土壤空气、土壤热量及水气热调节
- 格式:ppt
- 大小:2.78 MB
- 文档页数:41
第六章土壤水、空气和热量主要教学目标:学会分析土壤肥力要素水、气、热之间的关系。
由于土壤水分的重要作用,因此首先要求学生掌握土壤水的形态学观点和能量学观点。
在基本知识掌握的基础上,并能系统地处理土壤水、气、热三者的相互关系和调节措施。
主要内容:第一节:土壤水的类型第二节:土壤水分含量的表示方法第三节:土壤水分能量的分析第四节:土壤水分的管理与调节第五节:土壤空气和热量第六节:土壤水、气、热的相互关系第一节土壤水的类型土壤学中的土壤水是指在一个大气压下,在105℃条件下能从土壤中分离出来的水分。
土壤中液态水数量最多,对植物的生长关系最为密切。
液态水类型的划分是根据水分受力的不同来划分的,这是水分研究的形态学观点。
这一观点在农业、水利、气象等学科和生产中广泛应用。
一、吸湿水土壤颗粒从空气中吸收的汽态水分子。
从室外取土,放在室内风干若干时间后,表面上看似乎干燥了,但把土壤放在烘箱中烘烤,土壤重量会减轻;再放置到常温常压下,土壤重量又会增加,这表明土壤吸收了空气中的水汽分子。
土壤的吸湿性是由土粒表面的分子引力作用所引起的,一般来说,土壤中吸湿水的多少,取决于土壤颗粒表面积大小和空气相对湿度。
由于这种作用的力非常大,最大可达一万个大气压,所以植物不能利用此水,称之为紧束缚水。
二、膜状水土粒吸足了吸湿水后,还有剩余的吸引力,可吸引一部分液态水成水膜状附着在土粒表面,这种水分称为膜状水。
重力不能使膜状水移动,但其自身可从水膜较厚处向水膜较薄处移动,植物可以利用此水。
但由于这种水的移动非常缓慢(0.2—0.4mm/d),不能及时供给植物生长需要,植物可利用的数量很少。
当植物发生永久萎蔫时,往往还有相当多的膜状水。
三、毛管水当把一个很细的管子(毛细管)插入水中后,水分可以上升的较高于水平面,并保持在毛细管中。
毛管水:由于毛管力的作用而保持在土壤中的液态水。
毛管水可以有毛管力小的方向移向毛管力大的方向,毛管力的大小可用Laplace公式计算:P = 2T/r式中的P为毛管力,T为水的表面张力,r为毛管半径。
土壤水、空气和热量第六章土壤水、空气和热量目的要求:要求学生掌握土壤水分的来源和类型,水分的有效性与水分测定、表示方法,土壤水分运动状况。
土壤空气与热状况以及水、气、热与作物生长的关系。
第一节土壤水的类型划分及土壤水分含量的测定一、土壤水的类型划分及有效性(一)土壤水的类型划分土壤能保持水分是由于土粒表面的吸附力以及毛管孔隙的毛管力。
根据水分被土壤保持的力,将水分划为不同类型。
1. 吸湿水:土粒通过吸附力吸附空气中水汽分子所保持的水分称为吸湿水。
(1)特点:吸附力很强,对水汽分子的吸附可达31 至10000 个大气压,因而水的密度增大,可达 1.5g/cm 3 ,无溶解能力,不移动,通常是在105 °C ~110 °C 条件下烘干除去。
对植物无效。
(2)只含有吸湿水的土壤称为风干土;除去吸湿水的绝对干土称为烘干土。
风干土重烘干土重= ———————1+ 吸湿水%风干土重= 烘干土重×(1+ 吸湿水% )(3)影响因素:①土壤吸湿水含量受土壤质地的影响,粘质土吸附力强,保持的吸湿水多,砂质土则吸湿水含量低。
②吸湿水含量还受空气湿度的影响,空气相对湿度高,吸湿水含量也高,反之则吸湿水含量低。
2 、膜状水:土粒吸附力所保持的液态水,在土粒周围形成连续水膜,称为膜状水。
(1)特点:保持的力较吸湿水低, 6.25 ~31 大气压,水的密度较吸湿水小,仍粘滞而无溶解性;移动缓慢,由水膜厚的地方往水膜薄的地方移动,速度仅0.2 ~0.4 毫米/ 小时。
膜状水对植物有效性低,部分有效。
3. 毛管水:存在于毛管孔隙中为弯月面力所保持的水分称为毛管水。
毛管水又分为两类:①毛管上升水:与地下水有联系,随毛管上升保持在土壤中的水分。
②毛管悬着水:与地下水无联系,由毛管力保持在土壤中的水分,象悬在土壤中一样,故称毛管悬着水。
4. 重力水:受重力作用可以从土壤中排出的水分称为重力水,主要存在于通气孔隙中。
其土壤含水量的变化应等于其来水水增加,负值表示减少。
田间土壤水分收支示意图P 下渗水 D 降水灌溉 I上行水 U根据田间土壤水分示意图,可列出土壤水分平衡的数学表达式:P+l+U=E+T+R+In+D+△W式中:△W 表示计算时段末与时段初土体储水量之差(mm);公式中左侧为水分进入量;而右侧则为水分支出量。
当△W 为零时,说明,土层中水分无增无减,即收支平衡。
植物冠层截流 ln蒸腾、蒸发ET 径流损失 R动,并不断地与大气进行交换。
如果土壤空气和大气不进行交换,土壤空气中的氧气可能会在12~40h消耗殆尽。
土壤空气运动的方式有两种:对流和扩散。
(一)对流定义:是指土壤与大气间由总压力梯度推动的气体的整体流动,也称为质流。
土壤与大气间的对流总是由高压区流向低压区。
低压对流方向:高压总压力梯度的产生:气压变化、温度梯度、表面风力、降雨或灌溉、翻耕。
土壤空气对流方程式:q v = -(k /η) ▽pq v—空气的容积对流量(单位时间通过单位横截面积的空气容积);k —通气孔隙透气率;η —土壤空气的粘度;▽p —土壤空气压力的三维梯度。
空气对流量随着土壤透气率和气压梯度的增大而增大。
(二)扩散定义:在大气和土壤之间CO2和O2浓度的不同形成分压梯度,驱使土壤从大气中吸收O2,同时排出CO2的气体扩散作用,称为土壤呼吸。
是土壤与大气交换的主要机制。
扩散过程气相扩散液相扩散通过充气孔隙扩散保持着大气和土壤间的气体交流作用通过不同厚度水膜的扩散(二)扩散这两种扩散过程都可以用费克(Fick)定律表示:qd = - Ddc/dxqd — 扩散通量(单位时间通过单位面积扩散的质量);“-”— 表示方向D — 在该介质中扩散系数(其量纲为面积/时间);dc/dx — 浓度梯度对于气体来说,其浓度梯度常用分压梯度表示:qd = - (D/B) (dp/dx )B — 偏压与浓度的比扩散系数D值的大小取决于土壤性质,通气孔隙状况及其影响因素(质地、结构、松紧程度、土壤含水量等)(一)土壤热量来源太阳辐射能:土壤热量的最根本来源。