际的数据加以统计处理是毫无意义的其次要分析实验数据的类型,不同数据类型所使用的统计方法有很大差别,了解实验数据的类型和水平,对选用恰当的统计方法至关重要第三要分析数据的分布规律,如总体方差的情况,确定其是否满足所选用的统计方法的前提条件 4. 什么叫随机变量? 心理与教育科学实验所获得的数据是否属于随机变量随机变量的定义:①率先无法确定,受随机因素影响,成随机变化,具有偶然性和规律性②有规律变化的变量 5. 怎样理解总体、样本与个体?总体 N :据有某种特征的一类事物的全体,又称为母体、样本空间,常用 N 表示,其构成的基本单元为个体。
第10章常用教育与心理实验设计1.试述教育实验设计的意义及作用。
答:教育实验或心理实验是一种计划好的有控制的教育研究,其目的是为了解答问题,检验假设和估计效果。
(1)教育实验设计的意义教育实验设计的意义主要表现为如下几个方面。
①教育实验设计是教育科学研究计划内关于研究方法与步骤的一项重要内容。
②在教育科研工作中,在制订研究计划时,都应根据实验的目的和条例,结合统计学的要求,针对实验的全过程,认真考虑实验设计问题。
③在教育科研工作中,一个周密而完善的实验设计,能合理地安排各种实验因素,严格地控制实验误差,最大限度地获得丰富而可靠的资料。
总之,教育实验设计是教育研究中实验过程的依据、实验数据处理的前提,也是提高科研成果质量的一个重要保证。
(2)教育实验设计的作用教育实验设计的作用主要包括如下几个方面。
①能够回答教育研究心理研究的某些问题;②安排教育与心理实验,获得实验数据;③节省人力和物力;④获得科学结论。
2.教育实验设计要遵循哪些原则?答:费希尔首先提出实验设计应遵循三个原则:重复、局部控制和随机化。
它们是提高实验精度的最有效的方法。
(1)重复重复是指每一因素的水平(或因素的水平组合)的实验次数不少于2。
重复的作用是为了估计实验误差和减少实验误差。
(2)局部控制局部控制是力求使得非实验的影响尽可能减少的一种做法。
即让非实验条件在多次重复的实验中具有同质性。
(3)随机化随机化是实验设计中能够应用统计方法的保证。
它是指实验对象或实验材料的分配,以及各次实验中的先后次序,等等,都是随机选择和安排的。
其目的是使实验结果尽量避免受到主客观系统因素的影响而出现偏倚性,其作用是正确地估计误差。
3.比较随机区组实验设计和析因实验设计的异同。
答:(1)相同点随机区组实验设计和析因实验设计都是用来考查各实验处理对因变量的影响的实验设计;都可以用在多因素的实验设计中。
(2)不同点①概念不同随机区组设计是指将实验对象按一定的标准划分为数个区组,使得区组内的实验对象的个别差异尽可能小,既保证区组内的同质性,并使每个区组均接受所有实验处理,且各个区组内每个处理仅有一次观测,其顺序是随机决定的。
《心理与教育统计学》(邵志芳)课后习题答案(注意!本答案是热心研友所作答案,其中很可能会有错误之处,仅供参考,欢迎大家指正)第一章1.统计学是研究随机现象的数量规律性的一门数学分支。
心理与教育统计学是统计学应用于心理学和教育学研究的分支。
其任务是为心理学和教育学研究者提供分析心理现象和教育现象的数量规律性的统计分析工具。
2.总体是共同具有某种特性的个体的总和。
样本是从总体中抽取的作为观测对象的一部分个体。
统计量是样本上的数字特征;参数是总体上的数字特征。
在进行统计推断时,就是根据样本统计量来推断相应的总体参数。
3.(1)随机现象(2)随机现象(3)确定现象(4)随机现象(5)确定现象(6)随机现象(7)随机现象(8)确定现象(9)随机现象(10)随机现象第二章11间断型比率量表2连续型比率量表3间断型比率量表4间断型比率量表5间断型称名量表6间断型比率量表7间断型顺序量表8间断型比率量表9间断型顺序量表10间断型顺序量表11间断型比率量表12间断型顺序量表13间断型顺序量表14间断型称名量表15连续型比率量表2不同的数据水平一般不能够相互转化3.4.5图略第三章1(1)84(2)89(3)420(4)观察数据加上、减去或者乘以一个数,等于其算术平均数加上、减去或者乘以这个数。
2(1)Md=13.5 (2)Md=123 S^=6.8 S=2.6084 32405 CV=10% CV=9.2% 可见男生成绩的差异大。
第四章1概率就是某事件出现的可能性的大小,有两种不同的定义:先验定义和后验定义。
先验概率就是无须试验就能得到的概率的大小,后验概率则是必须经过大量试验才能得到的概率大小。
