第五章-特征选择与特征提取教学内容
- 格式:ppt
- 大小:4.48 MB
- 文档页数:74
特征的提取和选择
特征提取和选择是机器学习中非常重要的环节,它既可以减少计算量,又可以提高模型的性能。
选择较好的特征可以让模型更加简单,更加容易
和快速的训练出最佳参数,从而使得模型更加精确、效果更好。
一般来说,特征提取和选择有以下几步:
1.特征提取。
特征提取关注的是利用现有特征生成新的特征。
它可以
是特征融合(如结合多个特征生成更强大的特征),也可以是特征变换
(如离散特征变换成连续特征)。
2.无关特征删除。
把没有帮助的特征删除,有助于减少模型的运行时间,提高模型的效果。
3.有关特征选择。
把与目标值有很强关联的特征选择出来,这些特征
被称为有关特征,它们可以帮助模型训练出更好的结果。
4.特征降维。
为了减少特征之间的相关性,减少计算量,与有关特征
相关性比较低的特征可以被删除。
5.特征加权。
调整特征的权重,使得有关特征拥有更大的影响力,从
而帮助模型更好的进行预测。
通过这种特征提取和选择的过程,可以把训练集中拥有相关性比较高
的有用特征保留下来,把没用的特征抛弃,有效的提高模型的性能。
第五讲特征提取和特征选择
**特征提取和特征选择**
特征提取和特征选择是机器学习的重要组成部分,它们既可以提高机
器学习算法的性能、训练速度,也可以帮助研究者了解数据。
特征提取和
特征选择的目的是最大限度地挖掘数据中的有用信息,并创建出一组有意
义的特征,以便进一步的分析和模型建立。
特征提取是指从原始数据中提取出具有含义的特征,一般情况下,特
征提取过程中会涉及到一定的数据预处理、特征提取算法和特征可视化等
步骤。
常见的特征提取方法有主成分分析(PCA)、独立成分分析(ICA)、因子分析(FA)、降维分析(DA)、线性判别分析(LDA)等。
特征选择是从特征矩阵中选择最有效的特征,可以提高模型的准确率,减少模型的运行时间,同时可以更加深入地了解数据。
常见的特征选择方
法有过滤法(Filter)、包裹法(Wrapper)和嵌入法(Embedded)。
特征提取和特征选择非常重要,可以在机器学习的各个阶段发挥重要
作用,比如,可以在训练数据集合的构建阶段快速提取有效特征,以减少
数据集的维度;可以在模型训练阶段和测试阶段选择最优特征,以提高模
型性能,减少运算负担;还可以在结果分析和结论阶段。
特征选择与特征提取特征选择主要是从原始特征集中选择出一部分最具有代表性的特征,以减少数据维度和消除冗余信息,同时提高模型的泛化性能和可解释性。
特征提取则是从原始数据中提取出一组新的特征集,用于替代原始特征集,以更好地表示数据的内在特点。
特征选择和特征提取可以单独使用,也可以结合使用。
特征选择通常从以下几个方面进行考虑:1. 特征重要性:通过模型训练的过程中,可以计算每个特征在模型中的重要性,根据重要性进行特征选择。
例如,可以使用随机森林、决策树等模型计算特征的Gini指数或信息增益,选择重要性较高的特征。
2.相关性分析:通过计算特征之间的相关性,选择与目标变量相关性较高的特征。
例如,可以使用皮尔森相关系数、互信息等方法进行相关性分析。
3.方差分析:通过计算特征的方差,选择方差较大的特征。
方差较大的特征表示特征值在样本间的差异较大,对于区分不同类别的样本有更好的能力。
4.正则化方法:通过添加正则化项,使得模型选择更少的特征。
例如,LASSO正则化可以使得特征的系数趋向于0,从而实现特征选择。
特征提取主要通过以下几种方法进行:2.独立成分分析(ICA):通过独立地解耦数据的非高斯分布特性,将原始数据分解为独立的子信号,从而实现特征提取。
3.稀疏编码:通过稀疏表示的方式,将原始数据表示为尽可能少的非零元素组成的代码,从而实现特征提取。
4.字典学习:通过学习一个字典,将原始数据表示为字典中原子的线性组合,从而实现特征提取。
