国内外密码学发展现状
- 格式:doc
- 大小:20.00 KB
- 文档页数:3
国内外分组密码理论与技术的研究现状及发展趋势1 引言 密码(学)技术是信息安全技术的核心,主要由密码编码技术和密码分析技术两个分支组成。
密码编码技术的主要任务是寻求产生安全性高的有效密码算法和协议,以满足对数据和信息进行加密或认证的要求。
密码分析技术的主要任务是破译密码或伪造认证信息,实现窃取机密信息或进行诈骗破坏活动。
这两个分支既相互对立又相互依存,正是由于这种对立统一的关系,才推动了密码学自身的发展[6]。
目前人们将密码(学)理论与技术分成了两大类,一类是基于数学的密码理论与技术,包括分组密码、序列密码、公钥密码、认证码、数字签名、Hash函数、身份识别、密钥管理、PKI技术、VPN技术等等,另一类是非数学的密码理论与技术,包括信息隐藏、量子密码、基于生物特征的识别理论与技术等。
在密码(学)技术中,数据加密技术是核心。
根据数据加密所使用的密钥特点可将数据加密技术分成两种体制,一种是基于单密钥的对称加密体制(传统加密体制),包括分组密码与序列密码,另一类是基于双密钥的公钥加密体制。
本文主要探讨和分析分组密码研究的现状及其发展趋势。
2 国内外分组密码研究的现状2.1 国内外主要的分组密码 美国早在1977年就制定了本国的数据加密标准,即DES。
随着DES的出现,人们对分组密码展开了深入的研究和讨论,已有大量的分组密码[1,6],如DES的各种变形、IDEA算法、SAFER系列算法、RC系列算法、Skipjack算法、FEAL系列算法、REDOC系列算法、CAST系列算法以及Khufu,Khafre,MMB,3-WAY,TEA,MacGuffin,SHARK,BEAR,LION,CA.1.1,CRAB,Blowfish,GOST,SQUA 算法和AES15种候选算法(第一轮),另有NESSIE17种候选算法(第一轮)等。
2.2 分组密码的分析 在分组密码设计技术不断发展的同时,分组密码分析技术也得到了空前的发展。
密码学课程的教学现状探索与分析密码学是现代信息安全领域的重要基础学科,随着信息技术的发展和应用范围的扩大,密码学的教学也变得愈发重要。
密码学课程的教学现状对于培养信息安全人才和保障网络安全具有重要意义。
本文将探索和分析密码学课程的教学现状,探讨如何更好地进行密码学课程的教学,以促进学生的综合能力培养和社会需求的契合。
密码学课程是信息安全专业的核心课程之一,其教学内容主要包括密码学的基本概念、加密算法、数字签名、身份认证、密钥交换等内容。
随着信息技术的不断更新和发展,密码学课程的教学也在不断更新和完善。
目前密码学课程的教学存在一些问题和挑战。
教学内容与实际需求不够契合。
传统的密码学课程主要关注密码算法的原理和数学基础,忽略了密码学在实际应用中的重要作用。
而随着网络安全问题的日益突出,密码学在网络安全中的应用越来越重要,因此密码学课程需要与实际应用结合,更加贴近实际需求。
教学方法和手段相对滞后。
密码学是一门理论与实践相结合的学科,传统的课堂教学方式往往难以满足学生的需求。
学生对密码学的学习往往停留在理论知识的学习上,缺乏实际操作和实践能力的培养。
密码学课程的教学方法和手段需要更新,更加注重学生的实际能力培养和创新意识的培养。
教师队伍的不足。
密码学是一门专业性较强的学科,而目前教师队伍的整体水平相对有待提高。
密码学教师的队伍缺乏高水平和专业化的教师,这直接影响到密码学课程教学的质量和效果。
提高密码学教师队伍的整体素质和能力成为密码学教学的一项重要任务。
教学资源的不足。
