第四章信道复用
- 格式:pptx
- 大小:834.96 KB
- 文档页数:42
第一章绪论1-2何谓数字信号?何谓模拟信号?两者的根本区别是什么?答:数字信号:电信号的参量值仅可能取有限个值。
模拟信号:电信号的参量取值连续。
两者的根本区别是携带信号的参量是连续取值还是离散取值。
1-3何谓数字通信?数字通信偶哪些优缺点?答:利用数字信号来传输信息的通信系统为数字通信系统。
优点:抗干扰能力强,无噪声积累传输差错可控;便于现代数字信号处理技术对数字信息进行处理、变换、储存;易于集成,使通信设备微型化,重量轻;易于加密处理,且保密性好。
缺点:一般需要较大的传输带宽;系统设备较复杂。
1-4 数字通信系统的一般模型中各组成部分的主要功能是什么?答:信源编码:提高信息传输的有效性(通过数字压缩技术降低码速率),完成A/D转换。
信道编码/译码:增强数字信号的抗干扰能力。
加密与解密:认为扰乱数字序列,加上密码。
数字调制与解调:把数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号。
同步:使收发两端的信号在时间上保持步调一致。
1-5 按调制方式,通信系统如何分类?答:基带传输系统和带通传输系统。
1-6 按传输信号的特征,通信系统如何分类?答:模拟通信系统和数字通信系统。
1-7 按传输信号的复用方式,通信系统如何分类?答:FDM,TDM,CDM。
1-8 单工、半双工及全双工通信方式是按什么标准分类的?解释他们的工作方式。
答:按照消息传递的方向与时间关系分类。
单工通信:消息只能单向传输。
半双工:通信双方都能收发消息,但不能同时进行收和发的工作方式。
全双工通信:通信双方可以同时收发消息。
1-9 按数字信号码元的排列顺序可分为哪两种通信方式?他们的适用场合及特点?答:分为并行传输和串行传输方式。
并行传输一般用于设备之间的近距离通信,如计算机和打印机之间的数据传输。
串行传输使用与远距离数据的传输。
1-10 通信系统的主要性能指标是什么?答:有效性和可靠性。
1-11 衡量数字通信系统有效性和可靠性的性能指标有哪些?答:有效性:传输速率,频带利用率。
计算机⽹络-2-3-信道复⽤技术复⽤技术简单介绍image如图,在(a)图中,A1,B1,C1分别使⽤⼀个单独的信道和A2,B2,C2来进⾏通信,因此他们需要使⽤三个信道进⾏通信,但是呢,如果把它们在发送端上使⽤⼀个复⽤器,把这三个相互独⽴的信道“混合在⼀起”成为⼀个信道,这样呢,这三个就可以共享使⽤⼀个信道进⾏通信,在接收端使⽤⼀个分⽤器,把他们抽出来,分为把它们送到不同的接收端。
这就是所谓的信道复⽤技术。
信道复⽤可以分别频分复⽤和时分复⽤两⼤类。
下⾯我们就详细介绍这两种信道复⽤技术。
频分复⽤技术如图所⽰:⽤户在分到⼀定的频带后,在通信的⾃始⾄终都占⽤着这个信道资源,可见呢,不同的⽤户在同样的时间占⽤的是不同的信道资源。
在使⽤频分复⽤时,如果⽤户所占的带宽资源不变。
则当⽤户的数量增加时,服⽤后的信道的总带宽会⼤⼤增加。
时分复⽤技术将时间划分为⼀段段等长的时分复⽤帧,时分复⽤的⽤户在不同的时间招⽤不同的信道资源。
时分复⽤技术更利⽤于数字信号传输。
统计时分复⽤:是对时分复⽤的改进,它能够明显的提⾼信道的利⽤率。
如图:原理是将使⽤集中器连接4个低速的⽤户,然后把他们的数据通过⾼速线路发送到另⼀台远程计算机。
波分复⽤技术其实就是光的频分复⽤。
原理就是在⼀条光纤上搭载多条光波信号,这样就提出了光的波分复⽤这⼀名词。
由于现在⼀天光纤上能搭载越来越多的光型号,因此就⼜出现了密集波分复⽤这⼀名词。
如图,对于8路传输速率为2.5G/s的光载波,经过⼴的调制后,分别将波长变换到1550-1557nm,这8根波长经过光复⽤器,就会在⼀个光纤上传输。
,在⼀个光纤上总的传输速率为8X2.5G/s=20G/s。
但是光信号传输⼀定距离后会衰减,因此必须要对衰减的光信号进⾏放⼤才能继续传输。
因此呢,这就引出了⼀个光放⼤器的东西,现在的光放⼤器叫做掺饵光纤放⼤器。