特征选择和特征提取的选择与应用主要依赖于具体的数据集和问题。
在选择方法时需要考虑数据的性质、特征与目标变量的相关性、特征的可解释性以及模型的复杂度等因素。
总之,特征选择和特征提取是机器学习领域中常用的数据预处理技术,可以提高模型训练的效果和泛化能力。
在实际应用中,根据不同的需求选择适合的方法,对数据进行处理,提取最有用的特征。
第八讲特征提取和特征选择一、基本概念1、特征的生成(1)原始特征的采集和转换通过对原始特征的信号采集,获得样本的原始表达数据,从原始数据中选择或计算出对分类任务有用的原始特征,并转换成可用的形式原始数据:像素点RGB值矩阵可用的原始特征:轮廓特征颜色特征纹理特征数学特征(2)有效特征的生成目的:降低特征维数,减少信息冗余提升特征的有效性方法:特征提取:提高特征对类别的分辨能力特征选择:寻找对分类最重要的特征 2、 特征提取通过某种变换,将原始特征从高维空间映射到低维空间。
A :X →Y ; A 为特征提取器,通常是某种正交变换。
最优特征提取:J(A*)=max J(A), J 是准则函数3、 特征选择从一组特征中挑选出一些最有效的特征,以达到降低特征空间维数的目的。
Dd d i S y y y y F x x x S i d D <=∈→;,...,2,1,},......,,{:},......,,{:2121原始特征集合S 中包含D 个特征,目标特征集合F 中包含d 个特征;最优特征选择:J(F*)=max J(F), J 是准则函数 4、 准则函数的选取(1) 准则函数的选取原则分类正确率是最佳的特征提取和特征选择准则函数,但难以计算。
实用的类别可分性准则函数应满足以下要求:与分类正确率有单调递增关系当特征独立时具有可加性:∑==dk kijd ij x J x x x J 1)()...21,,,(具有标量测度特性:⎪⎩⎪⎨⎧===≠>ji ij ij ij J J j i J j i J 时,当时,当00对特征具单调性:)...)...12121+,,,,(,,,(ddijdij xxxxJxxxJ<(2)类内类间距离是各类的先验概率。
,中的样本数,为中的样本数,为),(:值,称为类内类间距离向量之间的距离的平均离,则各类中各特征)为这两个向量间的距,(特征向量,维类中的类及分别为,类,令设一个分类问题共有定义:jijjiinknljlikci jicjjidjlikjijlikPPnnxxnnPPxJxxxxai jωωδδωω∑∑∑∑=====1111121)()()()()()()(Dc.例:∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑================⨯⨯⨯⨯⨯⨯⨯⨯========2121222221311212312121213131111111212121211111221213212123121331211212340602121k l l k k l l k k l l k k l l k n k n l j l i k i ji j jid n k n l j l i k c i ji cj jid x xP P x xP P x x P P x x P P x x n n P P x J n n P P c x x n n P P x J ijij),(+),(+),(+),(),(),()()()()()()()()()()()()()(,,.,.,)(δδδδδδ对于随机性统计分类,类内类间距离和分类错误率不相关 b.