密码学课程所需的实验教学设备和实验室条件较为苛刻,而目前的大部分学校在这方面的投入还不够。
密码学课程的教材和教学资源相对不足,不能满足学生的学习需求。
提高密码学课程的教学资源配置是密码学教学面临的一项重要挑战。
二、密码学课程教学改革探索针对现有密码学课程教学存在的问题和挑战,有必要进行密码学课程教学改革探索,以提高密码学课程的教学质量和效果。
全球密码技术发展现状与趋势分析密码技术被广泛运用在各个领域中,如: 移动支付、电子金融、医疗保健、云计算等等。
随着全球信息化的不断推进,密码技术在保障信息安全方面的作用越来越重要。
那么,全球密码技术发展现状与趋势如何呢?一、密码技术发展现状目前,全球密码技术的发展可以分为以下几个方面。
1.量子密码技术量子密码技术是密码技术领域的一种前沿技术,它采用量子态进行加密,能够在一定程度上解决传统密码技术中的安全问题。
这种方法将完美保障信息安全,目前在世界范围内已经有很多机构在研究。
2.区块链密码技术区块链技术的出现一度引起了全球关注,而区块链密码技术则是区块链技术的重要组成部分。
该技术采用哈希算法进行加密,能够保障数字货币等信息的安全。
3.生物密码技术生物密码技术是将生物特征作为密码的一种加密方式,包括指纹识别、视网膜扫描、声纹识别等多种形式。
生物密码技术相比其他密码技术更为安全可靠,有很大的发展前景。
二、密码技术发展趋势随着全球信息化加速推进,密码技术也将得到更快的发展。
以下是一些密码技术发展趋势。
1. 多层加密技术采用多层加密技术和多种加密算法的方式将会更加安全。
在目前的密码技术中,单一算法加密的方式已经不能够完全保障信息的安全,而采用多种加密算法、多层加密的方式,能够有效提高信息的安全性。
2. 社会化密码技术社会化密码技术是指通过人与人之间的信任关系来保障信息安全。
类似于社交网络上的朋友圈,个人可以将信息安全性设置为仅对特定人群开放,这种方式更加符合人们的日常使用需求。
3. 人工智能技术人工智能技术的快速普及也将促进密码技术的发展。
在密码技术领域,人工智能将能够扮演加密、解密、数据认证等重要角色,有望通过智能算法提高密码技术的可靠性。
4. 云技术随着云技术的普及,密码技术的保护范围也可以扩大。
在云技术的支持下,密码技术可以更加高效、灵活地运用。
总之,密码技术在保护信息安全方面的作用越来越重要。
随着我们研究和发展的深入,我相信密码技术必将在未来发挥更加重要的作用,保护我们的个人信息和国家安全。
量子密码学技术的发展现状与未来趋势随着科技的飞速发展,人们越来越依赖于互联网和数字化通信。
然而,传统的加密技术面临着巨大的挑战,因为量子计算机的崛起可能会让当前的加密算法变得脆弱。
因此,研究者们转向了量子密码学技术,探索这个新兴领域的发展现状与未来趋势。
量子密码学技术是一种基于量子力学原理的密码学方法,它利用了量子隐形传态、量子纠缠和不可克隆性等特性来保护通信中的机密信息。
与传统的密码学方法相比,量子密码学技术具有更高的安全性。
在当前的发展现状中,量子密码学技术已经取得了一些重要的突破。
例如,量子密钥分发(QKD)是量子密码学技术中的一个重要方向。
QKD可以通过量子纠缠和测量来生成一组随机的量子密钥,并且在传输过程中能够检测到任何窃听者的存在。
目前,QKD技术已经在实验室环境中得到了广泛的研究和验证,并且一些商业化的产品也开始逐步进入市场。
此外,量子签名和量子认证等技术也在不断发展和完善,为实现更安全的通信提供了更多的选择。
然而,量子密码学技术仍然面临着一些挑战和限制。
首先,目前的量子密码学技术在实际应用中存在一定的复杂性和高成本。