这种放⼤器放⼤原理并不复杂,只是在1550nm波长附近有35nm的频带范围提供较均匀的增益。
信道复用技术[图解]信道复用技术[图解]Ø提出信道(多路)复用技术的基本原因Ø通信线路的架设费用较高,需要尽可能地充分使用每个信道的容量,尽可能不重复建设通信线路;Ø一个物理信道(传输介质)所具有的通信容量往往大于单个通信过程所需要的容量要求,如果一个物理信道仅仅为一个通信过程服务,必然会造成信道容量资源的浪费。
Ø信道(多路)复用技术实现的基本原理把一个物理信道按一定的机制划分为多个互不干扰互不影响的逻辑信道,每个逻辑信道各自为一个通信过程服务,每个逻辑信道均占用物理信道的一部分通信容量。
Ø实现信道多路复用技术的关键Ø发送端如何把多个不同通信过程的数据(信号)合成在一起送到信道上一并传输Ø接收端如何把从信道上收到的复合信号中分离出属于不同通信过程的信号(数据)Ø实现多路复用技术的核心设备Ø多路复用器(Multiplexer):在发送端根据某种约定的规则把多个低速(低带宽)的信号合成一个高速(高带宽)的信号;Ø多路分配器(Demultiplexer):在接收端根据同一规划把高速信号分解成多个低速信号。
多路复用器和多路分配器统称为多路器(MUX):在半双工和全双工通信系统中,参与多路复用的通信设备通过一定的接口连接到多路器上,利用多路器中的复用器和分配器实现数据的发送和接收。
信道复用技术的类型:FDM技术:Ø频分多路复用(FDM:Frequency Division Multiplexing)技术的适用领域Ø采用频带传输技术的模拟通信系统,如:广播电视系统、有线电视系统、载波电话通信系统等;ØFDM技术的基本原理Ø把物理信道的整个带宽按一定的原则划分为多个子频带,每个子频带用作一个逻辑信道传输一路数据信号,为避免相邻子频带之间的相互串扰影响,一般在两个相邻的子频带之间流出一部分空白频带(保护频带);每个子频带的中心频率用作载波频率,使用一定的调制技术把需要传输的信号调制到指定的子频带载波中,再把所有调制过的信号合成在一起进行传输。
2.单选1. 通信的任务就是传递信息。
通信系统至少需由三个要素组成,_______不是三要素之一。
A.信号B.信源C.信宿D.信道2. 下面关于几种有线信道传输介质性能特点的叙述中,错误的是________。
A.双绞线易受外部高频电磁波的干扰,一般适合于在建筑物内部使用B.同轴电缆的抗干扰性比双绞线差C.同轴电缆传输信号的距离比双绞线长D.光纤传输信号的安全性比使用电缆好得多3. 下列不属于数字通信系统性能指标的是________。
A.信道带宽B.数据传输速率C.误码率D.通信距离3. 某次数据传输共传输了10000000字节数据,其中有50bit出错,则误码率约为________。
A. 5.25乘以10的-7次方B. 5.25乘以10的-6次方C. 6.25乘以10的-7次方D. 6.25乘以10的-6次方4. 在以下信息传输方式中,________不属于现代通信范畴。
A.电报B.电话C.传真D.DVD影碟5. 以下选项________中所列都是计算机网络中数据传输常用的物理介质。
A.光缆、集线器和电源B.电话线、双绞线和服务器C.同轴电缆、光缆和电源插座D.同轴电缆、光缆和双绞线6. 构建以太网时,如果使用普通五类双绞线作为传输介质且传输距离仅为几十米时,则传输速率可以达到________。
A.1MbpsB.10MbpsC.100MbpsD.1000Mbps7. 关于光纤通信,下面的叙述中错误的是________ 。
A.光纤是光导纤维的简称B.光纤有很大的通信容量C.由于光纤传输信号损耗很小,所以光纤通信是一种无中继通信方式8. 以下有关光纤通信的说法中错误的是________。
A. 光纤通信是利用光导纤维传导光信号来进行通信的B. 光纤通信具有通信容量大、保密性强和传输距离长等优点C. 光纤线路的损耗大,所以每隔1~2公里距离就需要中继器D. 光纤通信常用波分多路复用技术提高通信容量9. 在光纤作为传输介质的通信系统中,采用的信道多路复用技术主要是________多路复用技术。
