曲线运动复习课共15页
- 格式:ppt
- 大小:700.00 KB
- 文档页数:15
曲线运动总复习[基础梳理]1.曲线运动速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向。
2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动.3.曲线运动的条件:物体所受合外力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上.4.合运动与分运动的关系(1)等时性合运动和分运动经历的时间相等,即同时开始、同时进行、同时停止.(2)独立性一个物体同时参与几个分运动,各分运动独立进行,不受其他运动的影响.(3)等效性各分运动的规律叠加起来与合运动的规律有完全相同的效果.一、做曲线运动的条件及轨迹分析:1.条件(1)因为速度时刻在变,所以一定存在加速度;(2)物体受到的合外力与初速度不共线.2.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向曲线的“凹”侧.3.速率变化情况判断(1)当合外力方向与速度方向的夹角为锐角时,物体的速率增大;(2)当合外力方向与速度方向的夹角为钝角时,物体的速率减小;(3)当合外力方向与速度方向垂直时,物体的速率不变.二、小船渡河问题分析:三种情景:①过河时间最短:船头正对河岸时,渡河时间最短,t短=dv1(d为河宽).②过河路径最短(v2<v1时):合速度垂直于河岸时,航程最短,s短=d.船头指向上游与河岸夹角为α,cos α=v2 v1.③过河路径最短(v2>v1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v 1v 2,最短航程:s 短=dcos α=v 2v 1d .针对训练:一条船要在最短时间内渡过宽为100 m 的河,已知河水的流速v 1与船离河岸的距离x 变化的关系如图甲所示,船在静水中的速度v 2与时间t 的关系如图乙所示,则以下判断中正确的是( )A .船渡河的最短时间是25 sB .船运动的轨迹可能是直线C .船在河水中的加速度大小为0.4 m/s 2D .船在河水中的最大速度是5 m/s三、“关联速度”问题:用绳、杆相牵连的物体,在运动过程中,其两物体的速度通常不同,但物体沿绳或杆方向的速度分量大小相等. 常用的解题思路和方法先确定合运动的方向(物体实际运动的方向),然后分析这个合运动所产生的实际效果(一方面使绳或杆伸缩的效果;另一方面使绳或杆转动的效果)以确定两个分速度的方向(沿绳或杆方向的分速度和垂直绳或杆方向的分速度,而沿绳或杆方向的分速度大小相同). 针对训练:如图所示,套在竖直细杆上的环A 由跨过定滑轮的不可伸长的轻绳与重物B 相连.由于B 的质量较大,故在释放B 后,A 将沿杆上升,当A 环上升至与定滑轮的连线处于水平位置时,其上升速度v 1≠0,若这时B 的速度为v 2,则( ) A.v 2=v 1 B.v 2>v 1 C.v 2≠0 D.v 2=0平抛运动: [基础梳理]1.定义:将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动.2.性质:加速度为重力加速度g 的匀变速曲线运动,运动轨迹是抛物线.3.基本规律:以抛出点为原点,水平方向(初速度v 0方向)为x 轴,竖直 向下方向为y 轴,建立平面直角坐标系,则:(1)水平方向:做匀速直线运动,速度vx =v ,位移x =vt .(2)竖直方向:做自由落体运动,速度v y =gt ,位移y =12gt 2.(3)合速度:v =v 2x +v 2y,方向与水平方向的夹角为θ,则tan θ=v y v x =gt v 0. (4)合位移:s =x 2+y 2,方向与水平方向的夹角为α,tan α=y x =gt2v 0.对平抛运动基本规律的理解1.平抛运动是匀变速曲线运动,故相等的时间内速度的变化量相等.由Δv =gt ,速度的变化必沿竖直方向,如图所示.2.物体由一定高度做平抛运动,其运动时间由下落高度决定,与初速度无关,由公式y =12gt 2,可得t =2yg ;落地点距抛出点的水平距离x =v 0t ,由水平速度和下落时间共同决定.3.水平方向和竖直方向的两个分运动同时存在,互不影响,具有独立性. 4.平抛运动竖直方向做自由落体运动,自由落体运动的一切规律在这里都成立. 针对训练:如图,从半径为R =1 m 的半圆AB 上的A 点水平抛出一个可视为质点的小球,经t =0.4 s 小球落到半圆上,已知当地的重力加速度g =10 m/s 2,则小球的初速度v 0可能为( )A .1 m/sB .2 m/sC .3 m/sD .4 m/s类平抛问题的分析方法:1.类平抛运动的受力特点物体所受的合外力为恒力,且与初速度的方向垂直.2.类平抛运动的运动特点在初速度v0方向上做匀速直线运动,在合外力方向上做初速度为零的匀加速直线运动,加速度a=F合m.3.类平抛运动的求解方法(1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合外力的方向)的匀加速直线运动.两分运动彼此独立,互不影响,且与合运动具有等时性.(2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度a分解为a x、a y,初速度v0分解为v x、v y,然后分别在x、y方向列方程求解.经典例题:质量为m的飞机以水平初速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力).