由于需要使用特殊的量子设备和复杂的算法,导致量子密码学技术的应用相对较为有限。
其次,量子密码学技术对通信距离和信道损耗等要求也比较高,这限制了其在长距离通信和复杂网络环境下的应用。
此外,量子密码学技术还需要解决一些实际问题,如量子存储和传输中的错误纠正等。
在未来的发展趋势中,量子密码学技术有望进一步突破现有的限制。
首先,随着量子技术的进一步发展和成熟,量子设备的性能和稳定性将不断提高,从而降低了量子密码学技术的成本和复杂性。
其次,研究者们正在努力寻找更高效的量子密码学算法和协议,以提高量子密码学技术的性能和可靠性。
例如,基于量子群论和复杂性理论的研究正在为量子密码学技术提供更深入的理论支持和指导。
此外,量子互联网络的建设和发展也将推动量子密码学技术在实际应用中的推广。
密码学理论与研究的最新进展Introduction密码学指的是一种对数据加密与解密的方法。
在现代社会中,保存私人信息与机密资料的安全性变得越来越重要,密码学技术就是为了保障安全性而存在。
本文将讨论密码学理论中的最新进展以及未来的方向。
对称加密对称加密是最常见的密码技术之一,其核心是将消息转化为不易猜测的代码。
其中,常见的算法有DES、AES等。
最新的进展主要是针对AES算法的安全性进一步加强。
策略包括利用分组密码的模式(如CBC、ECB等)来增强AES算法的安全性,以及在实现上做出改进来保障加密的强度。
非对称加密非对称加密是密码学的另一个分支。
其基本原理是将消息分为公钥与私钥两部分进行加密与解密。
常见的非对称加密算法有RSA、DSA和椭圆曲线加密等。
最新的进展涉及到基于环裹封计算(Ring-LWE)的加密算法的设计与实践应用。
在该算法中,一定的量子安全性是保证的,从而可以有效预防未来的攻击。
哈希算法另一个密码学的重要分支是哈希算法,其核心是将数据转化为特定长度的散列值。
最新的进展主要包括针对SHA-1算法的研究和加强。
曾几何时,SHA-1算法被广为认为是无法攻破的。
但是,随着计算能力不断提高,SHA-1算法的安全性也在逐渐降低,因此需要考虑更强大的哈希算法。
SHA-3就是一个可以代替SHA-1的算法。
信息安全信息安全是密码学的应用领域之一。
在信息安全中,最新的进展主要涉及到量子密码学的研究。
相比于传统密码学,量子密码学可以大幅提升加密方案的安全性。
目前已经存在多种基于量子技术的加密方案,但需要克服的困难是如何实现量子计算机的商业化应用。
未来展望在未来几年内,密码学的研究重点将是增强安全性与保护隐私。
一方面,密码学家们需要开发出更加安全可靠的加密算法,以应对不断增长的网络安全威胁。
另一方面,密码学也将涉及到个人隐私,具体而言,就是如何保障个人隐私在信息社会中的安全与隐私保护。
因此,未来加密算法的设计需要更好地平衡保密性与隐私保护之间的关系。
国内外密码理论与技术研究现状及发展趋势一、国外密码技术现状密码理论与技术主要包括两部分,即基于数学的密码理论与技术(包括公钥密码、分组密码、序列密码、认证码、数字签名、Hash函数、身份识别、密钥管理、PKI技术等)和非数学的密码理论与技术(包括信息隐形,量子密码,基于生物特征的识别理论与技术)。
自从1976年公钥密码的思想提出以来,国际上已经提出了许多种公钥密码体制,但比较流行的主要有两类:一类是基于大整数因子分解问题的,其中最典型的代表是RSA;另一类是基于离散对数问题的,比如ElGamal公钥密码和影响比较大的椭圆曲线公钥密码。
由于分解大整数的能力日益增强,所以对RSA的安全带来了一定的威胁。
目前768比特模长的RSA已不安全。