第一章绪论1.以无线广播和电视为例,说明图1-3模型中的信息源,受信者及信道包含的具体内容是什么在无线电广播中,信息源包括的具体内容为从声音转换而成的原始电信号,收信者中包括的具体内容就是从复原的原始电信号转换乘的声音;在电视系统中,信息源的具体内容为从影像转换而成的电信号。
收信者中包括的具体内容就是从复原的原始电信号转换成的影像;二者信道中包括的具体内容分别是载有声音和影像的无线电波2.何谓数字信号,何谓模拟信号,两者的根本区别是什么数字信号指电信号的参量仅可能取有限个值;模拟信号指电信号的参量可以取连续值。
他们的区别在于电信号参量的取值是连续的还是离散可数的3.何谓数字通信,数字通信有哪些优缺点传输数字信号的通信系统统称为数字通信系统;优缺点:1.抗干扰能力强;2.传输差错可以控制;3.便于加密处理,信息传输的安全性和保密性越来越重要,数字通信的加密处理比模拟通信容易的多,以话音信号为例,经过数字变换后的信号可用简单的数字逻辑运算进行加密,解密处理;4.便于存储、处理和交换;数字通信的信号形式和计算机所用的信号一致,都是二进制代码,因此便于与计算机联网,也便于用计算机对数字信号进行存储,处理和交换,可使通信网的管理,维护实现自动化,智能化;5.设备便于集成化、微机化。
数字通信采用时分多路复用,不需要体积较大的滤波器。
设备中大部分电路是数字电路,可用大规模和超大规模集成电路实现,因此体积小,功耗低;6.便于构成综合数字网和综合业务数字网。
采用数字传输方式,可以通过程控数字交换设备进行数字交换,以实现传输和交换的综合。
另外,电话业务和各种非话务业务都可以实现数字化,构成综合业务数字网;缺点:占用信道频带较宽。
一路模拟电话的频带为4KHZ带宽,一路数字电话约占64KHZ。
4.数字通信系统的一般模型中的各组成部分的主要功能是什么数字通行系统的模型见图1-4所示。
其中信源编码与译码功能是提高信息传输的有效性和进行模数转换;信道编码和译码功能是增强数字信号的抗干扰能力;加密与解密的功能是保证传输信息的安全;数字调制和解调功能是把数字基带信号搬移到高频处以便在信道中传输;同步的功能是在首发双方时间上保持一致,保证数字通信系统的有序,准确和可靠的工作。
第一章计算机网络:把分布在不同地理位置上的具有独立功能的多台计算机、终端及其附属设备在物理上互连,按照网络协议相互通信,以硬件、软件和数据资源为目标的系统称为计算机网络。
介质访问控制方式:CSMA/CD(载波监听多路访问/冲突检测)星型拓扑结构:优点:①非中心节点出现故障时影响小。
②网络扩展容易③控制和诊断方便④访问协议简单。
缺点:过分依赖中心节点。
星型拓扑结构中,中心节点是整个网络的瓶颈,一旦出现故障会使整个网络瘫痪。
总线型拓扑结构:优点:①硬件的角度看可靠性高(结构简单,无源元件)②易于扩充,增加新的站点容易③使用电缆较少,安装容易④使用的设备相对简单,可靠性高缺点:①故障诊断困难②故障隔离困难环形拓扑结构:优点:①路由选择控制简单②电缆长度短③适用于光纤缺点:①节点故障引起整个网络瘫痪②诊断故障困难时延:指一个数据包从一个网络的一端传送到另一端所需要的时间,主要由发送时延、传播时延、处理等待时延组成。
发送时延:指在发送数据时数据块从节点进入到传输媒体所需要的时间。
发送时延=数据块长度(比特)/信道宽带(比特/秒)传播时延:指电磁波在信道中需要传播一定的距离而花费的时间。
传播时延=信道长度(米)/信号在信道上的传播速率(米/秒)OSI(开放系统互连参考模型):“系统”是指计算机、终端、外部设备、信息传输设备、操作员及相应的集合;“开放”指按照OSI参考模型建立的任意两系统之间的连接或操作。
OSI将整个网络的通信功能划分成七个层次由低到高是:物理层、数据链路层、网络层、运输层、会话层、表示层和应用层。
(优点:①各层之间是独立的②灵活性好③结构上可分割开④易于实现和维护⑤能促进标准化工作)一、物理层(比特):作用是尽可能的屏蔽这些差异,对数据链路层提供统一的服务。
主要关心的是在连接各种计算机的传输媒体上传输数据的比特流。