2(1)0.077 (2)0.25 (3)0.5 (4)0.25 (5)0.1923 (1)0.0625 (2)0.0625(3)0.25 (4)0.00394 (1)0.008 (2)0.128第三章:3题方差为8.5 标准差为2.924题离差平方和为3159(这两道题用的是公式3.2.4c )第五章1 (1)1 (2)0.866 (3)0.04692 (1)0.38493 (2)0.30598 (3)0.41924(4)0.89726 (5)0.66141 (6)0.781933 理论上讲应有34人,占全班的68。
练习题1.什么叫效应值?它在实际研究中有何作用?2.Cohen d值是如何表达的?在单样本t检验、独立样本t检验和相关样本t检验中,d值的公式是如何变化的?3.统计量r²描述了什么?它在实际研究中有何作用?4.从一个均值为40的正态总体中选择一个n=16的样本。
对样本施测,处理后,评价处理效应的大小。
a.假设总体的标准差为8,计算Cohen d系数来评价一个样本均值为⎺x=42的样本的效应大小;b.假设总体的标准差为2,计算Cohen d系数来评价一个样本均值为⎺x=42的样本的效应大小;c.假设总体的标准差为8,计算Cohen d系数来评价一个样本均值为⎺x=48的样本的效应大小;d.假设总体的标准差为2,计算Cohen d系数来评价一个样本均值为⎺x=48的样本的效应大小;5.五年级学生的阅读成绩测验形成了一个均值为60,标准差为10的正态分布。
一个研究者想要评价一个新的阅读项目。
他对五年级学生的样本进行这个项目的培训,然后测量他们的阅读成绩。
a.假设研究者使用了一个n=16的样本,得到的测验分数均值为⎺x=62。
使用α=0.05的假设检验来确定项目是否有显著的作用。
用Cohen d系数来测量效应大小;b.现在假设研究者使用了一个n=100的样本,得到的测验分数均值为⎺x=62。
再使用假设检验来评价项目效果的显著性,计算Cohen d系数来测量效应大小;c.比较a和b得到的结果,解释样本大小怎样随机影响假设检验和Cohen d系数的。
6.从一个均值为100的总体中得到一个随机样本,对样本施测。
处理后,样本均值为⎺x=104,样本方差为S²=400。
a.假定样本包括n=16名被试,计算Cohen d系数和r²测量处理效应大小;b.假定样本包括n=25名被试,计算Cohen d系数和r²测量处理效应大小;c.比较在a和b部分得到的结果,样本量是如何影响效应大小的?7.下图是垂直一水平错觉的一个例子。
第11章非参数检验一、单项选择题1.秩和检验法首先由()提出。
A.弗里德曼B.维尔克松C.惠特尼D.克-瓦氏【答案】B【解析】秩和检验法首先由维尔克松提出,叫维尔克松两样本检验法,后来曼-特尼将其应用到两样本容量不等(n1≠n2)的情况,因而又称作曼-特尼维尔克松秩和检验,又叫曼-特尼U检验。
2.秩和检验与参数检验中的()相对应。
A.两独立样本平均数之差t检验B.相关样本的t检验C.独立样本的t检验D.配对样本差异显著性t检验【答案】C【解析】秩和检验法与参数检验中独立样本的t检验相对应。
由于t检验中要求“总体分布正态”,当这一前提不成立时就不能使用t检验,此时可以用秩和检验代替t检验。
当两个独立样本都为顺序变量时,也需使用秩和法来进行差异检验。
3.符号检验法与参数检验中的()相对应。
A.两独立样本平均数之差t检验B.相关样本的t检验C.独立样本的t检验D.配对样本差异显著性t检验【答案】D【解析】符号检验是以正负符号作为资料的一种非参数检验程序。
它是一种简单的非参数检验方法,适用于检验两个配对样本分布的差异,与参数检验中配对样本差异显著性t 检验相对应。
符号检验法将中数作为集中趋势的量度,虚无假设是配对资料差值来自中位数为零的总体。
具体而言,它是将两样本每对数据之差(X i-Y i)用正负号表示,若两样本没有显著性差异,则正差值与负差值应大致各占一半。
在实验中,当碰到无法用数字去描述的问题时,符号检验法就是一种简单而有效的检验方法。
4.在秩和检验中,当两个样本容量都大于10时,秩和分布为()。
A.T分布B.接近t分布C.接近正态分布D.接近F分布【答案】C【解析】在秩和检验中,一般认为当两个样本容量都大于10时,秩和T的分布接近正态分布。
其平均数及标准差公式为:1122T μ++=()1212112T n n n n σ++=其中n 1为较小的样本容量,即n 1≤n 2。
5.参数检验中两独立样本的平均数之差的t 检验,对应着非参数检验中的()。
现代心理与教育统计学(张厚粲)课后习题答案第一章绪论(略)第二章统计图表(略)第三章集中量数4、平均数约为36.14;中位数约为36.635、总平均数为91.726、平均联想速度为5.27、平均增加率约为11%;10年后的毕业人数约有3180人8、次数分布表的平均数约为177.6;中位数约为177.5;原始数据的平均数约为176.7第四章差异量数5、标准差约为1.37;平均数约为1.196、标准差为26.3;四分位差为16.037、5cm组的差异比10cm组的离散程度大8、各班成绩的总标准差是6.039、次数分布表的标准差约为11.82;第一四分位为42.89;第三四分位为58.41;四分位差为7.76第五章相关关系5、应该用肯德尔W系数。