一般建议使用1024比特模长,预计要保证20年的安全就要选择1280比特的模长,增大模长带来了实现上的难度。
而基于离散对数问题的公钥密码在目前技术下512比特模长就能够保证其安全性。
特别是椭圆曲线上的离散对数的计算要比有限域上的离散对数的计算更困难,目前技术下只需要160比特模长即可,适合于智能卡的实现,因而受到国内外学者的广泛关注。
国际上制定了椭圆曲线公钥密码标准IEEEP1363,RSA等一些公司声称他们已开发出了符合该标准的椭圆曲线公钥密码。
我国学者也提出了一些公钥密码,另外在公钥密码的快速实现方面也做了一定的工作,比如在RSA的快速实现和椭圆曲线公钥密码的快速实现方面都有所突破。
公钥密码的快速实现是当前公钥密码研究中的一个热点,包括算法优化和程序优化。
另一个人们所关注的问题是椭圆曲线公钥密码的安全性论证问题。
公钥密码主要用于数字签名和密钥分配。
当然,数字签名和密钥分配都有自己的研究体系,形成了各自的理论框架。
目前数字签名的研究内容非常丰富,包括普通签名和特殊签名。
特殊签名有盲签名,代理签名,群签名,不可否认签名,公平盲签名,门限签名,具有消息恢复功能的签名等,它与具体应用环境密切相关。
简述国内外密码学发展现状一、近年来我国本学科的主要进展我国近几年在密码学领域取得了长足进展,下面我们将从最新理论与技术、最新成果应用和学术建制三个方面加以回顾和总结。
(一)最新理论与技术研究进展我国学者在密码学方面的最新研究进展主要表现在以下几个方面。
(1)序列密码方面,我国学者很早就开始了研究工作,其中有两个成果值得一提:1、多维连分式理论,并用此理论解决了多重序列中的若干重要基础问题和国际上的一系列难题。
2、20世纪80年代,我国学者曾肯成提出了环导出序列这一原创性工作,之后戚文峰教授领导的团队在环上本原序列压缩保裔性方面又取得了一系列重要进展。
(2)分组密码方面,我国许多学者取得了重要的研究成果。
吴文玲研究员领导的团队在分组密码分析方面做出了突出贡献,其中对NESSIE工程的候选密码算法NUSH的分析结果直接导致其在遴选中被淘汰;对AES、Camellia、SMA4等密码算法做出了全方位多角度的分析,攻击轮数屡次刷新世界纪录。
(3)Hash函数(又称杂凑函数)方面,我国学者取得了一批国际领先的科研成果,尤其是王小云教授领导的团队在Hash函数的安全性分析方面做出了创新性贡献:建立了一系列杂凑函数破解的基本理论,并对多种Hash函数首次给出有效碰撞攻击和原像攻击。
(4)密码协议方面,我国学者的成果在国际上产生了一定的影响,其中最为突出的是在重置零知识方面的研究:构造了新工具,解决了国际收那个的两个重要的猜想。
(5)PKI技术领域,我国学者取得了长足的发展,尤其是冯登国教授领导的团队做出了重要贡献:构建了具有自主知识产权的PKI模型框架,提出了双层式秘密分享的入侵容忍证书认证机构(CA),提出了PKI实体的概念,形成了多项国家标准。
该项成果获得2005年国家科技进步二等奖。
(6)量子密码方面,我国学者在诱骗态量子密码和量子避错码等方面做出了开创性工作;在协议的设计和分析方面也提出了大量建设性意见。
密码学的研究方向与发展前景综述摘要:如今,计算机网络环境下信息的保密性、完整性、可用性和抗抵赖性,都需要采用密码技术来解决。
密码体制大体分为对称密码(又称为私钥密码)和非对称密码(又称为公钥密码)两种。
对称密码术早已被人们使用了数千年,它有各种形式,从简单的替换密码到较复杂的构造方式。
它通常非常快速,但容易遭受攻击,因为用于加密的密钥必须与需要对消息进行解密的所有人一起共享。