类内类间距离的分解()()()()()()()()m m m mn P m xm xn P m m m m m x m x n P x J mP m m x m i m x x x x x x i Tici ii n k i i kTii kic i in k i Ti i i kTii kici i d ci ii n k i k n i i j l i k j l i k j l i k iiii--+--=⎥⎥⎦⎤⎢⎢⎣⎡--+--===∑∑∑∑∑∑∑=======11111111111)()()()()()()(T )()()()( )( : 则总均值向量:表示所有各类样本集的用类样本集的均值向量表示第用)-()-)=(,(则有的距离,度量两个特征向量之间如采用均方欧氏距离来δ()()()()()bw b w b w d Ti ic i ib n k Tii kii kici iw J J S tr S tr S S tr x J m m m mP S m x m x n P S i+=+=+=--=--=∑∑∑===)()( )( )()(则间离散度矩阵分别为令类内离散度矩阵和类1111Jw 称为类内平均距离,Jb 称为是类间平均距离从类别可分性的要求来看,希望Jw 尽可能小, Jb 尽可能大 (3) 概率距离类间的概率距离可用分布函数之间的距离来度量完全可分:若p(x|ω1) ≠0时, p(x|ω2)=0;完全不可分:对任意x ,都有 p(x|ω1) = p(x|ω2);性的概率距离度量则可作为两类之间可分;为、当两类完全不可分是取得最大值;、当两类完全可分时;、满足以下条件:若任何函数0c b 0a ],),|(),|([)(p p p p J J J dx P P x p x p g J ≥=∙⎰2121ωω二、 使用类内类间距离进行特征提取1、 准则函数的构造:类内类间距离为:Jd=Jw+Jb =tr (Sw +Sb)其中Jw 是类内平均距离,Jb 是类间平均距离通常给定一个训练集后,Jd 是固定的,在特征提取时,需要加大Jb ,减小Jw ,来获得满意的分类效果。
人工智能开发技术中的特征选择与特征提取技巧在人工智能开发技术的领域中,特征选择和特征提取是两个关键的环节,能够对数据进行处理和优化,从而提高机器学习算法的准确性和性能。
特征选择的目标是从原始特征中选择最具有代表性和区分性的子集,而特征提取则是将原始特征进行转换和组合,得到新的特征空间。
本文将介绍人工智能开发技术中的特征选择和特征提取技巧,并探讨它们在不同应用领域中的应用。
一、特征选择技巧特征选择在机器学习中有着重要的地位,它能够提高模型的泛化能力和训练的效率。
在进行特征选择时,需要考虑以下几个方面:1. 相关性分析:通过计算特征与目标变量之间的相关性,判断特征对目标变量的贡献程度。
常用的方法有皮尔逊相关系数和互信息等。
相关系数越大,则特征对目标变量的相关性越强,应优先选择。
2. 嵌入式方法:在特征选择的训练过程中,将特征选择过程嵌入到机器学习算法中。
常用的方法有L1正则化和决策树等。
L1正则化能够使得某些特征的系数为0,从而实现特征选择的效果。
3. 过滤式方法:在特征选择之前,通过统计量或某种评价函数对特征进行排序,选择排名靠前的特征。
常用的过滤式方法有相关系数法、卡方检验和相关矩阵等。
二、特征提取技巧特征提取是将原始特征进行转换和组合,从而得到新的特征空间。
特征提取的目标是减少特征空间的维度,同时保留原始数据的关键信息。
在进行特征提取时,需要考虑以下几个方面:1. 主成分分析(PCA):PCA是一种经典的降维方法,通过线性变换将原始特征投影到新的低维子空间中。
这样可以保留原始数据的主要信息,并且降低特征空间的维度。
2. 独立成分分析(ICA):ICA是一种盲源分离方法,通过寻找数据中的独立成分,将原始特征进行线性组合。
这样可以从原始数据中分离出相互独立的特征。
3. 非负矩阵分解(NMF):NMF是一种非线性的降维方法,通过将原始特征分解为非负的基向量和系数矩阵。
这样可以得到原始数据的非负线性表示,从而获得更加有意义和准确的特征表示。
机器学习原理教案之有监督学习一、教学目标1. 理解有监督学习的概念及其在机器学习中的应用。