6、r=0.8;r R=0.79;这份资料只有10对数据,积差相关的适用条件是有30对以上数据,因此这份资料适用等级相关更合适。
7、这两列变量的等级相关系数为0.97。
8、上表中成绩与性别有很强的相关,相关系数为0.83。
9、r b=0.069小于0.2.成绩A与成绩B的相关很小,成绩A与成绩B的变化几乎没有关系。
10、测验成绩与教师评定之间有一致性,相关系数为0.87。
11、9名被试的等级评定具有中等强度的相关,相关系数为0.48。
12、肯德尔一致性叙述为0.31。
第六章概率分布4、抽得男生的概率是0.355、出现相同点数的概率是0.1676、抽一黑球与一白球的概率是0.24;两次皆是白球与黑球的概率分别是0.36和0.167、抽一张K的概率是4/54=0.074;抽一张梅花的概率是13/54=0.241;抽一张红桃的概率是13/54=0.241;抽一张黑桃的概率是13/54=0.241;抽不是J、Q、K的黑桃的概率是10/54=0.1858、两个正面,两个反面的概率p=6/16=0.375;四个正面的概率p=1/16=0.0625;三个反面的概率p=4/16=0.25;四个正面或三个反面的概率p=0.3125;连续掷两次无一正面的概率p=0.18759、二项分布的平均数是5,标准差是210、(1)Z≥1.5,P=0.5-0.43=0.07(2)Z≤1.5,P=0.5-0.43=0.07(3)-1.5≤Z≤1.5,p=0.43+0.43=0.86(4)p=0.78,Z=0.77,Y=0.30(5)p=0.23,Z=0.61,Y=0.33(6)1.85≤Z≤2.10,p=0.482—0.467=0.01511、(1)P=0.35,Z=1.04(2)P=0.05,Z=0.13(3)P=0.15,Z=-0.39(4)P=0.077,Z=-0.19(5)P=0.406,Z=-1.3212、(1)P=0.36,Z=-1.08(2)P=0.12,Z=0.31(3)P=0.125,Z=-0.32(4)P=0.082,Z=-0.21(5)P=0.229,Z=0.6113、各等级人数为23,136,341,341,136,2314、T分数为:73.3、68.5、64.8、60.8、57、53.3、48.5、46.4、38.2、29.515、三次6点向上的概率为0.054,三次以上6点向上的概率为0.06316、回答对33道题才能说是真会不是猜测17、答对5至10到题的概率是0.002,无法确定答对题数的平均数18、说对了5个才能说看清了而不是猜对的19、答对5题的概率是0.015;至少答对8题的概率为0.1220、至少10人被录取的概率为0.1821、(1)t0.05=2.060,t0.01=2.784(2)t0.05=2.021,t0.01=2.704(3)t0.05=2.048,t0.01=2.76322、(1)χ20.05=43.8,χ20.0,1=50.9(2)χ20.05=7.43,χ20.0,1=10.923、(1)F0.05=2.31,F0.01=3.03(2)F0.05=6.18,F0.01=12.5324、Z值为3,大于Z的概率是0.0013525、大于该平均数以上的概率为0.0826、χ2以上的概率为0.1;χ2以下的概率为0.927、χ2是20.16,小于该χ2值以下概率是0.8628、χ2值是12.32,大于这个χ2值的概率是0.2129、χ2值是15.92,大于这个χ2值的概率是0.0730、两方差之比比小于F0.05第七章参数估计5、该科测验的真实分数在78.55—83.45之间,估计正确的概率为95%,错误概率为5%。
第十章同步练习与思考题
1.解释下列名词
方差分析变异率组间变异组内变异区组变异多重比较因素水平处理
2.简述方差分析的原理与过程。
3.试比较各种方差分析的异同。
4.26名被试分配在不同的情景中进行阅读理解的实验,结果如下表。
试问情景对学生的阅读理解成
5
6.研究者将20名被试随机分配在四种实验条件下进行实验,结果如下表。
试问四种实验条件对学生有无影响?
7.有人从四所学校中的8年级随机选择一个能力低的,一个能力一般的,一个能力高的学生。
得到如下结果。
试问各校之间是否存在显著差异。
低一般高
学校 A 71 92 89
学校 B 44 51 85
学校 C 50 64 72
学校 D 67 81 86
8.研究者为了研究年龄与学习任务的问题,选择了低年龄和高年龄的被试进行简单任务和复杂任务。