而非对称密码在信息安全中担负起密钥协商、数字签名、消息认证等重要角色,已成为最核心的密码。
无论我们在应用程序中使用哪种密码,都应该考虑使用的方法、认识到发生的折衷方案以及规划功能更强大的计算机系统的前景。
关键字:计算机网络;密码技术;私钥密码;公钥密码一、引言当前,公钥密码的安全性概念已经被大大扩展了。
像著名的RSA公钥密码算法、Rabin公钥密码算法和ElGamal公钥密码算法都已经得到了广泛应用。
但是,有些公钥密码算法在理论上虽然是安全的,在具体的实际应用中却并非安全。
因为在实际应用中不仅需要算法本身在数学证明上是安全的,同时也需要算法在实际应用中也是安全的。
比如,公钥加密算法根据不同的应用,需要考虑选择明文安全、非适应性选择密文安全和适应性选择密码安全三类。
数字签名根据需要也要求考虑抵抗非消息攻击和选择消息攻击等。
因此,近年来,公钥密码学研究中的一个重要内容——可证安全密码学正是致力于这方面的研究。
公钥密码在信息安全中担负起密钥协商、数字签名、消息认证等重要角色,已成为最核心的密码。
目前密码的核心课题主要是在结合具体的网络环境、提高运算效率的基础上,针对各种主动攻击行为,研究各种可证安全体制。
其中引人注目的是基于身份(ID)密码体制和密码体制的可证安全模型研究,目前已经取得了重要成果。
这些成果对网络安全、信息安全的影响非常巨大,例如公钥基础设施(PKI)将会更趋于合理,使其变为ID-PKI。
在密码分析和攻击手段不断进步,计算机运算速度不断提高以及密码应用需求不断增长的情况下,迫切需要发展密码理论和创新密码算法。
密码学的历史与发展趋势密码学是一门研究如何在保证信息传输安全的同时确保信息不被未授权的人获得的学科。
密码学在现代化的信息社会中有非常重要的地位,它被广泛应用于移动通信、电子商务、网上银行等诸多领域。
本文将探讨密码学的历史与发展趋势。
一、密码学的起源密码学可以追溯到古代文明时期。
据说,古希腊的斯巴达人就使用脚步密码来加密通信。
而在中国古代,皇帝和文武百官之间通信时常使用密信,特别是在战争时期,密信的使用更加频繁。
在欧洲中世纪时期,密码学逐渐成为一门重要的谋略学科。
莎士比亚的作品中就多次提到了使用密码的情节。
随着电子技术的发展,密码学逐渐由传统的机械密码学发展为基于数学原理的现代密码学。
现代密码学主要包括对称密钥密码学和公钥密码学两个分支。
二、对称密钥密码学对称密钥密码学是一种基于相同密钥加密和解密的加密方式。
加密和解密都使用相同的密钥,并且传输过程中需要保证密钥的保密性。
这种加密方式的优点在于加密解密速度快,但是密钥需要安全地分发给所有参与者,一旦密钥被泄露就会导致系统安全性受到严重威胁。
三、公钥密码学公钥密码学也称为非对称密码学,是一种使用两个密钥,一个公钥和一个私钥,来实现加密和解密的方式。
公钥可以公开传播,解密需要私钥才能完成。
这种方式的优点在于保证了密钥的安全性,但是加密解密速度较慢。
1997年,IBM的沃夫岑和裴丹德提出了椭圆曲线密码学的概念。
与传统的RSA算法相比,椭圆曲线密码学所需要的密钥长度更短,安全性更高,因此越来越受到广泛的关注和应用。
四、发展趋势密码学在现代化的信息社会中发挥着越来越重要的作用,因此,未来的发展趋势也值得研究。
当前,人脸识别、指纹识别、虹膜识别等生物识别技术已经越来越广泛应用于金融、公安、城市管理等领域,并且在密码学中也有越来越广泛的应用。
未来密码学的研究方向也会更加注重保障隐私和安全性。
比如,在区块链技术中,密码学的应用显得更加重要。
区块链不仅可以用于加密货币,也可以用于管理金融交易、保护用户隐私等。