2. 掌握有监督学习的主要算法,如线性回归、逻辑回归、支持向量机等。
3. 学会使用Python等编程语言实现有监督学习算法。
4. 能够分析有监督学习模型的性能,并进行优化。
二、教学内容1. 有监督学习的定义及分类2. 特征选择与特征提取3. 线性回归算法及其应用4. 逻辑回归算法及其应用5. 支持向量机算法及其应用6. 模型评估与优化三、教学方法1. 理论讲解:通过PPT、教材等资源,讲解有监督学习的概念、算法及应用。
2. 编程实践:引导学生使用Python等编程语言,实现线性回归、逻辑回归、支持向量机等算法。
3. 案例分析:分析实际案例,让学生更好地理解有监督学习在实际应用中的作用。
4. 讨论与问答:组织学生进行小组讨论,回答学生提出的问题。
四、教学安排1. 第一课时:有监督学习的定义及分类2. 第二课时:特征选择与特征提取3. 第三课时:线性回归算法及其应用4. 第四课时:逻辑回归算法及其应用5. 第五课时:支持向量机算法及其应用五、课后作业与评价1. 课后作业:要求学生完成线性回归、逻辑回归、支持向量机等算法的编程实践。
2. 课程评价:通过课后作业、课堂表现、小组讨论等方式,评价学生对有监督学习原理的理解和应用能力。
教学资源:1. PPT课件2. 教材或教学参考书3. Python编程环境(如Python、Scikit-learn库等)4. 实际案例数据集六、教学内容1. 神经网络简介2. 训练神经网络3. 反向传播算法4. 激活函数与损失函数5. 优化算法七、教学方法1. 理论讲解:通过PPT、教材等资源,讲解神经网络的基本概念、结构及训练过程。
2. 编程实践:引导学生使用Python等编程语言,实现简单的神经网络。
3. 案例分析:分析实际案例,让学生更好地理解神经网络在实际应用中的作用。
4. 讨论与问答:组织学生进行小组讨论,回答学生提出的问题。
模式类别的可分性判据在讨论特征选择和特征压缩之前,我们先要确定一个选择和提取的原则。
对一个原始特征来说,特征选择的方案很多,从N维特征种选择出M个特征共有c M 巳中选法,其中哪一种方案最佳,M !(N _M y则需要有一个原则来进行指导。
同样,特征的压缩实际上是要找到M 个N元函数,N元函数的数量是不可数的,这也要有一个原则来指导找出M个最佳的N元函数。
我们进行特征选择和特征提取的最终目的还是要进行识别,因此应该是以对识别最有利原则,这样的原则我们称为是类别的可分性判据。
用这样的可分性判据可以度量当前特征维数下类别样本的可分性。
可分性越大,对识别越有利,可分性越小,对识别越不利。
人们对的特征的可分性判据研究很多,然而到目前为止还没有取得一个完全满意的结果,没有哪一个判据能够完全度量出类别的可分性。
下面介绍几种常用的判据,我们需要根据实际问题,从中选择出一种。
般来说,我们希望可分性判据满足以下几个条件:1.与识别的错误率由直接的联系,当判据取最大值时,识别的错误率最小;2.当特征独立时有可加性,即:NX N二' J ij X kk 二J ij 是第i 类和第j 类的可分性判据,J ij 越大,两类的可分程度越大,X i ,%,…,X N 为N 维特征; 3. 应具有某种距离的特点:J ij 0,当 i = j 时; J 。
= 0,当 i = j 时;ij Ji y4. 单调性,加入新的特征后,判据不减小:XN,X N 1 。