二、数据链路层(帧):作用通过数据链路层协议在不太可靠的物理链路上实现可靠的数据传输。
物理层—信道复⽤信道复⽤的通俗来讲就是多个通信设备共享⼀条信道进⾏通信,这样的好处在与提⾼信道的利⽤率,在实际通信系统中能为建设信道节约成本。
1.频分复⽤技术FDM(Frequency Division Multiplexing) 频分复⽤技术就是⽤户在分配到⼀定的频带后,在通信过程中⾃始⾄终都占⽤这个频带,可见频分复⽤的所有⽤户在同样的时间占⽤不同的带宽资源。
这⾥的带宽指的是频率带宽⽽不是数据发送的速率。
在使⽤频分复⽤时,每⼀个⽤户占⽤的带宽不变,当复⽤的⽤户增加时,复⽤后的信道总宽度就会增加。
2.时分复⽤技术TDM(Time Division Multiplexing) 时分复⽤技术则是将时间划分为⼀段段等长的时分复⽤帧,称为TMD复⽤帧,每⼀个时分复⽤⽤户在每⼀个TMD帧中占⽤固定序号的时隙。
每⼀个时分复⽤⽤户所占的时隙是周期性的出现,因此TMD信号也称为等时信号。
可以看出,时分复⽤的所有⽤户是在不同的时间占⽤同样的频带宽度。
频分复⽤技术和时分复⽤技术都⽐较成熟,但是缺点就是不够灵活 在使⽤时分复⽤时,每⼀个时分复⽤帧的长度是保持不变的,始终是125us,当⽤户增加时,每⼀个⽤户所占的时分复⽤帧中的时隙就会相对减少。
3.统计时分复⽤技术STDM(Statics TDM) 在进⾏通信时,复⽤器和分⽤器总是成对的使⽤的。
在复⽤器和分⽤器之间是⽤户共享的⾼速信道。
分⽤器的作⽤正好和复⽤器的作⽤相反,它把⾼速信道传送过来的数据进⾏分⽤,分别交送到相应的⽤户。
当使⽤时分复⽤系统传送计算机数据时,由于计算机数据的突发性,⼀个⽤户对已经分到的⼦信道的利⽤率⼀般是不⾼的。
当⽤户在某⼀段时间内暂时⽆数据传输室,那就只能让已经分配到的⼦信道空闲着,⽽其他的⽤户也⽆法使⽤这个暂时空闲的线路资源。
当某个⽤户暂时⽆数据发送时,在时分复⽤帧中分配给该⽤户的时隙只能处于空闲状态,其他的⽤户即使⼀直有数据要发送,也不能使⽤这些空闲的时隙。
信道复用即频分复用(FDM,Frequency Division Multiplexing),就是将用于传输信道的总带宽划分成若干个子频带(或称子信道),每一个子信道传输1路信号。
要求总频率宽度大于各个子信道频率之和,同时为了保证各子信道中所传输的信号互不干扰,应在各子信道之间设立隔离带,这样就保证了各路信号互不干扰(条件之一)。
特点是所有子信道传输的信号以并行的方式工作,每一路信号传输时可不考虑传输时延,因而频分复用技术取得了非常广泛的应用。
频分复用技术除传统意义上的频分复用(FDM)外,还有一种是正交频分复用(OFDM)。
概述传统的频分复用传统的频分复用典型的应用莫过于广电HFC网络电视信号的传输了,不管是模拟电视信号还是数字电视信号都是如此,因为对于数字电视信号而言,尽管在每一个频道(8 MHz)以内是时分复用传输的,但各个频道之间仍然是以频分复用的方式传输的。
正交频分复用OFDM(Orthogonal Frequency Division Multiplexing)实际是一种多载波数字调制技术。
OFDM全部载波频率有相等的频率间隔,它们是一个基本振荡频率的整数倍,正交指各个载波的信号频谱是正交的。
OFDM系统比FDM系统要求的带宽要小得多。
由于OFDM使用无干扰正交载波技术,单个载波间无需保护频带,这样使得可用频谱的使用效率更高。
另外,OFDM技术可动态分配在子信道中的数据,为获得最大的数据吞吐量,多载波调制器可以智能地分配更多的数据到噪声小的子信道上。
目前OFDM技术已被广泛应用于广播式的音频和视频领域以及民用通信系统中,主要的应用包括:非对称的数字用户环线(ADSL)、数字视频广播(DVB)、高清晰度电视(HDTV)、无线局域网(WLAN)和第4代(4G)移动通信系统等。
时分复用时分复用(TDM,Time Division Multiplexing)就是将提供给整个信道传输信息的时间划分成若干时间片(简称时隙),并将这些时隙分配给每一个信号源使用,每一路信号在自己的时隙内独占信道进行数据传输。