量子计算机的密码学算法研究现状与发展趋势随着科技的不断进步,计算机在我们的生活中扮演着越来越重要的角色。
然而,随着计算机处理能力的提升,传统的密码学算法逐渐暴露出了安全性的问题。
为了应对未来可能出现的计算机安全挑战,量子计算机的密码学算法研究成为了一个重要的课题。
量子计算机是一种基于量子力学原理的计算机,其拥有超强的计算能力。
传统的计算机使用二进制位来进行计算,而量子计算机则使用量子比特(qubit)来进行计算。
量子比特具有叠加态和纠缠态的特性,使得量子计算机可以在同一时间处理多个计算任务,从而大大提高了计算效率。
在量子计算机的密码学算法研究中,最重要的问题之一是量子计算机对传统密码学算法的破解能力。
传统的密码学算法,如RSA和椭圆曲线密码算法,是基于数学难题的,其安全性依赖于目前计算机的计算能力无法在合理时间内破解这些难题。
然而,量子计算机的出现可能改变这一情况。
量子计算机的破解能力主要基于量子并行性和量子搜索算法。
量子并行性使得量子计算机可以在同一时间对多个输入进行计算,并得到所有可能结果的叠加态。
量子搜索算法则可以在指数级的速度上搜索解空间,从而破解传统密码学算法。
为了应对量子计算机的威胁,研究者们提出了一系列的量子安全密码学算法。
这些算法主要分为两类:基于对称密码学的算法和基于非对称密码学的算法。
基于对称密码学的算法主要包括量子密钥分发和量子安全认证。
量子密钥分发利用量子纠缠的特性来实现安全的密钥分发,保证密钥的安全性。
量子安全认证则利用量子比特的特性来实现身份认证,防止信息被窃听和篡改。
基于非对称密码学的算法主要包括量子公钥密码和量子数字签名。
量子公钥密码利用量子比特的特性来实现安全的公钥分发,保证通信的安全性。
量子数字签名则利用量子比特的特性来实现数字签名的安全性,防止伪造和篡改。
目前,量子计算机的密码学算法研究还处于起步阶段,许多算法仍然需要进一步的研究和改进。
特别是在量子安全认证和量子公钥密码方面,还存在许多挑战和难题需要解决。
简述国内外密码学发展现状
一、近年来我国本学科的主要进展
我国近几年在密码学领域取得了长足进展,下面我们将从最新理论与技术、最新成果应用和学术建制三个方面加以回顾和总结。
(一)最新理论与技术研究进展
我国学者在密码学方面的最新研究进展主要表现在以下几个方面。
(1)序列密码方面,我国学者很早就开始了研究工作,其中有两个成果值得一提:1、多维连分式理论,并用此理论解决了多重序列中的若干重要基础问题和国际上的一系列难题。
2、20世纪80年代,我国学者曾肯成提出了环导出序列这一原创性工作,之后戚文峰教授领导的团队在环上本原序列压缩保裔性方面又取得了一系列重要进展。
(2)分组密码方面,我国许多学者取得了重要的研究成果。
吴文玲研究员领导的团队在分组密码分析方面做出了突出贡献,其中对NESSIE工程的候选密码算法NUSH的分析结果直接导致其在遴选中被淘汰;对AES、Camellia、SMA4等密码算法做出了全方位多角度的分析,攻击轮数屡次刷新世界纪录。
(3)Hash函数(又称杂凑函数)方面,我国学者取得了一批国际领先的科研成果,尤其是王小云教授领导的团队在Hash函数的安全性分析方面做出了创新性贡献:建立了一系列杂凑函数破解的基本理论,并对多种Hash函数首次给出有效碰撞攻击和原像攻击。
(4)密码协议方面,我国学者的成果在国际上产生了一定的影响,其中最为突出的是在重置零知识方面的研究:构造了新工具,解决了国际收那个的两个重要的猜想。