今测得当飞机在水平方向的位移为l时,它的上升高度为h,如图所示,求:(1)飞机受到的升力大小;(2)上升至h高度时飞机的速度[典例] 2014年索契冬奥会于当地时间2月7日开幕,跳台滑雪是冬奥会的比赛项目之一.如图所示,一名跳台滑雪运动员经过一段加速滑行后从O点水平飞出,经过3.0 s落到斜坡上的A点.已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50 kg.不计空气阻力.(取sin 37°=0.60,cos 37°=0.80;g取10 m/s2)求:(1)A点与O点的距离L;(2)运动员离开O点时的速度大小;(3)运动员从O点飞出开始到离斜坡距离最远所用的时间.描述圆周运动的物理量及其相互关系 [基础梳理]1.线速度:描述物体圆周运动快慢的物理量. v =Δs Δt =2πr T .2.角速度:描述物体绕圆心转动快慢的物理量.ω=ΔθΔt =2πT .3.周期和频率:描述物体绕圆心转动快慢的物理量.T =2πr v ,T =1f .4.向心加速度:描述速度方向变化快慢的物理量. a n =rω2=v 2r =ωv =4π2T 2r .5.向心力:作用效果产生向心加速度,F n =ma n . 6.相互关系:(1)v =ωr =2πT r =2πrf .(2)a n =v 2r =rω2=ωv =4π2T 2r =4π2f 2r .(3)F n =ma n =m v 2r =m ω2r =mr 4π2T 2=mr 4π2f 2必备知识二 匀速圆周运动和非匀速圆周运动 [基础梳理]1.匀速圆周运动(1)定义:线速度大小不变的圆周运动 .(2)性质:向心加速度大小不变,方向总是指向圆心的变加速曲线运动. (3)质点做匀速圆周运动的条件合力大小不变,方向始终与速度方向垂直且指向圆心. 2.非匀速圆周运动(1)定义:线速度大小、方向均发生变化的圆周运动. (2)合力的作用①合力沿速度方向的分量F t 产生切向加速度,F t =ma t,它只改变速度的大小. ②合力沿半径方向的分量F n 产生向心加速度,F n =ma n,它只改变速度的方向. 必备只是三 离心现象 [基础梳理]1.本质:做圆周运动的物体,由于本身惯性,总有沿着圆周切线方向飞出去的倾向.2.受力特点(如图所示)(1)当F =mr ω2时,物体做匀速圆周运动; (2)当F =0时,物体沿切线方向飞出;(3)当F <mr ω2时,物体逐渐远离圆心,F 为实际提供的向心力. (4)当F >mr ω2时,物体逐渐向圆心靠近,做向心运动.两类传动装置的运动特征:由公式v=rω可知,做圆周运动的物体在角速度一定时线速度与半径成正比,线速度一定时,角速度与半径成反比.在解决实际问题时,常有下列三种具体类型:(1)固定在一起共轴转动的物体上各质点具有相同的角速度;由v=rω可知,各质点的线速度与半径成正比.(2)不打滑的摩擦传动、皮带传动的两轮边缘上各点和皮带上各点线速度大小相等.(3)在齿轮传动和链传动中,在其齿轮啮合处和链轮啮合处的线速度相等.在齿轮传动和链传动中,两轮的角速度与两齿轮的齿数成反比,周期与两齿轮的齿数成正比.其角速度和周期与齿轮的齿数之间存在以下定量关系(可由线速度相等的特点推导):ω1ω2=r2r1=z2z1;T1T2=r1r2=z1z2(式中z1、z2分别表示两齿轮的齿数).例1] 如图所示是一个玩具陀螺,a、b和c是陀螺表面上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是()A.a、b和c三点的线速度大小相等B.b、c两点的线速度始终相同C.b、c两点的角速度比a点的大D.b、c两点的加速度比a点的大规律总结]1.高中阶段所接触的传动主要有:(1)皮带传动(线速度大小相等);(2)同轴传动(角速度相等);(3)齿轮传动(线速度大小相等);(4)摩擦传动(线速度大小相等).2.传动装置的特点:(1)同轴传动:固定在一起共轴转动的物体上各点角速度相同;(2)皮带传动、齿轮传动和摩擦传动:皮带(或齿轮)传动和不打滑的摩擦传动的两轮边缘上各点线速度大小相等.要点二圆周运动中的动力学分析1.向心力的来源向心力是依据力的作用效果命名的,它可以是重力、弹力或摩擦力等各种力,也可以是几个力的合力或某个力的分力.如图甲所示的圆锥摆和火车以规定速率拐弯时,向心力由重力和弹力的合力提供;图乙中随圆盘一起转动的物体和汽车在水平路面上转弯则是由静摩擦力提供向心力.2.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置.(2)分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力.解决圆周运动问题的主要步骤1.审清题意,确定研究对象;2.分析物体的运动情况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等;3.分析物体的受力情况,画出受力示意图,确定向心力的来源;4.根据牛顿运动定律及向心力公式列方程.即时练习:1.一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直面内做半径为R的圆周运动,如图所示,则下列说法正确的是()A.小球过最高点时,杆所受到的弹力可以等于零B.小球过最高点的最小速度是C.小球过最高点时,杆对球的作用力一定随速度增大而增大D.小球过最高点时,杆对球的作用力一定随速度增大而减小2、如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则下列说法正确的是()A.球A的线速度必定大于球B的线速度B.球A的角速度必定小于球B的角速度C.球A的运动周期必定小于球B的运动周期D.球A对筒壁的压力必定大于球B对筒壁的压力。