但是遗憾的是现在所经常使用的各种判据很难满足上述全部条件,只能满足一个或几个条件 基于矩阵形式的可分性判据1. 类内散度矩阵设有M 个类别,J ,…,宀,J 类样本集「X 1 , X 2 , X N, , J 类的散度矩阵定义为:总的类内散度矩阵为:MM1 NiTS w 八 P J S w i八 P -iX k-m iX k -m ii土i mNi k d2. 类间散度矩阵第i 个类别和第j 个类别之间的散度矩阵定义为:S B " =m ■ ii m m J总的类间散度矩阵可以定义为:/ MM, M M1 1S B ■ P 「'〔二 p s B P 'Ji 玄 p 「m - m 1 11^ - m J2 i 4 j ±2 i _ij jS w i二N iX N -J ij X ,X 21k =1M令:m 为总体均值,m P ■ \ m i,则有:i £MTS B 八 P 「”m H 「m ][m 「;-mi丄3. 总体散度矩阵总体散度矩阵可以定义为:S TM其中N 为总的样本数,NN i 。
机器学习原理特征工程教案教案概述:本教案旨在介绍机器学习原理中的特征工程,帮助学生了解特征工程的概念、重要性以及如何在实际问题中进行特征工程操作。
通过本章的学习,学生将能够理解特征工程的基本原理,掌握特征选择、特征提取和特征变换等方法,并能够运用特征工程解决实际问题。
教案章节:一、特征工程概述1. 特征工程的定义2. 特征工程的重要性3. 特征工程的基本流程二、特征选择1. 特征选择的目的2. 特征选择的方法a. 过滤式特征选择b. 包裹式特征选择c. 嵌入式特征选择三、特征提取1. 特征提取的定义2. 特征提取的方法a. 线性变换b. 非线性变换c. 主成分分析(PCA)四、特征变换1. 特征变换的定义2. 特征变换的方法a. 标准化b. 归一化c. 编码转换五、特征工程应用案例1. 案例介绍2. 特征工程操作步骤3. 结果分析与总结教学目标:1. 理解特征工程的概念和重要性2. 掌握特征选择、特征提取和特征变换的方法3. 能够运用特征工程解决实际问题教学方法:1. 讲授:讲解特征工程的基本概念和方法2. 案例分析:分析实际问题中的特征工程操作3. 练习题:巩固所学知识并运用到实际问题中教学评估:1. 课堂问答:检查学生对特征工程概念和方法的理解2. 练习题:评估学生对特征工程应用的掌握程度3. 小组项目:让学生合作完成一个特征工程案例,评估学生的综合应用能力六、特征选择案例分析1. 案例介绍:分析一个实际问题,如分类或回归问题,并展示如何通过特征选择来改善模型性能。
2. 特征选择步骤:a. 数据探索性分析b. 特征评分和选择c. 交叉验证和模型评估3. 结果分析与总结:a. 比较特征选择前后的模型性能b. 分析特征选择对模型泛化能力的影响七、特征提取方法深入1. 特征提取方法回顾:复习上一章节中介绍的特征提取方法。
2. 高级特征提取方法:a. 自编码器b. 深度信念网络c. 卷积神经网络3. 特征提取方法的比较和选择:a. 根据问题类型选择合适的特征提取方法b. 评估不同特征提取方法的性能八、特征变换技巧1. 特征变换的目的:了解特征变换在模型构建中的作用。
特征提取与特征选择
1.特征提取
特征提取,通常称为特征工程,是指从数据集中提取有助于建模、分析过程和预测结果的特征,是机器学习和深度学习的基础,是实现有效机器学习和深度学习模型的关键环节。
特征提取的主要目的是从原始数据中提取出有价值的特征,从而提升模型的精确度。
特征提取的方法主要有:
1)非监督学习:非监督学习通过聚类、主成分分析(PCA)、奇异值分解、独立成分分析(ICA)等方法从原始数据中提取出有价值的特征。
2)监督学习:监督学习可以通过特征选择,递归特征消除(RFE),基于权重的统计特征选择和基于函数的特征选择等方法从原始数据中提取出有价值的特征。
2.特征选择
特征选择是指从原始数据中选择具有预测性的特征,以便提高模型有效性。
特征选择有助于减少过拟合,进而提高模型准确性。
特征选择的方法主要有:
1)特征选择:特征选择可以使用过滤法(Filter),包括单变量统计,相关性,卡方,信息增益等方法,也可以使用包裹法(Wrapper),包括递归特征消除(RFE),贪心,粒子群优化等方法,还可以使用嵌入法(Embedded),包括 L1正则化,L2正则化等方法。