(5)PKI技术领域,我国学者取得了长足的发展,尤其是冯登国教授领导的团队做出了重要贡献:构建了具有自主知识产权的PKI模型框架,提出了双层式秘密分享的入侵容忍证书认证机构(CA),提出了PKI实体的概念,形成了多项国家标准。
该项成果获得2005年国家科技进步二等奖。
(6)量子密码方面,我国学者在诱骗态量子密码和量子避错码等方面做出了开创性工作;在协议的设计和分析方面也提出了大量建设性意见。
(7)实验方面,主要有郭光灿院士领导的团队和潘建伟教授领导的团队取得了
一些令人瞩目的成绩,其中的“量子政务网”和“量子电话网”均属世界首创。
(二)最新成果应用进展
2009年是我国《商用密码管理条例》发布实施10周年。
10年来我国的商用密码取得了长足发展。
尤其值得一提的是可信计算和WAPI方面的密码应用。
(1)通过在可信计算领域中的密码应用推广,推出了我国自主的《可信计算密码支撑平台功能与接口规范》,大大提升了我国密码算法的应用水平和密码芯片的设计和研制水平。
(2)我国自主研发的宽带无线网络WAPI安全技术,弥补了同类国际标准的安全缺陷,形成并颁布了两项国家标准;其中的加密算法采用了自主研发的分组密码算法SMS4。
该成果2005年获得国家发明二等奖。
二、密码学的发展趋势和展望
(1)密码的标准化趋势。
密码标准是密码理论与技术发展的结晶和原动力,像AES、NESSE、eSTREAM和SHA 3等计划都大大推动了密码学的研究。
(2)密码的公理化趋势。
追求算法的可证明安全性是目前的时尚,密码协议的形式化分析方法、可证明安全性理论、安全多方计算理论和零知识证明协议等仍将是密码协议研究的主流方向。
(3)面向社会应用的实用化趋势。
电子政务和电子商务的大力发展给密码技术的实际应用带来了机遇和挑战。
生物特征密码技术是现在的一个研究热点,由于应用的需要,它也将是未来的一个发展方向。
轻量级密码技术(适度安全的密码技术)的研究已成为当前很受关注的一个方向。
(4)面向新技术发展的适应性趋势。
量子密码、DNA密码等可以应对新的计算能力和新的计算模式带来的巨大挑战;随着网络技术的广泛普及和深度应用,密码技术和研究也呈现网络化、分布式发展趋势,并诱发新技术和应用模式的出现。
具体来讲,密码学的发展趋势呈现出以下几点特点:
(1)欧洲序列密码(eSTREAM)计划有效地推动了序列密码的发展。
(2)美国AES计划和欧洲NESSIE计划的实施推动了分组密码的设计理论、分析方法、工作模式等方面研究的飞速发展。
(3)后量子时代的密码或量子免疫的密码是公钥密码研究的一个重要方
向。
(4)杂凑函数的研究必将随着美国NIST推进的杂凑函数标准SHA-3 计划的进展得到迅速发展。
(5)数字签名的重点研究方向是新的数字签名的设计、安全性基础问题的挖掘和已有数字签名的安全性分析与证明。
(6)既可以进行形式化分析,又具有密码可靠性的方法是目前形式化方法研究的热点也是未来的发展方向。
可复合性问题是目前密码协议形式化的另一个热点问题。
(7)可证明安全性的发展将集中在如何为新的安全属性建立合适的模型,标准模型下可证明安全的密码协议设计等。
另外,重置零知识、精确零知识也是密码协议的一个发展方向。
(8)密钥管理技术中,如何在各种应用环境中支持匿名性和隐私保护,以及适应具体应用的密钥管理新技术的研究都是目前的重要研究方向。
PKI技术将向着跨域、无中心化、基于身份的结构和应用研究等方向发展。
(9)面向新兴应用、新型信息安全系统的密码系统芯片的设计是未来的方向。
当前的研究重点是如何降低校验方法的复杂度、硬件开销和验算时间。
(10)量子密码已进入实用化阶段,克服量子密码应用中的技术难题和进行深入的安全性探讨将是今后量子密码发展的趋势。